• Aucun résultat trouvé

Considérons maintenant un problème matriciel s’écrivant de la manière suivante :

                  c1 d1 e1 0 0 b2 ... ... ... a3 ... 0 ... 0 eL−2 dL−1 0 0 aL bL cL                   ·                   x1 x2 ... xL                   =                   y1 y2 ... yL                  

avec cj non-nul pour tout j compris entre 1 et L.

Pour résoudre ce type d’équation, et en suivant l’idée de l’algorithme de double descente, il suffit de modifier les coefficients de la matrice par un premier passage pour écrire l’ensemble des inconnues par une relation de récurrence. Puis, lors du second passage, en déduire l’ensemble des variables.

Données : {a, b, c, d, e, y} Résultat : x

pour tous les j ∈ [[2; L − 1]] faire

tmp ← bj/cj−1; cj ← cj− tmp ∗ dj−1; dj← dj− tmp ∗ ej−1; yj ← yj− tmp ∗ yj−1; tmp ← aj+1/cj−1; bj+1← bj− tmp ∗ dj−1; cj+1← cj− tmp ∗ ej−1; yj+1← yj+1− tmp ∗ yj−1; fin tmp ← bL/cL−1; cL← cL− tmp ∗ dL−1); xL← (yL− tmp ∗ yL−1)/cL; xL−1← (yL−1− dL−1∗ xL)/cL−1; pour tous les j ∈ [[1; L − 2]] faire

xL−1−j← (yL−1−j− eL−1−j∗ xL+1−j− dL−1−j∗ xL−j)/cL−1−j; fin

Comparé à la méthode de double descente classique, cet algorithme est également d’ordre O(L), mais nécessite plus de calculs. Elle permet une résolution directe du problème, sans avoir à réaliser de décomposition de type LU.

Bibliographie

[1] Akio Arakawa et Celal S. Konor : Unification of the anelastic and quasi-hydrostatic systems of equations. Monthly Weather Review, 137(2):710–726, 2009.

[2] Uri M. Ascher, Steven J. Ruuth et Raymond J. Spiteri : Implicit-Explicit Runge-Kutta methods for time-dependent partial differential equations. Applied Numerical Mathematics, 25(2):151–167, 1997.

[3] Uri M. Ascher, Steven J. Ruuth et Brian T.R. Wetton : Implicit-Explicit methods for time-dependent partial differential equations. SIAM Journal on Numerical Analysis, 32:797– 823, 1995.

[4] Richard Asselin : Frequency filter for time integrations. Monthly Weather Review, 100:487– 490, 1972.

[5] Piere Bénard, Jozef Vivoda, Ján Mašek, Petra Smolíková, Karim Yessad, Ch Smith, Radmila Brožková et Jean-François Geleyn : Dynamical kernel of the Aladin–NH spectral limited-area model : Revised formulation and sensitivity experiments. Quarterly Journal of the Royal Meteorological Society, 136(646):155–169, 2010.

[6] Pierre Bénard : Stability of Semi-Implicit and iterative centered-implicit time discretizations for various equation systems used in NWP. arXiv preprint physics/0311123, 2002.

[7] Pierre Bénard, René Laprise, Jozef Vivoda et Petra Smolíková : Stability of Leap-Frog constant-coefficients semi-implicit schemes for the fully elastic system of Euler equations : Flat-terrain case. arXiv preprint physics/0311123, 2003.

[8] Pierre Bénard, Ján Mašek et Petra Smolíková : Stability of Leap-Frog constant- coefficients semi-implicit schemes for the fully elastic system of Euler equations : Case with orography. Monthly Weather Review, 133(5):1065–1075, 2005.

[9] Radmila Bubnová, Gwenaëlle Hello, Pierre Bénard et Jean-François Geleyn : Inte- gration of the fully elastic equations cast in the hydrostatic pressure terrain-following coor- dinate in the framework of the ARPEGE/Aladin NWP system. Monthly Weather Review, 123(2):515–535, 1995.

[10] Jules G Charney, Ragnar Fjörtoft et John Von Neumann : Numerical integration of the barotropic vorticity equation. Tellus, 2(4):237–254, 1950.

[11] James W. Cooley et John W. Tukey : An algorithm for the machine calculation of complex Fourier series. Mathematics of computation, 19(90):297–301, 1965.

[12] Richard Courant, Kurt Friedrichs et Hans Lewy : Über die partiellen Differenzenglei- chungen der mathematischen Physik. Mathematische annalen, 100(1):32–74, 1928.

[13] MMichael J.P. Cullen : Alternative implementations of the semi-Lagrangian semi-implicit schemes in the ECMWF model. Quarterly Journal of the Royal Meteorological Society, 127(578):2787–2802, 2001.

[14] Roger Daley : The normal modes of the spherical non-hydrostatic equations with applications to the filtering of acoustic modes. Tellus A, 40(2):96–106, 1988.

[15] Huw C. Davies : Limitations of some common lateral boundary schemes used in regional NWP models. Monthly Weather Review, 111(5):1002–1012, 1983.

[16] Thomas Dubos et Marine Tort : Equations of atmospheric motion in Non-Eulerian vertical coordinates : Vector-Invariant form and Quasi-Hamiltonian formulation. Monthly Weather Review, 142(10):3860–3880, 2014.

[17] Thomas Dubos et Fabrice Voitus : A semihydrostatic theory of gravity-dominated com- pressible flow. Journal of the Atmospheric Sciences, 71(12):4621–4638, 2014.

[18] Dale R. Durran : Improving the anelastic approximation. Journal of the atmospheric sciences, 46(11):1453–1461, 1989.

[19] Dale R. Durran : The third-order Adams-Bashforth method : an attractive alternative to Leap-Frog time differencing. Monthly Weather Review, 119(3):702–720, 1991.

[20] Dale R. Durran et Peter N. Blossey : Implicit-Explicit multistep methods for fast-wave- slow-wave problems. Monthly Weather Review, 140(4):1307–1325, 2012.

[21] John A. Dutton : The Ceaseless Wind, 579 pp, 1986.

[22] Arnt Eliassen : The quasi-static equations of motion with pressure as independent variable, volume 17. Grøndahl & Sons boktr., I kommisjon hos Cammermeyers boghandel, 1949. [23] Tzvi Gal Chen et Richard C.J. Somerville : On the use of a coordinate transformation for

the solution of the Navier-Stokes equations. Journal of Computational Physics, 17(2):209–228, 1975.

[24] Almut Gassmann et Hans-Joachim Herzog : A consistent time-split numerical scheme applied to the nonhydrostatic compressible equations. Monthly Weather Review, 135(1):20– 36, 2007.

[25] Francis X. Giraldo, John F. Kelly et Emil Constantinescu : Implicit-Explicit formula- tions of a three-dimensional nonhydrostatic unfied model of the atmosphere (NUMA). SIAM Journal on Computing, 35(5):1162–1194, 2013.

[26] Francis X. Giraldo et Marco Restelli : A study of spectral element and discontinuous galerkin methods for the Navier–Stokes equations in nonhydrostatic mesoscale atmospheric modeling : Equation sets and test cases. Journal of Computational Physics, 227(8):3849–3877, 2008.

[27] Sigal Gottlieb et Chi-Wang Shu : Total variation diminishing Runge-Kutta schemes. Mathematics of Computation of the American Mathematical Society, 67(221):73–85, 1998.

[28] Sigal Gottlieb, Chi-Wang Shu et Eitan Tadmor : Strong stability-preserving high-order time discretization methods. SIAM review, 43(1):89–112, 2001.

[29] Anthony Hollingsworth : A spurious mode in the "Lorenz" arrangement of Ø and T which does not exist in the "Charney-Phillips" arrangement. European Centre for Medium-Range Weather Forecasts, 1995.

[30] Motohki Ikawa : Comparison of some schemes for nonhydrostatic models with orography. Journal Meteorological Society of Japan, 66:753–776, 1988.

[31] Meriem Jedouaa, Charles-Henri Bruneau et Emmanuel Maitre : An efficient interface capturing method for a large collection of interacting cells immersed in a fluid. 2015.

[32] Akira Kasahara : Various vertical coordinate systems used for numerical weather prediction. Monthly Weather Review, 102(7):509–522, 1974.

[33] Christopher A. Kennedy et Mark H. Carpenter : Additive Runge-Kutta schemes for convection-diffusion-reaction equations. Rapport technique, NASA Langley Technical Report Server, 2001.

[34] Joseph B. Klemp, William C. Skamarock et Jimy Dudhia : Conservative split-explicit time integration methods for the compressible nonhydrostatic equations. Monthly Weather Review, 135(8):2897–2913, 2007.

[35] Joseph B. Klemp et Robert B. Wilhelmson : The simulation of three-dimensional convective storm dynamics. Journal of the Atmospheric Sciences, 35(6):1070–1096, 1978.

[36] Jean-Philippe Lafore, Joël Stein, Nicole Asencio, Philippe Bougeault, Véronique Du- crocq, Jacqueline Duron, Claude Fischer, Philippe Héreil, Patrick Mascart, Valéry Masson et al. : The Meso-NH atmospheric simulation system. Part I : Adiabatic formulation and control simulations. In Annales Geophysicae, volume 16, pages 90–109. Springer, 1997. [37] Lev Davidovitch Landau et Evgenii Mikhailovich Lifchitz : Physique théorique : Mécanique

des fluides, volume 6. Éditions Mir, ellipses-edition marketing édition, 1971.

[38] Lev Davidovitch Landau et Evgenii Mikhailovich Lifchitz : Physique théorique : Mécanique, volume 1. Éditions Mir, Ellipses-Edition Marketing édition, 1994.

[39] René Laprise : The Euler equations of motion with hydrostatic pressure as an independent variable. Monthly Weather Review, 120(1):197–207, 1992.

[40] Randall J. Leveque et Joseph Oliger : Numerical methods based on additive splittings for hyperbolic partial differential equations. Mathematics of computation, 40(162):469–497, 1983. [41] Franik B. Lipps et Richard S. Hemler : A scale analysis of deep moist convection and some related numerical calculations. Journal of the Atmospheric Sciences, 39(10):2192–2210, 1982. [42] Sarah-Jane Lock, Nigel Wood et Hilary Weller : Numerical analyses of Runge–Kutta implicit–explicit schemes for horizontally explicit, vertically implicit solutions of atmospheric models. Quarterly Journal of the Royal Meteorological Society, 140(682):1654–1669, 2014. [43] Ytzhaq Mahrer : An improved numerical approximation of the horizontal gradients in a

[44] Glenn Mainguy : L’économie du quotidien. Une étude de la précarité à travers l’exemple des pratiques agricoles domestiques dans le monde rural russe. Thèse de doctorat, Université de Bordeaux, 2016.

[45] Gurii I. Marchuk : Numerical solution of problems of atmosphere and ocean dynamics. Gidrometeoizdat, Leningrad, 1974.

[46] Thomas Melvin, Mark Dubal, Nigel Wood, Andrew Staniforth et Mohamed Zerrou- kat : An inherently mass-conserving iterative semi-implicit semi-Lagrangian discretization of the non-hydrostatic vertical-slice equations. Quarterly Journal of the Royal Meteorological Society, 136(648):799–814, 2010.

[47] Fedor Mesinger : Forward–Backward scheme, and its use in a limited area model. Contrib. Atmos. Phys., 50:200–210, 1977.

[48] Eike H. Müller et Robert Scheichl : Massively parallel solvers for elliptic partial differen- tial equations in numerical weather and climate prediction. Quarterly Journal of the Royal Meteorological Society, 140(685):2608–2624, 2014.

[49] Yoshimitsu Ogura et Norman A. Phillips : Scale analysis of deep and shallow convection in the atmosphere. Journal of the atmospheric sciences, 19(2):173–179, 1962.

[50] Lorenzo Pareschi et Giovanni Russo : Implicit-Explicit Runge-Kutta schemes and applica- tions to hyperbolic systems with relaxation. Journal of Scientific computing, 25(1-2):129–155, 2005.

[51] Alexandre Philip, Thierry Bergot, Yves Bouteloup et François Bouyssel : The impact of vertical resolution on fog forecasting in the kilometric-scale model AROME : A case study and statistics. Weather and Forecasting, (2016), 2016.

[52] Norman A. Phillips : A coordinate system having some special advantages for numerical forecasting. Journal of Meteorology, 14(2):184–185, 1957.

[53] R. James Purser et Lance M. Leslie : Reducing the error in a time-split finite-difference scheme using an incremental technique. Monthly Weather Review, 119(2):578–585, 1991. [54] André J. Robert : The integration of a low order spectral form of the primitive meteo-

rological equations (Spherical harmonics integration of low order spectral form of primitive meteorological equations). Journal Meteorological Society of Japan, 44:237–245, 1966.

[55] André J. Robert, John Henderson et Colin Turnbull : An implicit time integration scheme for baroclinic models of the atmosphere. Monthly Weather Review, 100(5):329–335, 1972.

[56] Masaki Satoh : Conservative scheme for the compressible nonhydrostatic models with the Horizontally Explicit and Vertically Implicit time integration scheme. Monthly Weather Re-

view, 130(5):1227–1245, 2002.

[57] Christoph Schär, Daniel Leuenberger, Oliver Fuhrer, Daniel Lüthi et Claude Girard : A new terrain-following vertical coordinate formulation for atmospheric prediction models. Monthly Weather Review, 130(10):2459–2480, 2002.

[58] Juan Simarro et Mariano Hortal : A semi-implicit non-hydrostatic dynamical kernel using finite elements in the vertical discretization. Quarterly Journal of the Royal Meteorological Society, 138(664):826–839, 2012.

[59] Adrian J. Simmons, Brian J. Hoskins et David M. Burridge : Stability of the semi-implicit method of time integration. Monthly Weather Review, 106(3):405–412, 1978.

[60] William C. Skamarock et Joseph B. Klemp : The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Monthly Weather Review, 120(9): 2109–2127, 1992.

[61] William C. Skamarock et Joseph B. Klemp : Efficiency and accuracy of the Klemp- Wilhelmson time-splitting technique. Monthly Weather Review, 122(11):2623–2630, 1994. [62] Ronald B Smith : Linear theory of stratified hydrostatic flow past an isolated mountain.

Tellus, 32(4):348–364, 1980.

[63] Piotr K. Smolarkiewicz, Christian Kühnlein et Nils P. Wedi : A consistent framework for discrete integrations of soundproof and compressible pdes of atmospheric dynamics. Journal of Computational Physics, 263:185–205, 2014.

[64] Jerry M. Straka, Robert B. Wilhelmson, Louis J. Wicker, John R. Anderson et Kel- vin K. Droegemeier : Numerical solutions of a non-linear density current : A benchmark solution and comparisons. International Journal for Numerical Methods in Fluids, 17(1):1–22, 1993.

[65] Gilbert Strang : On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis, 5(3):506–517, 1968.

[66] Yasuo Tatsumi : An economical explicit time integration scheme for a primitive model (of atmosphere). Journal Meteorological Society of Japan, 61:269–288, 1983.

[67] Paul Ullrich et Christiane Jablonowski : Operator-split Runge-Kutta-Rosenbrock me- thods for nonhydrostatic atmospheric models. Monthly Weather Review, 140(4):1257–1284, 2012.

[68] Hilary Weller, Sarah-Jane Lock et Nigel Wood : Runge-Kutta IMEX schemes for the Horizontally Explicit/Vertically Implicit (HEVI) solution of wave equations. Journal of Com- putational Physics, 2013.

[69] Louis J. Wicker et William C. Skamarock : A time-splitting scheme for the elastic equa- tions incorporating second-order Runge-Kutta time differencing. Monthly Weather Review, 126(7):1992–1999, 1998.

[70] Louis J. Wicker et William C. Skamarock : Time-splitting methods for elastic models using forward time schemes. Monthly Weather Review, 130(8):2088–2097, 2002.

[71] Paul D. Williams : A proposed modification to the Robert-Asselin time filter. Monthly Weather Review, 137(8):2538–2546, 2009.

[72] Paul D. Williams : The RAW filter : an improvement to the Robert-Asselin filter in semi- implicit integrations. Monthly Weather Review, 139(6):1996–2007, 2011.

[73] Nigel Wood, Andrew Staniforth, Andy White, Thomas Allen, Michail Diamanta- kis, Markus Gross, Thomas Melvin, Chris Smith, Simon Vosper, Mohamed Zerroukat et al. : An inherently mass-conserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global non-hydrostatic equations. Quarterly Journal of the Royal Meteoro- logical Society, 140(682):1505–1520, 2014.

[74] Günther Zängl : Extending the numerical stability limit of terrain-following coordinate models over steep slopes. Monthly Weather Review, 140(11):3722–3733, 2012.