• Aucun résultat trouvé

A Appendix – Proof of Theorem 3.13

Dans le document 4 Proof of the main results (Page 30-34)

a(t)|ξ|2|u|b2 + 1

a(t)|∂tu|b2 + ∂ta

2a2Re (∂tbu · u)b

,

which slightly differs from the one used by Tarama in [24]. From now on, the computations can be performed as in the general case, explained in the previous section, and they allow us to find the same results of [24].

We stress again the fact that the previous construction can be performed for anyp∈[1,+∞].

A Appendix – Proof of Theorem 3.13

We show here the proof of Theorem 3.13. We will follow the main steps of Proposition 4 in [13], based on Meyer’s paralinearization method, performing suitable modifications, in order to adapt the arguments to the logarithmic instance.

First of all, we introduce the telescopic series

+∞

X

j=2

Fj, with Fj := F(Sj+1u) − F(Sju), where we adopted the same notations of Subsection 3.1.

Lemma A.1. Under the hypotheses of Theorem 3.13, the series P

jFj converges to F(u) − F(S2u) in S0. Moreover one has

(49) Fj = mjju , where mj :=

Z 1 0

F0(Sju + σ∆ju)dσ .

Proof. Equality (49) is a straightforward consequence of the mean value theorem. So, it’s enough to prove the convergence of the series.

Hence, for any fixed N ≥2, let us estimate

F(u) − F(S2u) −

N

X

j=2

Fj Lp

= kF(u) − F(SN+1u)kLp ≤ ku − SN+1ukLp

F0 L .

Let us suppose s >0 andr <+∞ for a while. Notice that, as∇u∈Bp,r(s−1)+αlog,

(50) lim

N→+∞

X

j≥N

2j(s−1)r(1 +j)αrk∆j∇ukrLp = 0.

Thanks to spectral localization, we have u−SN+1u = P

j≥N+1ju; then, by Bernstein inequalities we infer

ku − SN+1ukLp ≤ X

j≥N+1

k∆jukLp

(51)

≤ C X

j≥N+1

2j(s−1)(1 +j)α k∆j∇ukLp 2−js(1 +j)−α.

We now apply Hölder inequality for series, and relation (50) allows us to conclude.

Ifr= +∞, instead, we apply Proposition 3.6 to reconduct ourselves to the previous case with a different s0 >0. Ifs= 0, instead, we use the fact thatα >1in (51).

Remark A.2. Starting from inequality (51), it’s easy to see that the previous statement is still true even ifs= 0 and α >0, under the additional assumption that αr0 > 1, with r0 defined by the relation 1/r0 + 1/r = 1.

Let us now quote Lemma 2.63 of [2].

Lemma A.3. Let g: R2 −→ R smooth, and set mj(g) := g(Sju ,∆ju) for all j∈N.

Then, for any u ∈L and any ν ∈ Nd, there exists a positive constant Cν = Cν(g,kukL) such that, for any j∈N,

kmj(g)kL ≤ Cν2j|ν|.

Finally, we need the following lemma. Recall that, for s≥0,[s]denotes the biggest integer smaller than or equal to s.

Lemma A.4. Let s >0, α∈Rand (p, r)∈[1,+∞]2.

There exists a positive constant Cs,α such that, for any sequence (uj)j∈

N of smooth functions

On the other hand, for k < j (and thenj≥1), from Bernstein inequalities we infer k∆jukkLp ≤ C2−j([s]+1) sup

Putting together estimates (52) and (53), we end up with the inequality 2js(1 +j)αk∆jukLp ≤ C (a ∗ δ)j ,

where we have definedδ = (δk)k and a= (ak)k, with ak = (1 +k)|α|

2−ks + 2−k([s]+1−s) .

This concludes the proof of the lemma whens >0.

If s= 0, it’s enough to notice that, in (52), as k≥j, 1 +j

1 +k α

≤ C ,

while the term2−x(1 +x)α, arising in (53), can be obviously bounded by a constant.

Let us come back to the proof of Theorem 3.13. By Lemma A.1, we have the decomposition F(u) −F(S2u) =

+∞

X

j=2

Fj,

whereFj is given by (49).

Remark A.5. Due to spectral localization, in every term ∆ju (with j ≥2) of the relations in (49), we can replace u byu−S0u, with

ku − S0uk

Bs+αp,r log ≤ C k∇uk

Bp,r(s−1)+αlog .

As a first step, we want to prove that F(u)−F(S2u) ∈ Bp,rs+αlog: thanks to Lemma A.4, it’s enough to prove that

sup

|ν|≤[s]+1

2j(s−|ν|)(1 +j)α k∂νFjkLp

!

j

∈ `r(N).

If we set g(ζ, ω) = R1

0 F0(ζ+σω)dσ, by Leibniz formula and Lemma A.3 we infer k∂νFjkLp ≤ X

µ≤ν

Cν,µ2j|µ|Cµ(F0, J) 2j(|ν|−|µ|)k∆jukLp

≤ Cν(F0, J) 2j|ν|k∆jukLp. Hence, from this inequality and Remark A.5, we get

2j(s−|ν|)(1 +j)α k∂νFjkLp ≤ Cν(F0, J)cjk∇uk

B(s−1)+αp,r log, wherekcjk`r = 1.

So, we have proved that F(u)−F(S2u) ∈ Bp,rs+αlog, with kF(u) − F(S2u)kBs+αlog

p,r ≤ C k∇uk

B(s−1)+αp,r log . This implies, in particular, that its gradient is inBp,r(s−1)+αlog.

Now we notice that

∇ F(S2u)

= F0(S2u)∇S2u

belongs to Lp with all its derivatives. In fact, this easily follows from the chain rule and Leibniz formula, keeping in mind that u∈L and ∇S2u∈Lp with all its derivatives.

From this fact, by embeddings we gather that∇ F(S2u)

∈Bp,r(s−1)+αlog, and then also∇(F◦ u) belongs to the same space.

This completes the proof of Theorem 3.13.

Acknowledgements

The first three authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Prob-abilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

The third author was partially supported by the project “Instabilities in Hydrodynamics”, funded by the Paris city hall (program “Émergences”) and the Fondation Sciences Mathématiques de Paris. He is deeply grateful to J. Rauch for useful discussions about the problem.

References

[1] H. Bahouri, J.-Y. Chemin: Équations de transport relatives à des champs de vecteurs non-lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal.,127(1994), n. 2, 159-181.

[2] H. Bahouri, J.-Y. Chemin, R. Danchin: “Fourier Analysis and Nonlinear Partial Differential Equa-tions”, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences),343, Springer, Heidelberg (2011).

[3] J.-M. Bony: Calcul symbolique et propagation des singularités pour les équations aux dérivées par-tielles non linéaires, Ann. Sci. École Norm. Sup. (4),14 (1981), 209-246.

[4] J.-Y. Chemin: Fluides parfaits incompressibles, Astérisque,230(1995).

[5] M. Cicognani, F. Colombini: Modulus of continuity of the coefficients and loss of derivatives in the strictly hyperbolic Cauchy problem, J. Differential Equations,221(2006), 143-157.

[6] F. Colombini, E. De Giorgi, S. Spagnolo: Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps, Ann. Scuola Normale Sup. Pisa Cl. Scienze (4),6(1979), no. 3, 511-559.

[7] F. Colombini, D. Del Santo: A note on hyperbolic operators with log-Zygmund coefficients, J. Math.

Sci. Univ. Tokyo16(2009), no. 1, 95-111.

[8] F. Colombini, D. Del Santo, F. Fanelli, G. Métivier: Time-dependent loss of derivatives for hyperbolic operators with non-regular coefficients, Comm. Partial Differential Equations,38(2013), n. 10, 1791-1817.

[9] F. Colombini, D. Del Santo, F. Fanelli, G. Métivier: A well-posedness result for hyperbolic operators with Zygmund coefficients, J. Math. Pures Appl. (9), 100(2013), n. 4, 455-475.

[10] F. Colombini, D. Del Santo, M. Reissig: On the optimal regularity of coefficients in hyperbolic Cauchy problems, Bull. Sci. Math.,127(2003), n. 4, 328-347.

[11] F. Colombini, G. Métivier,The Cauchy problem for wave equations with non-Lipschitz coefficients;

application to continuation of solutions of some nonlinear wave equations, Ann. Sci. École Norm.

Sup. (4)41(2008), n. 2, 177-220.

[12] R. Danchin: Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients, Rev. Mat. Iberoamericana,21(2005), n. 3, 863-888.

[13] R. Danchin: On the well-posedness of the incompressible density-dependent Euler equations in the Lp framework, J. Differential Equations,248(2010), n. 8, 2130-2170.

[14] R. Danchin, M. Paicu: Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux, Bull. Soc. Math. France,136(2008), n. 2, 261-309.

[15] L. C. Evans: “Partial Differential Equations”, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI (1998).

[16] F. Fanelli: “Mathematical analysis of models of non-homogeneous fluids and of hyperbolic operators with low-regularity coefficients”, Ph.D. thesis, Scuola Internazionale Superiore di Studi Avanzati &

Université Paris-Est (2012).

[17] F. Fanelli, E. Zuazua: Weak observability estimates for 1-D wave equations with rough coefficients, Ann. Inst. H. Poincaré Anal. Non Linéaire, to appear (2014).

[18] A. E. Hurd, D. H. Sattinger: Questions of existence and uniqueness for hyperbolic equations with discontinuous coefficients, Trans. Amer. Math. Soc., 132(1968), 159-174.

[19] T. Kato: “Perturbation Theory for Linear Operators”, Classics in Mathematics, Springer-Verlag, Berlin (1995).

[20] G. Métivier: Interactions de deux chocs pour un système de deux lois de conservation, en dimension deux d’espace, Trans. Amer. Math. Soc.,296(1986), 431-479.

[21] G. Métivier: “Para-differential calculus and applications to the Cauchy problem for nonlinear sys-tems”, Centro di Ricerca Matematica “Ennio De Giorgi” (CRM) Series, 5, Edizioni della Normale, Pisa (2008).

[22] G. Métivier, K. Zumbrun: Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc.,175(2005).

[23] J. Rauch: “Hyperbolic Partial Differential Equations and Geometric Optics”, Graduate Studies in Mathematics, 133, American Mathematical Society, Providence, RI (2012).

[24] S. Tarama: Energy estimate for wave equations with coefficients in some Besov type class, Electron.

J. Differential Equations (2007), Paper No. 85, 12 pp. (electronic).

Dans le document 4 Proof of the main results (Page 30-34)

Documents relatifs