• Aucun résultat trouvé

Sulla stabilità di un punto fisso per funzioni di n variabili complesse. Problema del Centro di Schröder-Siegel


Academic year: 2021

Partager "Sulla stabilità di un punto fisso per funzioni di n variabili complesse. Problema del Centro di Schröder-Siegel"

En savoir plus ( Page)

Texte intégral

(1)Institutional Repository - Research Portal Dépôt Institutionnel - Portail de la Recherche researchportal.unamur.be University of Namur. RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE. Sulla stabilità di un punto fisso per funzioni di n variabili complesse. Problema del Centro di Schröder-Siegel Carletti, Timoteo Published in: Bolletino UMI. Author(s) - Auteur(s) : Publication date: 2005. Publication - Date de publication : Documentdate Version. Première version, également connu sous le nom de pré-print. Link to publication Citation for pulished version (HARVARD): Carletti, Tlink 2005, stabilità :di un punto fisso per funzioni di n variabili complesse. Problema del Centro di Permanent - 'Sulla Permalien Schröder-Siegel', Bolletino UMI, VOL. 8, Numéro 8, p. 123-131.. Rights / License - Licence de droit d’auteur :. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.. Download date: 28. août. 2021 Moretus Plantin Bibliothèque Universitaire.


(3)  "!#%$'&( *)$+,-.*$/$01!)/$2!45 3 7681&(68'!:9;<=&<>64@?,- " AB,-/9;C,-D;&(4F 36 EG)/$2H,I&($+C<#C "(JK68L"M%6J?JKCL$0#C6M&8!N1$O%PQQSR T U)$+,-V*$C(!UVXW(Y*[JZ *<\JWM]N?<$_^ ` C&8aE" b<,>64$0"!-%$&U*)<$0<,-cICU*"!aM&(C/(Sd&8"$2C%C68$_!"! P$CGe ABQ",a"Cf 9gC,>h$0,-/9;ij,-G!C],-kC,a!N<(*< =/$4&( *)$+,-k*V$_S68:C!6ml]MXn$_",a"%bSi /o&8!C$0 p<[/'!NQC<< <,aa"$(G<a'?<C,>hqr<EQsJ^=t;(<$O6M*Q,--C168u C&J&($OCl] /EG$_!Vc,a!  -$0-!*)/$O/!4k 3 ]AB<!]!/EGvg68&(68'!B9;<J^ w S!]!NQ,-=%#<E]*8lSa",-H64Pu "($OxyJC<68 "!-*<$J&( *)<$0<,aH&,<!]!-""!]!N<Q:C  ,-S!Sy%Q<!]!%ig$_S68Mx64$_!"!eJ!]!%,-$OyJ!]!NM)/$21$+B!NQ<'<Y8H%C,-$O+llSml]I?Q"f ,S!C]{zS}| ~+}=g€8<€"‚ z^ ƒ aCC]*<>!/YI&( *)$+,„ b=!/Y8>!*)<%$O!s5Ub=H9 Q>&8/'!†Uba-?4,‡ b= ABQ",a"&'Y%,=  bH<E" $ ",†&$0 E*)<$0i7)<sˆC6J?*J!%?c!/Y8:CsG!N,Š‰;!/Yv!/H$2/Q"j&8!R‹!/Y8:W(Y*[JZ *<\ W']N?$C(! r&( *)<$0<,a^ ƒ Œ&(Q<<'!7!/Y8†&( *)<$0<,‡"(,aUbo!/Y8=,-/@Q68$O!/Xb<=!/Y8>($Os"!c"!NN?*sJ^c Y8< ‰h-CY4‰ŽY4‰!@ J!N5!/Y8‹&( *)<$0<,!k,('\($Os"!kCG<i†/5&8!S64$0-‰h‰;/$%$h)C /'!N< !NQc/Fqr<EQso?4,=^ ƒ :‰;%$/$ea‰;!/Yk".C&*&($2]J!v&UEm%4?kABS!/E‹!*)<%$O/!s†b I9e 4Qp&8"%'!^ ƒ v‰;/$%$ &8/'!=6!‹!/Y4"!p‘JS64 "!N@("$2sGC%kUbv!/Y=&( *)<$0<,’$%$0‰yV64c!“)<!/”‰;!/Y "%QQ!g,<!/Y4Gig<,p&!%,-$  C68$O!/:*)S!%PQ1)s>64C/?-!/Y8I?,<!C$[Q(,-$O0l"!"•z<} | ~x}=g€4<€"‚ z<^. –.


(5)          "! # $ &% '(

(6) ) *

(7) +  -,.0/ +132 4  0 15/  6798 5    :,<;=70> 65 ?@ #BA37 .C DFE0GIHKJG3LNMIOKPQJ1HRHSD TVUW GXPYM[Z\GXOKEMIPQJ TVW^] JOKDQGXORJ ] DYMI_*_`M[a^JDbLNMcIMXPQDQJ*OKDedVfhgIikj`lmi3noDQpKM^frqsHtMXPQDYM Hu U MIOKPvJ*HRHSDxwBpRyrp*uzDvH { J U JE}|~J*OlVfhlI€X€‚ ƒ „‡†[ˆŠ‰I‹ŒRŽ’‘’“1”•Žm‰’– —e˜"™›šœ™ž ŸŠ¡N¢0£`šz˜¤¢t¡<šœ¥Š¦Ÿ

(8) § ¨Q©ª¢t«Ššœ¦˜Ÿ(£`šo¬˜"­®›¬`¯¯I¦¦™°Ÿ±¡<šo­®›¬¯`¯I¦™°¬6¬`˜`¦™›¯`¢t«±šz¦  ¦¯m¦¨œ¦t­šœ¥Š¦`²´³*šœ™°›Ÿ±¡<šr£`šœ˜`¢t¡µšz¥±š·¶s¸K¹¤ºv»¼¹¤½*»¾™›¦t˜`¦¢t«Ššœ¦˜šr£`šr¿·À~¦®›šz­šœ˜¤¢K šFÀX¯IŸŠ® ŸŠ™›Ÿ±¡<¯`šz¦`ÀV£`¢ Ÿ±Á1¬¤¢t«Ššœ¦˜`šh£`šzÂIŸ±®°Ÿ±˜`«ŠšÃ¢t¨zšFÄ^™°šœ™ž Ÿ±¡<šÅ£`šœ˜¤¢S¡µšz¥±šeÆt»œÇ¶ÉÈ ÊɺQ»r™°¦˜`¦7¢t«Ššœ¦˜šÅ£š~Ë=¦¯`¯`¬`®°Ÿ´ÌͲ[΢S ¦ ¬`˜`¦(™°¯¤¢t«Ššœ¦Ï›¦¯m¦¨œ¦­tšœ¥±¦Ð Ÿ¬`˜¤¢Òѕ¬˜`«±šz¦˜`Ÿ¥±¦˜# šz˜1¬¤¢Ò™°¬`®›šzŸŠ° šzÓS¢ÏÔÕ~Ð Ö Ð}À~™°š·¯`¬’¦ § ¥±¦˜`™°šœ£`ŸŠ® ¢t®°Ÿµšz¨^™›ŸŠ¡µšr­t®›¬`¯`¯m¦(×v®›šz™›¯mŸŠ° šzÓS¢t¡<Ÿ±˜#›Ÿ)šœ¨^­®°¬`¯`¯m¦1Ø £`ŸŠ¨œ¨œŸ)šÙ ŸŠ® ¢S›Ÿ<£šÅÔVÕµ×FÔXÚFÛØ ÛKÜ±Ý ×v®›šz™›¯mŸŠ° šzÓS¢t¡<Ÿ±˜#›Ÿ<×FÔ ÚFÛ Ø ÛKÜ±Þ ™°ŸoÔ

(9) Ÿ§ ¬`˜¦¡µŸŠ¦¡<¦®°ß¤™°¡µ¦#Øɲ àr©ášœ£`Ÿ±¢Ÿâ§ ¥sã`ŸoÐ

(10) ÀX£`ŸŠ™›¥±®°šzÓS¢´¨œ¦µ™›¯¤¢S«±šœ¦N£`Ÿ±­¨zšV™žs¢S›šV£Ÿ±¨^™°šœ™°›Ÿ±¡µ¢µšz˜™°›¬`£`šœ¦ÀX¡<Ÿ±˜# ®°ŸäÔϨ⠙›¬¤¢<ŸŠÓ¦t¨œ¬`«Ššœ¦˜`Ÿ›Ÿ±¡<¯I¦®›¢t¨œŸS²~àr©áŸŠÓt¦¨œ¬`«Ššœ¦˜Ÿå£š‡æ ç èÐ Ÿ§ £¤¢S ¢<£¤¢S¨œ¨Ã¢)™°¬¤¢5¸KȊ鱻¼ºFêtÕb×¼æ Û Ø ÛSÜŠÝ À æ Û5ë Ô^×¼æ ÛSì¤í دmŸ±®åîï – ו¦¯`¯`¬`®°Ÿ5×¼æ Û Ø ÛSÜŠÞ ÀVæ ì¤ðñۍòIíQóeë Ô Ú°ðÙì¤íQó ×¼æ Û Ø¯mŸ±®âîôïöõÀV™°Ÿ.Ô÷Ÿ§ šœ˜#ÓŸŠ®° šzø`šœ¨zŸØù² —e˜B¯`®°šœ¡<¦)¦ø`šœŸÉ››šzÓ¦Ÿå§ £`ŸŠ›Ÿ±®›¡<šœ˜`¢t®›ŸšXúm½*¹¤ºQ»¤û^ÇsÇÉ»XŸåš‚úm½¹¤ºv»‚ú¤ÊÉÈù»F¸±Æt»F¶É»^ו¯`¬`˜# š‡ß¤™›™°š‡¯IŸŠ® šz ŸŠ® ¢S›Ÿb£`ŸŠ¨œ¨Ã¢åѕ¬`˜`«±šz¦˜`ŸåԂØşÁ*¬šœ˜`£`šI™°›¬`£`šÃ¢S®›Ÿ¨Ã¢´Æt»¼¹mêtü)»F¶›ê<ýœ¸¶›êtýœÊŚœ˜.¬˜šz˜# ¦®°˜`¦o£`š‚Á1¬`ŸŠ™°›š ¯`¬`˜# š í ² þ „‡†[ˆŠÿ ŒRŽVÿv–7‡–*ÿ  –‰m‹ŒRŽ(ŽmÿvŽ (Ž Œ

(11) YŽÏV” ‡ŒŽm ‡–1Œ † ‚”v– –*ÿ à‡¢´Ñ•¦®›¡â¬`¨Ã¢t«Ššœ¦˜Ÿo£`Ÿ±¨k¯`®°¦ø`¨zŸ±¡µ¢´¯`¬V¦B§ ŸŠ™›™°Ÿ±®›ŸäÑv¢S°s¢ ®›šœ™›¢t¨œšz®›Ÿâ¢B³¥s㮦 £`ŸŠ®´× –(– Ø  À‡šœ¨ Á*¬`¢t¨œŸr™°š#šœ˜# ŸŠ®›Ÿ±™°™K¦e§ ¢t¨z¨œ¦ ™ž ¬`£`šz¦Í£`Ÿ±¨z¨Ã¢~¥Š¦˜#ÓŸ±®°­Ÿ±˜« ¢·£Ÿ±¨¡<ŸŠ›¦£`¦ £š·Ÿ"!  ¦˜å¯IŸŠ®£`ŸŠ›Ÿ±®°¡µšz˜¤¢t®›Ÿ ® ¢t£`šz¥±š‚£š¯I¦¨zšœ˜`¦t¡µšQ² ³šœ¢t˜`$¦ #%'&)è ( +*  À~,× #%'&âØ ë – Ÿ™°šÃ¢Õ /0 #N,× *#4Ø 35&µ.× *Ø ™›6Ÿ &N,× *#8Ø ë 7 õ 1 -ä.× *#Ø ë 02 9 ™›6Ÿ &N,× *#Ø ë õ ¨œšœ¡ :<;>=?#µ.× *#@Ø 35&N,× *#Ø ™›6Ÿ * ë 9 %. ACBDFEHGJI"KDMLON


(13) PSQ

(14) P@T5L@I"U.DWV,X

(15) G,Z Y U,P@K[X

(16) T\G]L^P4_`GJQ L Z G5abIFcc

(17) GJI Z QIdU,E.e Z E,E Z eOIdL^DfKXT\P4U.UHI`L^DfQU,P@e.g'IFEHI Ih MijkL^GJDPlY imU.GRDfT\DfK[D"e.noI

(18) j"PlTJI h G\K[P@QU,GJD"QP h G5abU Zqp U,G]I>rfjfGJTRXe.Dfc

(19) T\P@KI`Q


(21) šœ¨‚¯`®°¦ø`¨zŸ±¡µ¢o™›š®›šz£`¬`¥ŠŸ ¢)™ž ¬`£`šœ¢t®›Ÿ6* ë - Ú ×.* çÉØùÀ`£¤¢S›¦ * ç·è?( ² ’¦™›™°šÃ¢t¡<¦ ™°¬`¯`¯m¦®›®°Ÿ ¥sã`Ÿ ¨Ã¢® ¢t£`šz¥±Ÿe®›šz¥±Ÿ±®°¥ ¢S ¢ ™°šÃ¢ ¨Q©ñ¦t®›šœ­tšœ˜`Ÿ Ÿe¯I¦tšœ¥s㟷  ¥±š šœ˜# ŸŠ®›ŸŠ™›™›šœ¢t¡<¦o¢t¨ ¥±¦¡<¯I¦t®°s¢S¡µŸŠ˜1›¦µ¨z¦¥±¢t¨œŸSÀ`¯m¦™›™°šÃ¢t¡<¦äŸ±™›¯`¢t˜`£`ŸŠ®›Ÿ-šz˜\™°Ÿ±®°šœŸå£`š¾¢*¨œ¦®e¢t¨z¨F©á¦®›šz­šœ˜Ÿ ŸåÁ*¬šœ˜`£`š ¥±¦˜`™°šœ£`ŸŠ® ¢t®°Ÿšœ¨‚™°Ÿ±­¬`ŸŠ˜# Ÿå¯`®›¦ø¨œŸ±¡µ¢Õ ΢S ¦<¬`˜\­Ÿ±®°¡µŸ£`š‡£`šÙÂXŸŠ¦¡µ¦t®°ß¤™°¡µ¦ä¦¨z¦¡µ¦t®°Ñ•¦ä¢t¨z¨F©á¦®›šz­šœ˜`ŸSÀ¤ÔVÀ¤™ž ¬`£šÃ¢t®°Ÿt[Õ * ë Ô Ú ×,* çÉØ~¯IŸŠ® * ç·è?( ²  ¨¯`®°¦ø`¨zŸ±¡µ¢o¯`¬V¦< § Ÿ±™›™°Ÿ±®°Ÿâ­ŸŠ˜`Ÿ±®›¢t¨œšz«±« ¢K ¦ä¢t¨¥±¢t™›¦<¡o¬`¨Ù šœ£šœ¡<Ÿ±˜`™°šœ¦˜¤¢S¨œŸÍ¥±¦˜™›šœ£Ÿ±® ¢S˜`£`¦<¬`˜ ­Ÿ±®°¡µ Ÿ +

(22) è » X,× (^Û %sõ#ؾ ¢t¨œŸ ¥sã`Ÿ  Vç ë  è ·×•î %'(ÅØ ŸÍ™° ¬£`šÃ¢t®°ŸÍšœ¨`™°šœ™°›Ÿ±¡µ¢Õ * ç·?è (^ۂÀ * ë Ú .× * çÉØù² Îbšz®›Ÿ±¡<¦)¥sã`Ÿåšœ¨‚¯¬`˜# ¦äߤ™›™°¦5Ÿo§ ÇɺYê#é±»¼ýœÊ~™›Ÿå¯IŸŠ®Í¦­˜`šoŸŠ™›šœ™ž Ÿ¬`˜\šœ˜# ¦®°˜`¦ä£`Ÿ±¨z¨F©á¦®›šz­šœ˜ŸVç ™›¬B¥Š¬`š åÚ ™›šÃ¢)£`ŸÉߤ˜`šÙ ¦äŸ  åÚ × ¾çÉØ !â¯mŸ±®Í¦­˜š "7² àr©ášœ£`Ÿ±¢.ѕ¦t˜`£¤¢t¡<Ÿ±˜#s¢S¨œŸ)šœ˜#›®›¦*£`¦t› ¢.£¤¢³¥sã`® ¦t £`Ÿ±® ¯IŸŠ®å™ž ¬`£šÃ¢t®°Ÿ<šr¯®›Ÿ±¥ŠŸ±£`ŸŠ˜# šÅ¯`®›¦ø¨œŸ±¡<š Ÿ<§ ™° ¢Ss¢\Á*¬Ÿ±¨œ¨œ¢£š¶s¸K¹¤»¼$½ ##êtÈ ÊNýÙê7Æt»¼¹mêtü)»F¶›ê5Æ*ÊÉý^ÇÉ»œÇɺ ÊÉü<êÒÆ#êtº ¸ê#ƽ¹

(23) ÇÉ»œÇɺ ÊÉü<&ê %Yúm» ½7' ǍÊÉ)ü ( úmý »F¶sÊ %+*’Æ*Êɺ ÊÉÈÉü)»¼¹mêtº ¸bÆ#ê½*,¹ #*ÊÉÈÉüNÊ Æt»XÆt» bÊs¸KüN¸Kȼû^ÇÉüN¸¸Kýœ¸KüN¸K.È - /¸ äÀt¥Ššœ¦`Ÿk§ £`ŸÉ Ÿ±®°¡µšz˜¤¢t®°Ÿh¬`˜`¢  ® ¢S™°Ñ•¦®°¡N¢t«Ššœ¦˜Ÿ £`š‚¥Š¦¦t®›£`šz˜¤¢t®›Ÿ·¨œ¦*¥ ¢t¨zŸtÀ*šœ˜#ÓŸŠ®°›šœø`¨zŸbŸ¦¨œ¦t¡µ¦®žÑv¢å£`¢Ss¢o£¤)¢ 0-

(24) è »  ,× ( Û %sõ#Ø s¢t¨zŸ¥sã`ŸtÕ !120}.× *#Ø ×–Ø ë 0312µ.× *#Ø % ¯IŸŠ®¦t­˜`Wš *[™›5¬ 4<¥ŠšœŸ±˜#›Ÿ±¡<Ÿ±˜# ŸÒÓšz¥±šz˜`¦[¢t¨œ¨Q©ñ¦t®›šœ­tšœ˜`ŸS6 ² ’¦šœ¥sã 7Ÿ   Vç Ÿ5§ šœ˜#ÓS¢t®°šÃ¢t˜# ŸB¯IŸŠ® ¥±¦˜`šz¬`­šz¦`Àšz¨‚™›šz™° ŸŠ¡N)¢ 8¯šs¬.§ ™›ŸŠ¡µ¯`¨zšœ¥Š9Ÿ 8)®›šz™›¬`¨Ù ŸŠ®K¢ § -;:5Õ *,Ö< -;:¾.× *Ø =ë ë   *² ³šœ¢t¡<¦oÁ1¬`šœ˜`£ššœ˜ ­® ¢S£`¦ä£`š‚Ñ•¦®›¡â¬`¨Ã¢t®°Ÿbšœ¨QÕ >hÈs¸té±ýœÊÉü<ê Æ*ÊÉ@ ý ?hÊɹ¤ºQÈ ¸b¸Kýœ¸KüN¸KAÈ - ¸·ÆtC» B‚E¶ D*GÈ ¸tF Æ*ÊÉIÈ H$B »FJÊ #*ÊÉý ²‡Î¢S K¦ +

(25) è »  .× ( Û %sõ#ØÉÀ  Vç è & e×vl î %'(ÅØ)£ŸŠ ŸŠ®›¡<šœ˜¤¢S®›)Ÿ 0 !è » X.× (^Û %sõ#ØÉÀ¥Š¦

(26) ˜ M0)ç L ×v¯mŸ±® ë L  ë N ¦t››Ÿ±˜`ŸŠ®›Ÿ5¬`˜šœ¥±šÙS¢(§ £Ÿ±¨œ¨Q©ñŸÉÓŸŠ˜1›¬¤¢t¨zŸ¥±¦˜šœ¬`­šz¦1ØÉÀ  ¢t¨œŸ\¥sã`Ÿ7¨œ¦*¥ ¢t¨z¡µŸŠ˜# Ÿ™›š¢tøø`šÃ¢ O10},× *#Ø 0P1q-:^,× *#ØÉQ ²  ˜B ¢t¨¥ ¢S™›¦N™°šV¯`¢t®›¨zŸ±®K¢ä§ £`šký »¼¹XʛêtÈùS» RERê#é±»¼ý »¼Tº ê' £`Uš äVÀ 0 ™ ¢t®R¢<§ £ŸŠ› ¢.ë ý »¼¹XʛêtÈÉS» RERêt¹¤º Êɲ W ™°™›ŸŠ®°Ó*šÃ¢t¡<¦}¥sã`Ÿ5˜`ŸŠ¨b¥ ¢S™›¦}î ¨ ’Ÿ±¦®°Ÿ±¡µ¢

(27) £`šb¬`˜`šÙѕ¦®›¡<šœ«Š« ¢t«Ššœ¦˜Ÿ£Yš X͚œŸ±¡µ¢t˜`˜ Ÿšœ¨ – šœ. ë à‡ŸŠ¡µ¡µ¢)£`š‡³¥sã!~¢t®›«â¢t™›™°šœ¥Š¬`® ¢t˜¦<¨Q©ñŸŠÁ1¬`šzÓS¢t¨zŸ±˜`«±¢)ѕ®›¢)™°s¢Sø`šœ¨zšzS¢ § Ÿå®°šœ™°¦¨œ¬`øšœ¨œšÙS¢§ £`Ÿ±¨r®°¦ø`¨œŸŠ¡N¢ £`Ÿ±[¨ Z~Ÿ±˜#›®›¦ W ¨z¦¡<¦®°Ñ•¦  t ² ¸ ^’¸KÈÉü<êtýœÊÉ_² \`Z~¦t˜`™›šz£`Ÿ±®°šÃ¢t¡<¦`À¥Š¦¡<Ÿå¯®›šœ¡<¦ä¯¤¢t™°™›¦`À¤šz¨¯`®›¦ø¨œŸ±¡µ¢o£`ŸŠ¨’¥ŠŸ±˜# ®°¦ t ² – M² \]?kêKǍ) ˜`Ÿ±¨r¥±¢t™›a¦ - ¸KÈùü<êtýœÊÉ,² b ™°™›¬`¡<šÃ¢S¡µ¦.î ë – ¯mŸ±®™›ŸŠ¡µ¯`¨zšzߤ¥±¢t®›Ÿâ¨Ã¢´™›¥Š®›šÙ› ¬® ¢.£`šr¢t¨z¥±¬`˜Ÿ)Ÿ±™›¯®›Ÿ±d™ c ™›šœ¦t˜`šF²^³šÃ¢åÁ*¬šœ˜`£`Vš eB?è (gf =Ÿ Ôh ?è * (q +*   ¬`˜¤¢å™›ŸŠ®›šœŸeѕ¦®›¡µ¢t¨zŸÍ¢ ¥±¦*iŸ 4<¥ŠšœŸ±˜#›šI¥Š¦¡µ¯¨œŸ±™°™›š £`ŸŠ¨œ¨Ã¢ ѕ¦®›¡µ¢ Ô h ë e *2jlknm Ô m * m o² Z~Ÿ±®›¥sãšÃ¢t¡<¦)¬`˜‚©ñ¢t¨z›® ¢o™°Ÿ±®›šzŸbѕ¦®›¡µ¢t¨zŸ p h ë *2jqkrm p m * m ?è * (q +*   s¢t¨zŸ¥sã`Ÿåѕ¦t®›¡µ¢t¨œ¡<Ÿ±˜# Ÿ·™›šœ¢)ÓtŸ±®°šzߤ¥±¢Ss¢ä¨F©á¬`­¬¤¢S¨œšÃ¢S˜`« ¢Õ Ô h 1 p h ë p h 1 -tM% s £`¦ÓŸ -;t*.× *Ø ë e*²å—·­t¬¤¢t¨œšœ¢t˜`£`¦µ¨œŸ ¯I¦t›Ÿ±˜`«ŠŸ)£`š *.šz˜Ÿ±˜# ®›¢t¡oø`šVš¾¡<Ÿ±¡oø®›š’£`Ÿ±¨z¨F©áŸ±Á1¬¤¢t«Ššœ¦˜`Ÿ ¦t››Ÿ±˜`šœ¢t¡µ¦Õ m u× e@vgwqemØ p ëv Ô v Ÿ J× e wqemØ p m Oë x m u× eS%ùÔ v %yy9yf%ùÔ m % p v %yyyf% p m ì¤í Ø z|{VOï }>% × t Ø £`¦ÓŸ x m Ÿ·§ ¬`˜‚©áŸ±™›¯®›Ÿ±™°™›šz¦˜`Ÿb¯m¦¨œšz˜`¦¡<šÃ¢t¨zŸ~˜`m ŸŠ¨œ¨zŸeÓS¢t®°šÃ¢tø`šz¨œšQ² W ™°™›ŸŠ®°Ó*šÃ¢t¡<¦â¥s㟠x m ˜`¦˜µ£`šœ¯mŸ±˜`£Ÿ £¤¢ pC~ ¯IŸŠK® Oï { À`Á1¬`šz˜`£`š¢S™›™›¬¡µŸŠ˜`£`€¦ e we ë 7 õo¯mŸ±® ¦t­˜`Gš {VèË f ÀŸb§ ¯m¦™›™°šœø`šz¨œŸ ®°šœ™°¦¨zÓtŸ±®›Ÿ šœ¨‚™°šœ™°›Ÿ±¡µ¢)šœ˜ߤ˜šz ¦)£šŸ±Á1¬¤¢t«Ššœ¦˜`š¯mŸ±® ®°šœ¥Š¦®›®°Ÿ±˜`«±¢² }.

(28) b·ø`ø`šÃ¢S¡µ¦µÁ*¬šœ˜`£`š¾¦t››Ÿ±˜1¬ ¦ ¥sã`Ÿs#*ÊɹXÊÉÈù»F¶›êtüNÊɹ¤º Ê v šœ¨’¯`®›¦ø¨œŸ±¡µ¢N£`ŸŠ¨^¥±ŸŠ˜# ®›¦.ѕ¦®°¡N¢S¨œŸNŸ § ®›šœ™°¦¨œ¬ø`šœ¨zŸ ™›ŸåŸ™›¦t¨œ¦ä™›Ÿ eB˜`¦˜ÒŸ§ ¬`˜¤¢ä® ¢S£`šœ¥ŠŸ£`Ÿ±¨z¨F©á¬`˜`šzK¢§ ² t ² t _² \ >hÈ ¸té±ýœÊÉü<êNÆ*ÊÉý’¶sÊɹ¤ºQÈ ¸´¸Kýœ¸KüN¸KÈA- ¸)»¼¹5Æt»¼üNÊɹÇÉ»F¸K¹XÊb½*¹X¸K²M\´—e›šœ¨œšz«±«±¢t˜`£`¦ošz¨X¡<ŸŠ›¦£`¦ ¥±¨Ã¢S™›™›šz¥±¦Ò£`Ÿ±¨z¨œŸǍÊÉÈù»FÊü<ê ##t»F¸KÈ°êt¹¤ºQ»·Ÿ\§ ¯m¦™°™›šœø¨œŸ ¦t››Ÿ±˜`ŸŠ®›Ÿ£¤¢t¨z¨Ã¢5™›¦¨z¬`«±šz¦˜`Ÿ.ѕ¦®°¡N¢t¨zŸtÀkšœ˜ѕ¦® c ¡N¢t«Ššœ¦˜š^™›¬`¨z¨Ã¢.™›¦t¨œ¬`«Ššœ¦˜`Ÿä˜`ŸŠ¨k¥ ¢t™°¦B¦¨z¦®›¡<¦tѕ¦`a²  ˜Ñv¢S° šr™°Ÿµ£`šz¡µ¦t™° ®°šÃ¢t¡<¦´¥sã`Ÿµ¨Ã¢.™›¦t¨œ¬`«Ššœ¦˜`Ÿ ™›Ÿ±®°šœŸѕ¦®°¡N¢t¨zŸäŸ§ ¥±¦˜#ÓŸŠ®›­ŸŠ˜# Ÿâšz˜ ¬`˜\¥ŠŸ±®ž ¦Nšz˜# ¦®°˜`¦ä£`Ÿ±¨z¨F©á¦®›šz­šœ˜`ŸSÀ¢S¨œ¨œ¦t® ¢o¢ Ó*®›ŸŠ¡µ¡<¦) ®›¦ÓS¢S›¦ ¬`˜¤¢â™°¦¨œ¬`«Ššœ¦˜Ÿ·£`ŸŠ¨I¯®›¦ø`¨zŸ±¡µ¢å£Ÿ±¨m¥±Ÿ±˜#›®›¦o¦¨z¦¡<¦®°Ñ•¦Ÿ±™°¯`®›ŸŠ™›™›¢)›® ¢t¡<šz›ŸÍ¨Ã¢™›¬¤¢â™°Ÿ±®°šœŸ £š V¢ _c ¨œ¦®ŠÀr£¤¢Ss¢5¨Q©ñ¬`˜šœ¥±šÙS¢§ £`Ÿ±¨z¨œ¦5™°Ó*šz¨œ¬`¯`¯m¦£`/š ¾¢ *¨œ¦®ä¢ Ó*®›ŸŠ¡µ¡<¦5£`ŸÉ Ÿ±®°¡µšz˜¤¢S›¦¨Ã¢™°¦¨œ¬`«Ššœ¦˜Ÿ´£`Ÿ±¨ ¯`®›¦ø¨œŸ±¡µ¢)£`Ÿ±¨¥ŠŸ±˜# ®°¦µ¦t¨œ¦¡<¦®°Ñ•¦² kŸŠ£`šÃ¢t¡<¦Í¢t£`ŸŠ™›™°¦·Á1¬¤¢t¨zŸeŸr § šœ¨¡<Ÿ±¥Š¥ ¢t˜`šz™›¡<¦ ¥sã`ŸÅ¯I¦t›®›ŸŠø`øIŸkšz¡µ¯mŸ±£`šz®›ŸV¨Ã¢ ¥±¦˜#ÓtŸ±®›­tŸ±˜`«±¢·£`ŸŠ¨œ¨Ã¢ ™›¦¨z¬`«±šz¦˜`Ÿå™›Ÿ±®°šœŸåѕ¦®›¡µ¢t¨œŸSQ² b ™°™›¬`¡<Ÿ±˜`£¦.¥sã`aŸ e˜`¦˜™°šÃ¢<¬`˜¤¢N®›¢t£`šœ¥ŠŸ £Ÿ±¨œ¨Q©ñ¬˜`šzK¢B§ ו˜`Ÿ±¥ŠŸ±™›™›¢t®›šz¦ ¯IŸŠ® ¢ ÓtŸ±®›Ÿ<¬`˜¤¢ ™›¦t¨œ¬`«Ššœ¦˜`Ÿoѕ¦t®›¡µ¢t¨œŸ Øe~ Ÿ±£Ï¢tø`øšÃ¢.¡µ¦*£`¬`¨z¦.¬`˜`šÙs¢t®°šœ¦`À^Ÿä§ ¬`˜7®°šœ™›¬¨zs¢K ¦.¥±¨œ¢t™›™°šœ¥Š¦ £`¦Ó¬ ¦¢ Îbšz®›šœ¥s㨜ŸŠb¥sã`Ÿµšz˜Ñ ~ ܊Þ   e w –  ë õľÁ1¬`šz˜`£`šr¢S£Ï¦­t˜`šr¯¤¢t™°™›¦£`Ÿ±¨z¨Ã¢´¯`®°¦¥ŠŸ±£`¬`®›¢ šz ŸŠ® ¢S›šzÓS¢ ¯mŸ±®h£`ŸŠ›Ÿ±®°¡µšz˜¤¢t®›Ÿ p m À£`šzÓ*šz£`šÃ¢t¡<¦¯IŸŠ® £`ŸŠ¨œ¨œŸeÁ1¬¤¢t˜# šÙS¢â§ ¥sãŸb£`šzÓtŸ±˜#s¢S˜`¦)™›ŸŠ¡µ¯`®°Ÿb¯`š ¬ § ¯`šœ¥Š¥±¦¨zŸtÕr¨Ã¢âÓtŸ±¨z¦¥ŠšzS¢o§ ¥Š¦˜¥±¬`š‚›Ÿ±˜`£`¦t˜`¦N¢)«ŠŸ±®›¦<Ÿšœ¨X¨œ¦®°¦ä§ ¢t¥±¥Š¬`¡o¬`¨œ¢t®›™°š‚šœ˜.¯`®°¦£¦t››š‚¯I¦t™›™›¦t˜`¦ šœ¡<¯IŸŠ£`šœ®°Ÿ·¨œ¢ ¥±¦t˜1ÓtŸ±®°­Ÿ±˜`«±¢<£Ÿ±¨œ¨œ¢ ™°¦¨œ¬`«Ššœ¦˜Ÿ·Ñ•¦®°¡N¢t¨zŸt² 3Á1¬`ŸŠ™° ¦)¬˜.¥±¨Ã¢S™›™›šz¥±¦o¯®›¦ø`¨zŸ±¡µ¢ ¥Š¦˜ úm»F¶s¶s¸Ký »kÆt» »œÇ¸KÈù»¼² ³=Ÿ  e  7 – Àå¢t¨œ¨z¦® ¢}¨Ã¢[™›¦t¨œ¬`«Ššœ¦˜`Ÿ7ѕ¦®°¡N¢t¨zŸ3ŸÏ§ ømŸ±˜@£ŸŠß¤˜`šÙs¢3Ÿ(šœ˜¦¨z›®›7Ÿ V¦šz˜`¥ ¢SM® Ÿ( ã`¢ ¡µ¦™ž ®›¢S ¦ ¥sã`ë ŸäŸ±™°šœ™ž Ÿä¬`˜¤¢ ¥±¦™žs¢t˜#›Ÿµ¯m¦™›šÙ šÙÓt¢âs¢t¨zŸo¥sã`ŸtÕ  e Û w – Xï â¯mŸ±®¦­˜`š¾î0ï – ² Îb¬`˜`Á1¬`Ÿ.šÅ¯`šœ¥Š¥±¦¨zšh£`šÙÓ*šœ™›¦t®›šÅ™›¦˜`¦B¬`˜`šzѕ¦t®›¡<Ÿ±¡<Ÿ±˜# Ÿµ¥±¦˜# ®°¦¨œ¨œ¢S škŸ´Á1¬`ŸŠ™°›¦5¯IŸŠ®›¡<ŸŠ››Ÿ´£`šh£`Sš c ¡µ¦™ž ®›¢t®›Ÿo¨œ¢N¥±¦t˜1ÓtŸ±®°­Ÿ±˜`«±¢\£`ŸŠ¨œ¨œ¢N™›¦¨z¬`«±šz¦˜`Ÿo™°Ÿ±®°šœŸâѕ¦®°¡N¢S¨œŸt²  ¨ k®°¦ø`¨zŸ±¡µ¢N£`Ÿ±¨ Z~Ÿ±˜# ®°¦\¦¨z¦ c ¡µ¦®žÑ•¦)£`š’³¥sã`k® ¦ £`ŸŠd® \³šzŸ±­ŸŠ¨‡ã¤¢)™›¦¨z¬`«±šz¦˜`Ÿt²  ¨*¥ ¢t™°¦  e  § ¬˜¤¢ ® ¢S£`šœ¥Š Ÿ \*¯`®›šz¡µšÙ šÙÓt¢ £Ÿ±¨œ¨Q©ñ¬˜`šzK¢§ À – ™›š*™›¬`£`£šzÓ*šœ£`Ÿ~šœ˜â£¬`Ÿ~™°¦t››¦¥±¢t™›šQÕ e.Ÿ~ ¦¯`¯`¬`®°ŸQe)˜`¦˜NëŸ~§ ¬`˜¤¢e® ¢t£šœ¥±ŸÅ£`ŸŠ¨œ¨F©á¬`˜`šÙS¢§ ²eŸ±¨*¯`®›šz¡µ¦e¥ ¢t™°¦Ô\Ÿh§ ¢t˜¤¢S¨œšz›šœ¥±¢t¡µŸŠ˜# Ÿr¨œšz˜`Ÿ ¢S®›šœ«Š« ¢tø¨œŸ ™›ŸŸ.™›¦¨z¦Ò™°Ÿ\Ô"Ÿ§ £`š~¦®›£`šz˜`Ÿ´ß¤˜`šÙ ¦`Àk¯`š ¬}§ ¯`®›ŸŠ¥±šœ™›¢t¡<Ÿ±˜# Ÿ\Ô Ú

(29) .× *#Ø  *² eŸ±¨ ®›ŸŠ™° ¢t˜# Ÿ ¥ ¢t™°¦ ¯I¦˜šÃ¢t¡<¦ e À 6è}¿ åÄŨœ¢´™›¦¨z¬`«±šz¦˜`Ÿo™°Ÿ±®°šœŸâѕ¦®°¡N¢S¨œŸNŸ)§ ømŸ±˜7£`ŸÉߤ˜`šÙs¢´¡µ¢´¨Ã¢N™°¬¤¢ v    ŸŠÓŸŠ˜# ¬¤¢t¨zŸh¥Š¦ë ˜#Ó ŸŠ®›­ŸŠ˜`« ¢e£`šœ¯mŸ±˜`£ŸtÀK­® ¢t«ŠšœŸr¢S¨¯`®›ŸŠ¥±ŸŠ£`Ÿ±˜# Ÿh®›šz™›¬`¨Ùs¢S›¦ £`š#Îbšz®›šœ¥s㨜ŸŠ±À±Ñ•¦®ž Ÿ±¡<Ÿ±˜#›Ÿ £¤¢t¨œ¨zŸâ¯`®°¦¯`®°šœŸŠK¢.§ ¢t®›šÙ ¡<ŸŠ›šœ¥sã`Ÿ £`Ÿ±¨^˜1¬`¡<Ÿ±®°¦ šœ®›®›¢t«±šz¦˜¤¢t¨zŸ e;Õ 8tÓtŸ±¨œ¦*¥±šÙS¢N§ £šr¢t¯`¯`®°¦™›™°šœ¡µ¢t«±šz¦˜`Ÿ £`š 0¥Š¦˜® ¢t«Ššœ¦˜¤¢S¨œš 8² à‡€¢ ’Ÿ±¦t®›šÃ¢<¢t˜¤¢S¨œšz›šœ¥±¢ä£Ÿ±lš ·¬`¡<Ÿ±®°š   ¥±š‡¦tÂI®›ŸµýÙYê -ùÈ°ê R±»F¸K¹XÊ)¶s¸K¹¤ºv»¼¹¤½`ê奱¦¡<Ÿ ѕ¦˜£¤¢t¡<Ÿ±T˜ c s¢t¨zŸ™° ®°¬`¡<Ÿ±˜# ¦<¯IŸŠ®Í™° ¬£`šÃ¢t®°Ÿšœ¨‚­®›¢t£`¦ä£`š‡¢t¯¯`®›¦™°™›šz¡N¢t«Ššœ¦˜Ÿ£`ššœ®°® ¢t«Ššœ¦˜¤¢S¨œš ¥±¦˜® ¢S«±šœ¦t˜¤¢t¨œšQ² b £0¦­t˜`š·šz®›®›¢t«±šz¦˜¤¢t¨zŸ´æ ® ¢S¡µšÙ Ÿ ¨F©ñ¢t¨œ­t¦®›šÙ ¡< ¦ ¤® ¢t«Ššœ¦˜`Ÿ ¥Š¦˜# šœ˜1¬¤¢Ï£`š ¢t¬`™°™±ÀÍ¢t™°™›¦*¥±šœ¢t¡µ¦ ¬`˜7™›¬`¥Š¥±Ÿ±™°™›šz¦˜`Ÿä£`š¾®›¢t«±šz¦˜¤¢t¨zšh!× k3" 9±Ø ÜŠÝ À‚£`ŸŠ° š·¶s¸K#¹ tÊÉuÈ #*Êɹ¤ºv»¼ÀX¥sã`Ÿ)­t¦£`¦t˜`¦´£`ŸŠ¨œ¨œŸ ™›ŸŠ­¬`Ÿ±˜#›š ¯`®›¦¯®›šœŸÉS¢§ Õ š 3' ( è À *)+ 9SÀ, 3" ë 7 Ck3" itÀ~¢t¨œ¨z¦® ¢ – ²å%× $\šz­¨œšz¦®›Ÿ´¢t¯`¯`®°¦™›™°šœ¡µ¢t«±šz¦˜`ŸØ ’Ÿ±®µ¦­˜`&  k3" 9/w

(30) æ T  3' Yw(æ  Ä ¦ 3' .è &s¢t¨zŸ<¥sã7Ÿ  3" ,w3æ /)× t v Øsì¤íùÀV¢t¨z¨œ¦®›¢´Ÿ±™›šz™°›1Ÿ "}0 ïõ t ²å× W ››šœ¡µ¢t¨œšÙS¢#§ ØÍ΢S›s¢t¨zŸ¥sã`2Ÿ 3" ë 43 3" '3 Ä. Y GJQnoI'E.E.GlIfL<L@I h P@e.PWLON

(31) PWX5P<e Z Q L^P@e,EHD982:<;,[ = U,G IFc

(32) cGJI9>'?A@B>DCFE P8L<D"Q E.P@K[XRDfeHI"Q

(33) P@I"KP@Q E.P Z D  E " j

(34) Q f D Q ^ P . E @ P . e [ K J G  Q F I Q d D ^ L D U Y k J

(35) Q 4 P . U U  Q I D U H E e J G " D

(36) Q  P F I TJT]IleHG]U,DfT Z cG\TJG E'I Y h P<TRX

(37) e.Dfc

(38) TJP<KI

(39) s#L Z P@U,EHI U.G E Z I K G\DfQ

(40) P h h G ?IH PMY D"E,E.P@Q

(41) GJc

(42) G\TJP[G\K[X5D"Q

(43) P@Q h D h P@T\TJPL^D"Q h G KZ G\DfQ


(45) G\P4U EOIqLONP<i O U.G]I h G Dfe h G\Q

(46) P,S QG EHDj

(47) D'gkg"P@e.DU,PT> PY Z QI[eHI h G]L^P&URV P@U.GJK[I h P@T\TXW Z Q

(48) G\E IY IFTJTJD"eOI iZO Y []\_^` H ^s 576. a.

(49) ² VŸŠ®·¦­t˜`š".ï õ䙰šã¤¢Õ } 2. –  ) Ï æ y t 9 9 òIí  9  i 9 òIí W ™°™›ŸŠ®°Ó*šÃ¢t¡<¦NÁ1¬`šz˜`£`š’¥sã`Ÿ 8¨œ¢äÓtŸ±¨z¦¥ŠšzS¢< § £`šV¢t¯`¯`®°¦™›™°šœ¡µ¢t«±šz¦˜`Ÿ98<£`š ¥Š¦˜® ¢S«±šœ¦t˜¤¢t¨œšrŸ § ¨œŸŠ­#¢Ss¢ ¢t¨œ¨œ¢âÓŸ±¨z¦¥ŠšzK¢o§ £`š¥±®°Ÿ±™›¥Ššz ¢<£`ŸŠš 9S² ³šœ¢t¡<¦â¢t£Ÿ±™›™°¦)šœ˜´­t® ¢t£`¦ £`šIѕ¦t®›¡o¬`¨œ¢t®›Ÿešm¯`®›šz¡µš ®›šz™›¬`¨Ùs¢S›š¤¯I¦t™›šz›šzÓ*š Ÿb˜`ŸŠ­#¢S šÙÓ*šI®°Ÿ±¨Ã¢K šzÓ*šm¢t¨ k®°¦ø`¨zŸ±¡µ¢µ£`ŸŠ¨ Z~ŸŠ˜1›®›¦ W ¨œ¦t¡µ¦®žÑ•¦`²Í³Ÿ O8`Ÿå § øIŸŠ˜7¢t¯`¯`®°¦™›™°šœ¡µ¢S ¦<£¤¢N®›¢t«±šz¦˜¤¢t¨zš 8`À`˜Ÿ±¨’™›Ÿ±˜™›¦ ¥sã`ŸtÕk¨œšz¡ 



(52) ë j 9 ¢t¨z¨œ¦®›¢ŸŠ™›šz™° Ÿ·¬`˜´­ŸŠ®›¡<Ÿ ¦¨z¦¡<¦®°Ñ•¦åÔ^,× *#Ø ë  v   *ojŠÀ¥sã`Ÿb˜`¦t˜ ™›šÃ¢ä¢t˜`¢t¨œšÙ šœ¥±¢t¡<Ÿ±˜# Ÿ·¨œšœ˜Ÿ ¢t®°šœ«±«±¢tø`šz¨œŸtÀ*ŸÁ1¬`šœ˜`£š‚¨F©á¦®›šz­šœ˜Ÿ ˜`¦˜™›šœ¢)™°s¢Sø`šœ¨zŸä×JZ~®°Ÿ±¡<Ÿ±® –t5 Øɲ ³Ÿ.šz˜#ÓŸ±¥ŠŸ\šz¨~­®›¢t£`¦5£`šÍ¢S¯`¯`®›¦t™›™›šz¡N¢S«±šœ¦t˜`ŸN£` š ¥Š¦˜[® ¢t«Ššœ¦˜¤¢S¨œš Ÿ§ ¢S¨ ¯`š ¬

(53) § ¯m¦¨zšœ˜`¦¡<šÃ¢S¨œŸtÕ. 9 òIírë ×  òIí ؒ¯mŸ±®V¬`˜)Á1¬¤¢t¨z¥sã` Ÿ 0õÀ¢t¨œ¨z¦® ¢ ¦­˜š­ŸŠ®›¡<Ÿ~¦¨z¦¡<¦®°Ñ•¦·ÔVÀ¥sãŸ~ߤ™›™°š¨Q©ñ¦®°šœ­šz˜`Ÿ Ÿ ¥±¦t˜ Ô•×võ#Ø ë  v   IÀXŸb§ ¢S˜¤¢t¨œšÙ šz¥ ¢t¡<Ÿ±˜# Ÿ ¨zšœ˜`Ÿ±¢t®›šz«±«±¢tø`šœ¨zŸ Ÿ ¨Q©ñ¦t®›šœ­tšœ˜`ŸŸe§ ™°s¢Sø`šœ¨zŸo×Q³šœŸŠ­Ÿ±¨ – a t Øɲ "!$#&% ( ƒ ' ÇsǍÊÉÈ »vêtüN¸}E¶ D¤Ê7¸ #t¹¤»ÈÉ»œÇɽ*ý ºFêtºx¸(¹XJÊ ##êtºQ» t¸ *N¶s¸KüNÊB»¼ýÍÈù»œÇɽ*ý ºYêtº ¸[Æts» ?^È ÊÉüNÊÉ+È * Æ*Ê tÊ´ÊsÇsǍÊÉÈ KÊ - ¸KÈùü)½ýÙêtº ¸¶s¸KüNÊ´ÊsÇÉ»œÇɺ ÊÉM¹ RêBÆt»~½¹ ¶s¸K¹¤ºvÈ ¸ÊsǍÊÉü úm»F¸BÊä¹X¸K¹ úm½ ¸B' ÊsÇsǍÊÉÈsÊ Kêtý »vÆ*¸ ú¤ÊÉÈ5ºQ½*ºQºv»)» #*ÊÉÈùü)*» ),+ɹ -Šêtºvºv»eú¤¸ÇsÇÉ»vêtüN¸BúmÈ ÊɹmÆ*ÊÉÈ Ê5½*¹m.ê -±½êtýªÇÉ»vêKÇÉ»âÈ ¸KºFê R±»F¸K¹XÊ -0/ 1325476S.× *#Ø ë  v 98 *´ÊͶs¸K¹¤»¼½ ##êtÈùýÙêâ¶s¸K¹:-±½êtýªÇÉ»vêKÇÉ» ½¹NÆt» bÊs¸KüN¸Kȼû^ÇÉüN¸ êt¹mêtý »¼ºQ»F¶s¸*<;¾×,*#ØE*^¶ED¤Êmû^ÇsÇÉ»mý5= ¸KÈù»S#t»¼¹XÊE* ¸KºQº ÊɹXÊɹmÆ*¸å½€¹ #*ÊÉÈùüNʸKýœ¸KüN¸KAÈ - ?¸ >X.× *#Ø ë ;ì¤í 1- / 1325476@1@;¾,× *#EØ *k¶s¸KA¹ >X×QõØ ë õ\BÊ >C¼×võ#Ø ë  v  98 * ¶ED¤ÊåÈÉ»œÇɽ*ý ºFê¸' »vêtüNÊɹ¤ºxÊêt¹mêtý »¼ºQ»F¶›êtüNÊɹ¤º Êý »¼¹XʛêtÈù»SRERê#é±»¼ýœÊD-±½êtýœÊ)¶ED¤ÊbÇÉ»vêFEG) H ý »h»¼ÈÉÈ°ê R±»F¸K¹mêtý » E¶ D¤Ê tÊÉÈù» û ¶›êt¹X¸µýÙê5¶s¸K¹mÆtS» R±»F¸K¹XÊoÆt»Í¶ÉÈsÊsǍ¶É»¼ºFê.»¼¹¤ºQÈ ¸±Æ*¸KºvºYê\Æ# ê B »FJÊ #*ÊÉýÇ¸K¹X¸ E¶ D*»vêtü<êtºQ»Îbšz¦tÑv¢t˜# ŸŠš ÊÇÉ»Iúm ½ ¸N' Æt»¼üN¸ÇɺvÈ°êtÈ ÊoE¶ D¤ÊǍ¸K¹X¸µÆt»^ü)»œÇɽ*È°êåúm»FÊɹmIê ) eŸ±¨ ¨Ã¢ Ót¦®›¦7£`ŸŠ¨ –(–KJ ®°¬`˜`¦  –f ¡µšz­¨œšz¦® ¢šœ¨h®›šœ™°¬`¨z ¢S ¦5£še³šœŸŠ­Ÿ±¨ šz˜# ®›¦*£`¬`¥ŠŸ±˜`£¦Ï¬`˜`¢ ¥±¦˜`£šœ«±šz¦˜`Ÿ.™°5¬ 4<¥±šœŸŠ˜# Ÿ¯IŸŠ®)®›šœ™°¦¨zÓtŸ±®°Ÿ.šœK¨ r®°¦ø`¨œŸŠ¡N¢£Ÿ± ¨ Z~Ÿ±˜#›®›¦Ò¦¨œ¦¡<¦®žÑ•¦¯`š ¬

(54) § £Ÿ±øm¦¨œMŸ LÀ ¨F©ášœ®›®›¢t«±šz¦˜¤¢t¨z9Ÿ £`ŸÉÓŸ ÓŸŠ®›šzß`¥ ¢t®°ŸtKÕ N.× ~Ø ë k ¨œ¦­ i òIí 3" i

(55) j 9 ² V¢t¨zŸ´¥±¦˜£`šœ«Ššœ¦˜`Ÿ5Ÿ§ ¥sã`šÃ¢t¡µ¢S ¢äšz˜\¨zŸŠ° Ÿ±®›¢S ¬® ¢¶s¸K¹mÆt»SR±»F¸K¹XÊ Æt»POÍÈù½¹X¸bŸ ­t¨œš‚šz®›® ¢S«±šœ¦t˜¤¢t¨œšI¥sã`Ÿå¨Ã¢ä™›¦*£`£`šœ™žÑv¢t˜`¦ä™›¦t˜`¦ £`ŸŠ° šk¹¤½üNÊÉÈù»ÅÆtQ» OÍÈù½*¹X¸K² J ®°¬`˜`¦µ£`šœ¡<¦™°›® ¢)šœ˜¦¨z›®›Ÿb¥sã`Ÿ Ÿ±™°šœ™°›¦˜`¦<£`¬`Ÿå¥±¦™žs¢t˜#›šV¬`˜šzÓŸŠ®›™›¢t¨œš s¢t¨zš¥sã`1ŸoX ¨Ã¢ä™›¦t¨œ¬`«Ššœ¦˜`Ÿ™°Ÿ±®›šzŸ ѕ¦®°¡N¢S¨œŸ¥±¦t˜1ÓtŸ±®°­Ÿošœ˜¬`˜£šœ™›¥Š¦N£`š‡®›¢t­­šzS¦ Rm× ~ØÉÀ £`¦ÓTŸ Rm× ~Øeï U Rí  Wì V ð tó ² eŸ±¨œ¨œ¢Ï£`šz¡µ¦t™° ®›¢t«±šz¦˜`Ÿ\£`š J ®°¬`˜`¦[™›š· ®›¦ÓS¢t˜`¦}£Ÿ±¨œ¨zŸB™ž šœ¡<ŸB¯mŸ±®.¨zŸB¥Š¦™° ¢t˜# š U í Ÿ U v Ä ¯I¦šz¥sãŸo šz¨’®›¢t­­šz¦µ£š¾¥±¦t˜1ÓtŸ±®°­Ÿ±˜`«±¢.£`šœ¯mŸ±˜`£Ÿo£¤¢t¨z¨Ã¢ä¥±¦™žs¢t˜# Ÿ U v  ® ¢S¡µšÙ Ÿ¬`˜5Ÿ±™°¯I¦t˜`Ÿ±˜`«ŠšÃ¢t¨zŸtÀ Ÿ§ šz¡µ¯m¦®žs¢t˜# Ÿ ¦t››Ÿ±˜`ŸŠ®›Ÿå¨Ã¢o¡<šœ­¨zšœ¦®°Ÿ·™ž šœ¡µ¢o¯m¦™›™°šœø`šz¨œŸb¯mŸ±® U v ² ’¬››šš‡®›šœ™°¬`¨z ¢S šX¯`®›ŸŠ™›Ÿ±˜# ¢S š‡ß¤˜Á*¬1§Y’™°¦˜`¦µ™°s¢K š‡¦t››Ÿ±˜1¬›š’¥Š¦˜šœ¨¡<ŸŠ ¦*£`¦ä£`šz®›ŸŠ° ¦<£`Ÿ±¨z¨œŸ ™›Ÿ±®°šœŸ ¡µ¢t­­tšœ¦®›¢t˜# šFS² eŸ±¨ –  [Z ¦*¥±¥Š¦W«  R ¬ šz¨œšœ«Š« ¢t˜£`¦·¬˜¤¢b¥±¦™ž ®°¬`«±šz¦˜`Ÿ ­ŸŠ¦¡<ŸŠ ®°šœ¥±¢ÀS£ŸŠ› ¢ ÈÉ»¼¹X¸KÈùü<êtý S» RERê R±»F¸K¹X)Ê #*Ês¸KüNÊɺQÈù»F¶›êtÀk£`šz¡µ¦™ž ®›¢¨F©á¦t››šœ¡µ¢t¨œšÙS¢.§ £`Ÿ±¨z¨Ã¢¥Š¦˜`£`šz«±šœ¦t˜`Ÿ.£`š J ®°¬`˜`¦`Õ ™°Ÿ ¨F©ášœ®›®›¢t«±šz¦˜`Ÿ ˜`¦t˜÷Ÿ§ ¬`˜3˜1¬`¡µŸŠ®›¦7£`š J ®°¬`˜`¦Ï¢t¨œ¨z¦® ¢\Ÿ±™›šz™°›Ÿ¬˜ ­ŸŠ®›¡<Ÿ.£`š £`šÙÂXŸŠ¦¡µ¦t®°ß¤™°¡µ¦ ¢t˜¤¢t¨zšz šz¥±¦Ô^.× *#Ø ë  v   *,j yyyŠÀÅ¥sãŸ.˜`¦˜}™›šœ¢5¢t˜¤¢t¨zšz›šœ¥ ¢S¡µŸŠ˜1›Ÿµ¨zšœ˜`Ÿ±¢t®›šz«±«±¢tø`šœ¨zŸt²  ˜`¦¨z›®›ŸŸ§ ¯I¦™°™›šzø`šœ¨zŸb¯`®›ŸŠ˜`£`ŸŠ®›Ÿåšœ¨XÓS¢t¨z¦®›Ÿ U v ë – ² ³¦t®›­¦˜¦<Á1¬`šz˜`£`š‚˜`¢S ¬`®›¢t¨œ¡<Ÿ±˜#›Ÿ¨œŸ™›ŸŠ­¬`ŸŠ˜1›š‡£`¦¡µ¢t˜`£`ŸSÕ ² V®›¢S› ¢t®›Ÿšz¨X¥ ¢S™›¦<îÒï t À¤¯I¦šz¥s㠟 šœ¨X¡µŸÉ ¦*£`¦ä£`š Z ¦*¥±¥±¦t«<Ÿ§ ¯`®°¦¯`®°šœ¦)£`ŸŠ¨’¥±¢t™›¦<î ë – Ä – Q –. ). . w. \5] NP T]IL^DfQ h G K GJD"Q

(56) P h G^ e Z QDlU.GJIXG,Z Y h P<c5D"TJP h P<TJTJIlL^D"Q h G K G\DfQ

(57) P Z U.IFEHI h IQ_kGJPa`fP<T j U.Pa` Z P h IFTJT\P X

(58) e.DfX

(59) eHG\P<E I Y h G L^eHP@UHL^G\EHI h P<GL<D"Qkg"P@e`fP<Q E.G h P<GCblGJDFnoIFQ EHP<G P h IFTJT\P X

(60) eHD"Xe.GJP^E'I Y h GL<D"Qkg"P@e`fP<Q K I h P<TJTJP U.P<eHGJPdce T\Df` U ehg U e P c e r g Uhei jX5P<eSDf`"Q

(61) GCj@kEs l.

(62) ² W › ŸŠ˜`Ÿ±®°Ÿ U v ë – ¥Š¦˜\š¡<ŸŠ›¦£š‚£`šœ®°ŸŠ° šk×¼ÓŸ±£š R ¦t™›™›ŸŠ®°ÓS¢t«Ššœ¦˜`Ÿ t ²  ¯¤¢t­`² t(– ØÉÄ } ² Z~¦˜`™°šœ£`ŸŠ® ¢t®°Ÿåšz¨‚¥ ¢S™›¦<˜`¦˜\¢t˜¤¢t¨zšz šz¥±¦`² X͚œ­¬`¢t®›£`¦Ï¢t¨z¨Ã¢7£`¦¡µ¢t˜`£¤¢ t ØÉÀ ¬˜¤¢(™°›šœ¡µ¢(¢t¥Š¥±¬`®›¢Ss¢Ï£`Ÿ±¨z¨F©ñ¢t¥±¥Š¬`¡o¬`¨œ¢t«±šz¦˜`Ÿ.£`ŸŠš ¯`šz¥±¥±¦t¨œš £`šzÓ*šœ™°¦®›š˜Ÿ±¨‡¥ ¢t™°¦µî ë – À ¥±šã`¢µ¯mŸ±®›¡<Ÿ±™°™›¦  l £š¦t››Ÿ±˜`ŸŠ®›Ÿâšz¨XÓS¢t¨œ¦t®›Ÿ U v ë – ¥±¦t˜Bš¡<ŸŠ ¦*£`š £`šœ®°ŸŠ››šF² Z~¦˜™›šœ£Ÿ±®›šœ¢t¡<¦)Á*¬šœ˜`£`šXšœ¨‚¥±¢t™›¦<¡o¬`¨Ù šœ£šœ¡<Ÿ±˜`™°šœ¦˜¤¢S¨œŸÍî7ï t ² t ² }² \

(63) >hÈ ¸té±ýœÊÉü<êÆ*ÊÉýh¶sÊɹ¤ºQÈ ¸\¸Kýœ¸KüN¸K.È - ¸´»¼¹}Æt»¼üNÊɹÇÉ»F¸K¹XÊâü<ê ##t»F¸KÈ ÊäÆt» ½*¹X¸K² \Bà‡¢´¥±¨œ¢t™ c ™›šzß`¥ ¢t«Ššœ¦˜`Ÿ £`Ÿ±š­ŸŠ®›¡<šX¢S˜¤¢t¨œšÙ šz¥ ¢t¡<Ÿ±˜# Ÿe¨œšz˜`Ÿ ¢S®›šœ«Š« ¢tøšœ¨œš¤˜Ÿ±¨‚¥±¢t™›¦ä£`š‚£šœ¡<Ÿ±˜`™°šœ¦˜`Ÿ ¯`š ¬N§ ­t® ¢t˜`£Ÿ £`š‡¬`˜`¦BŸ§ ¡<¦¨z›¦)¯`š ¬ § ®›šz¥±¥±¢äŸ ¬› ¦t® ¢äšœ˜`¥Š¦¡µ¯¨œŸŠ ¢)¢t˜`¥sã`Ÿå˜`ŸŠ¨’¥±¢t™›¦N¢t˜¤¢t¨zšz›šœ¥±¦g² Xešz¥±¦®°£`šÃ¢t¡<¦ ø`®›ŸÉÓŸ±¡<Ÿ±˜#›Ÿo¢t¨z¥±¬`˜`šIѕ® ¢)š®›šz™›¬`¨Ùs¢S›šX¯`š ¬.§ šz¡µ¯m¦®žs¢t˜# šQ² ³šœ¢âÁ1¬`šœ˜£`Gš 7è » X.× (^Û %sõØh¢t™°™›¬`¡<šÃ¢t¡<¦o¥sã`Ÿšz¨I£šzÂIŸ±®›ŸŠ˜`«±šœ¢t¨œŸ·£`Gš ¢t¨œ¨Q©ñ¦t®›šœ­tšœ˜`Ÿ ™°šÃ¢âšz˜ ѕ¦®›¡µ¢)£`šÃ¢t­t¦˜¤¢t¨zŸ ÕM ’ç ë Æt»vê #‚J× e%yy9y % eSØÉÀ e  )è ( f ²ÅÎbšz®›Ÿ±¡<¦)¥sã`Ÿ  VçâŸä§ Èù»œÇ¸K¹mêt¹¤º Ê ™°Ÿ Ÿ±™›šz™°›¦˜`¦ " í %yyyf% " Û èÌ"Ÿ N è  – %yyyf%  î ås¢t¨zšX¥sã`ŸSÕ " j  j " ï t Ÿ e í

(64) yyy+e í

(65) wqe

(66) ë Qõ y í Û § Ñv¢t¥±šz¨œŸ ¥±¦t˜1Ó*šz˜`¥±ŸŠ®›™›šm¥sã`Ÿ·¨Ã¢¥±¦˜£`šœ«Ššœ¦˜`ŸÍ£`š¹X¸K¹ Èù»œÇ¸K¹mêtM¹ RêŸ·§ ¥Š¦˜`£`šz«±šœ¦t˜`ŸÍ˜`Ÿ±¥ŠŸ±™›™›¢t®›šœ¢ Ÿe™›¬Ñ c ( ߤ¥±šzŸ±˜# ŸÍ¯mŸ±®r®›šz™›¦¨ÙÓŸŠ®›Ÿ ­ŸŠ˜`Ÿ±®°šœ¥±¢t¡µŸŠ˜# ŸÍšœ¨*¯`®›¦tø`¨œŸŠ¡N¢bî.£`šz¡µŸŠ˜`™›šz¦˜¤¢t¨zŸhѕ¦®°¡N¢S¨œŸt² W ™›™°Ÿ±®žÓšœ¢t¡<¦ ¥sã`Ÿ ˜Ÿ±¨¥ ¢S™›¦<î ë – Á1¬`ŸŠ™° ¢µ¥±¦t˜`£`šœ«Ššœ¦˜Ÿ™›š®›šz¨œŸŠ­­Ÿb¥Š¦¡µŸ e˜`¦˜ÏŸå§ ®›¢t£`šz¥±Ÿ£`ŸŠ¨œ¨F©á¬`˜`šÙS¢§ ² Îbšz®›Ÿ±¡<¦

(67) ¥sã`

(68) Ÿ  Vç\¢t¯`¯¤¢S®° šzŸ±˜`Ÿ7¢S¨äÆ*¸Kü)»¼¹¤»F¸[Æt» >e¸K»¼¹X¶›êtÈ Ê< ™›ŸSÕ ™°¬`¯  e   – ¦t¯`¯`¬`®°Ÿ šœ˜Ñ   e    – ²  ¨b¥Š¦¡<¯`¨œŸŠ¡µŸŠ˜1 ¢t®›ŸB£`Ÿ±¨£`¦t¡µšz˜`šœ¦Ï£`š V¦tšœ˜`¥±¢tM® Ÿ[ Ÿ5§ ¥sã`šœ¢t¡N¢K ¦ Æ*¸Kü)»¼¹¤»F¸}Æt» B »FJÊ #*ÊÉý ²  ¨ ¯`®°šœ¡<¦7®›šœ™°¬`¨z ¢S ¦7¥sã`Ÿ Ó¦t­¨œšœ¢t¡µ¦5¡<Ÿ±˜«±šœ¦t˜¤¢t®›Ÿ7Ÿ § £`¦Ó*¬ ¦(

(69) ¢ ’¦šœ˜¥ ¢tM® Ÿ

(70)  × –  }#ØùÕ ¦­˜`š ­Ÿ±®°¡µŸr£`št£`šzÂIŸ±¦¡<¦®žß¤™›¡<¦ ¢t˜`¢t¨œšÙ šœ¥Š¦~£`štîoÓt¢S®›šÃ¢Sø`šœ¨zšK¥Š¦¡<¯`¨œŸŠ™›™›Ÿršz¨t¥Š¬`š£`šÙÂXŸŠ®›Ÿ±˜«±šÃ¢S¨œŸr¢t¨z¨F©á¦®›šz­šœ˜Ÿ ™›šÃ¢´˜¦˜5®›šz™›¦˜¤¢S˜1›ŸâŸä¢t¯¯¤¢t®°›Ÿ±˜`­¢´¢t¨¾£¦¡µšz˜`šœ¦<£`š V¦šz˜`¥ ¢tM® Ÿt ÀrŸâ§ ¢t˜¤¢t¨zšz šz¥ ¢t¡<Ÿ±˜#›Ÿ ¥Š¦˜`šœ¬­#¢S ¦ ¢t¨œ¨œ¢o™›¬¤¢ä¯¤¢t®ž Ÿ¨œšz˜`Ÿ ¢S®›Ÿt² Z~¦˜.¬˜™›¢t¨z›¦o£`šIÁ*¬`¢t™›š¬`˜.™°Ÿ±¥Š¦¨œ¦`À* ®›¢t¨Ã¢t™°¥±šœ¢t˜`£`¦o¡<¦¨Ù š ®›šz™›¬`¨Ùs¢S›šIšz˜1›Ÿ±®°¡µŸŠ£`šFÀ1Ó¦­t¨œšÃ¢S¡µ¦ ®›šœ¥Š¦®›£`¢t®›Ÿäšœ¨V®›šz™›¬`¨Ùs¢S›¦.£`š J ®›¬`˜¦

(71) × –(– ØùÕb¦­˜šr­Ÿ±®°¡µŸä£`šr£`šÙÂXŸŠ¦¡<¦®°ß¤™°¡µ¦´¢t˜¤¢t¨zšz šz¥±¦´£šrî Ót¢S®›šÃ¢Sø`šœ¨zšÅ¥Š¦¡<¯`¨œŸŠ™›™›ŸNšœ¨~¥Š¬`š £`šÙÂXŸŠ®›ŸŠ˜`«±šœ¢t¨œŸN¢t¨œ¨Q©ñ¦®°šœ­šz˜`Ÿ)™›šœ¢£`šÃ¢S­¦˜¤¢t¨zŸtÀV˜`¦˜[®›šz™›¦˜¤¢S˜1›ŸtÀr¥Š¦˜  ¬° š‡­¨œš‚¢t¬ ¦ÓS¢t¨z¦®›š‚£š’¡<¦*£`¬`¨œ¦ä¬`˜šzs¢S®›šœ¦À¡µ¢<˜`¦t˜B® ¢S£`šœ¥Šš£`Ÿ±¨z¨F©á¬`˜`šzK¢§ ÀŸå¥sã`ŸåÓŸ±®°šzߤ¥sãšV¬`˜`¢ ¥±Ÿ±®žs¢.¥±¦t˜`£`šœ«Ššœ¦˜Ÿ)¢t®›šÙ ¡<ŸŠ›šœ¥ ¢  – À a  ו£`ŸŠ°s¢(¶s¸K¹mÆtS» R±»F¸K¹XÊ)Æt» OÍÈù½*¹X¸ ü)½ý ºv»vÆt»¼üNÊɹÇÉ»F¸K¹mêtýœÊ›Ø埧 ¢t˜¤¢t¨zšz šz¥ ¢t¡<Ÿ±˜#›Ÿ ¥±¦t˜`šœ¬`­¢S ¦<¢t¨z¨Ã¢â™°¬¤¢<¯`¢t®°›Ÿå¨zšœ˜`Ÿ±¢t®›ŸS²  ˜¨zšœ˜`Ÿ±¢(¥±¦˜ š·®›šœ™°¬`¨z ¢S še¥±¨œ¢t™›™°šœ¥Šš Á1¬*§YbŸŠ™›¯m¦™°›š¢tø`ø`šœ¢t¡µ¦Ï¬ šz¨œšz«±« ¢K ¦(š üNÊɺx¸±Æt»âÆt»¼È ÊɺQºv» £`Ÿ±¨z¨œŸǍÊÉÈù»FÊü<ê ##t»F¸Kțêt¹¤ºv»¼ÀÅÁ*¬Ÿ±™°›š ¡<ŸŠ›¦£`š ã`¢t˜`˜`¦Ï¨Ã¢5¥ ¢t®›¢S››Ÿ±®°šœ™°›šœ¥±¢Ò£`šÍ¯m¦t ŸŠ®) ® ¢K›s¢S®›Ÿ šœ¨ ¯`®›¦ø¨œŸ±¡µ¢7šœ˜3Á*¬Ÿ±™°›šœ¦˜Ÿ\šz˜`£`šœ¯mŸ±˜£`Ÿ±˜# ŸŠ¡µŸŠ˜# ŸB£`¢t¨œ¨œ¢£`šœ¡<Ÿ±˜`™°šœ¦˜ŸtÀ ¢Sø`ø`šÃ¢S¡µ¦7¥±¦t™x§YͯI¦S ¬›¦ ¦t››Ÿ±˜`ŸŠ®›Ÿ  a  ¥±¦˜`£šœ«±šz¦˜`šhÇɽ ¶É»FÊɹ¤ºQ»’¯mŸ±®®›šz™›¦¨ÙÓŸ±®°Ÿ)šœ¨^¯®›¦ø`¨zŸ±¡µ¢´£`Ÿ±¨r¥ŠŸ±˜# ®°¦B¦¨z¦¡<¦®°Ñ•¦µ¯IŸŠ® îÒï – ² X͚œ™°¯I¦t˜`£`Ÿ±˜£`¦ä¥±¦™ §Y¯¤¢t®›«ŠšÃ¢t¨z¡µŸŠ˜# Ÿ¢t¨z¨Ã¢â£`¦t¡N¢t˜£¤¢ – Øɲ V¢t™›™°šÃ¢t¡<¦ Á1¬`šz˜`£`š*¢ ¥±¦t˜`™›šz£`Ÿ±®›¢t®›Ÿh¨Ã¢Í£`¦¡µ¢t˜`£¤ ¢ }#ØÉÀS¥±šœ¦`Ÿh§ ¨z¦·™ž ¬`£`šz¦ £`ŸŠš¥±¢t™›š*˜`¦˜o¢t˜¤¢t¨zšz šz¥±šQ² t.  G\KIFQ h GJI"K[D>G\T T\P<E,EHD"eHPdG\Q EHP<eHP@UHU.IFE.DIFTJT_W SXXRP@Q h G]L^P r h G   XRP@e Z QRI h G]U.L Z U.U.GJD"Q

(72) PdI"X

(73) X


Documents relatifs

siderare il caso in cui i coefficienti di f (z) dipendano da dati sperimentali di- versi, ciascuno dei quali raggiungibile con diversa approssimazione. Reale di

conoscono i punti, del contorno, dove la funzione f (x , y) assume valori in- tieri, o, meglio, valori multipli intieri (li una assegnata costante k ; ma

FELD H EI M: Équations intégrales pour les polynomes d’ Hermite à une et plusieurs variables, pour les polynomes de Laguerre, et pour les fonctions hypergéométriques

Diamo infine alcune maggiorazioni relative alle medie (C, 1) delle serie di FOURIER, e delle loro coniugate, delle funzioni Lip a in due o più variabili

definizione estesa alle funzioni di due variabili non sembra porti alla classe delle funzioni a variazione doppia finita (estensione formale della classica

soddisfano alle condizioni richieste dai teoremi dei ~~. Essa in qualunque campo finito che non comprende Forigine è prende nell’intorno dell’ origine anche valori

che per le equazioni caratteristiche delle funzioni jacobiane può anche scriversi :. E poichè sappiamo dalla teoria delle Funzioni ellit- t che

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

CHICCO, Dirichlet problem for a class of linear second order elliptic partial differential equations with discontinuous coefficients, Ann. CHICCO, Principio di

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

caso particolare di due variabili risulta continua nel suo domi- nio di definizione ~). GAGLIARDO, Problema al contorino per equazioni differenziali lineari di tipo

ellittica in un certo dominio ~5. B80~1’DER, Strongly ettiptic systems of differential equations, Contributions to the tlieory of partial differential

1. TIBALDO, sulla diffei-enziabiuta asintotica quasi regolare delle di tre variabiti. LODIGIANI, Sulla differenziabilità asintotica regotare delle funzioni di

tr°e 1;ariabiH. [Rendiconti del Seminario Matematico dell’Università di Padova, Vol. SCORZA DRAGONI ; I Un teorema s2ctle funzioni continue ri- spetto ad e misurabili

bili per S movimenti tali che il moto assoluto di ognuno dei due corpi sia rotatorio uniforme- denotiamo con (Ù2 le velo- cità angolari di S~ e rispettivamente

alle variabili separatamente si possa estrarre una successione che converga quasi uniformemente in modo regolare.. Detto criterio si ottiene facilmente con

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

riuscendo le derivate parziali prime della u assolutamente continue, secondo quanto segue. anche, in particolare, dalle considerazioni del

http://www.numdam.org/.. ZWIRNER: I Su un pooblema di valori al contorno per equazioni differenziali del secondo ordine [Rendiconti del Seminario Matematico della R..

purchè, beninteso, la funzione alla quale vengono applicati questi operatori soddisfi a quelle condizioni per cui è lecito invertire l’ ordine delle derivazioni

successione convergente uniformemente, in tale campo, verso un limite finito (che risulta allora una funzione olomorfa), oppure3. verso l’infinito

dei primi tre ordini, limitate, i secondi membri delle equazioni parametriche del contorno stesso, e derivate dei primi due or- dini, anche limitate, la funzione