Sulla stabilità di un punto fisso per funzioni di n variabili complesse. Problema del Centro di Schröder-Siegel
Texte intégral
(2)
(3) "!#%$'&( *)$+,-.*$/$01!)/$2!45 3 7681&(68'!:9;<=&<>64@?,- " AB,-/9;C,-D;&(4F 36 EG)/$2H,I&($+C<#C "(JK68L"M%6J?JKCL$0#C6M&8!N1$O%PQQSR T U)$+,-V*$C(!UVXW(Y*[JZ *<\JWM]N?<$_^ ` C&8aE" b<,>64$0"!-%$&U*)<$0<,-cICU*"!aM&(C/(Sd&8"$2C%C68$_!"! P$CGe ABQ",a"Cf 9gC,>h$0,-/9;ij,-G!C],-kC,a!N<(*< =/$4&( *)$+,-k*V$_S68:C!6ml]MXn$_",a"%bSi /o&8!C$0 p<[/'!NQC<< <,aa"$(G<a'?<C,>hqr<EQsJ^=t;(<$O6M*Q,--C168u C&J&($OCl] /EG$_!Vc,a! -$0-!*)/$O/!4k 3 ]AB<!]!/EGvg68&(68'!B9;<J^ w S!]!NQ,-=%#<E]*8lSa",-H64Pu "($OxyJC<68 "!-*<$J&( *)<$0<,aH&,<!]!-""!]!N<Q:C ,-S!Sy%Q<!]!%ig$_S68Mx64$_!"!eJ!]!%,-$OyJ!]!NM)/$21$+B!NQ<'<Y8H%C,-$O+llSml]I?Q"f ,S!C]{zS}| ~+}=g8<" z^ aCC]*<>!/YI&( *)$+, b=!/Y8>!*)<%$O!s5Ub=H9 Q>&8/'!Uba-?4, b= ABQ",a"&'Y%,= bH<E" $ ",&$0 E*)<$0i7)<sC6J?*J!%?c!/Y8:CsG!N,;!/Yv!/H$2/Q"j&8!R!/Y8:W(Y*[JZ *<\ W']N?$C(! r&( *)<$0<,a^ &(Q<<'!7!/Y8&( *)<$0<,"(,aUbo!/Y8=,-/@Q68$O!/Xb<=!/Y8>($Os"!c"!NN?*sJ^c Y8< h-CY4Y4!@ J!N5!/Y8&( *)<$0<,!k,('\($Os"!kCG<i/5&8!S64$0-h;/$%$h)C /'!N< !NQc/Fqr<EQso?4,=^ :;%$/$ea;!/Yk".C&*&($2]J!v&UEm%4?kABS!/E!*)<%$O/!sb I9e 4Qp&8"%'!^ v;/$%$ &8/'!=6!!/Y4"!pJS64 "!N@("$2sGC%kUbv!/Y=&( *)<$0<,$%$0yV64c!)<!/;!/Y "%QQ!g,<!/Y4Gig<,p&!%,-$ C68$O!/:*)S!%PQ1)s>64C/?-!/Y8I?,<!C$[Q(,-$O0l"!"z<} | ~x}=g4<" z<^. .
(4)
(5) "! # $ &% '(
(6) ) *
(7) + -,.0/ +132 4 0 15/ 6798 5 :,<;=70> 65 ?@ #BA37 .C DFE0GIHKJG3LNMIOKPQJ1HRHSD TVUW GXPYM[Z\GXOKEMIPQJ TVW^] JOKDQGXORJ ] DYMI_*_`M[a^JDbLNMcIMXPQDQJ*OKDedVfhgIikj`lmi3noDQpKM^frqsHtMXPQDYM Hu U MIOKPvJ*HRHSDxwBpRyrp*uzDvH { J U JE}|~J*OlVfhlIX [IR1m e" ¡N¢0£`z¤¢t¡<¥¦
(8) § ¨Q©ª¢t«¦(£`o¬"®¬`¯¯I¦¦°±¡<o®¬¯`¯I¦°¬6¬``¦¯`¢t«±z¦ ¦¯m¦¨¦t¥¦`²´³*°±¡<r£``¢t¡µz¥±·¶s¸K¹¤ºv»¼¹¤½*»¾¦t`¦¢t«¦r£`r¿·À~¦®z¤¢K FÀX¯I® ±¡<¯`z¦`ÀV£`¢ ±Á1¬¤¢t«¦`h£`zÂI±®°±`«Ã¢t¨zFÄ^° ±¡<Å£`¤¢S¡µz¥±eÆt»Ç¶ÉÈ ÊɺQ»r°¦`¦7¢t«¦Å£~Ë=¦¯`¯`¬`®°´ÌͲ[΢S ¦ ¬``¦(°¯¤¢t«¦Ï¦¯m¦¨¦t¥±¦Ð ¬`¤¢ÒѬ`«±z¦`¥±¦# z1¬¤¢Ò°¬`®z° zÓS¢ÏÔÕ~Ð Ö Ð}À~°·¯`¬¦ § ¥±¦`°£`® ¢t®°µz¨^¡µrt®¬`¯`¯m¦(×v®z¯m° zÓS¢t¡<±#)¨^®°¬`¯`¯m¦1Ø £`¨¨)Ù ® ¢S<£ÅÔVÕµ×FÔXÚFÛØ ÛKÜ±Ý ×v®z¯m° zÓS¢t¡<±#<×FÔ ÚFÛ Ø ÛKÜ±Þ °oÔ
(9) § ¬`¦¡µ¦¡<¦®°ß¤°¡µ¦#ØÉ² àr©á£`±¢â§ ¥sã`oÐ
(10) ÀX£`¥±®°zÓS¢´¨¦µ¯¤¢S«±¦N£`±¨zVs¢SV£±¨^°°±¡µ¢µz°¬`£`¦ÀX¡<±# ®°äÔϨâ ¬¤¢<Ó¦t¨¬`«¦`±¡<¯I¦®¢t¨S²~àr©áÓt¦¨¬`«¦å£æ ç èÐ § £¤¢S ¢<£¤¢S¨¨Ã¢)°¬¤¢5¸KÈé±»¼ºFêtÕb×¼æ Û Ø ÛSÜÝ À æ Û5ë Ô^×¼æ ÛSì¤í دm±®åîï צ¯`¯`¬`®°5×¼æ Û Ø ÛSÜÞ ÀVæ ì¤ðñÛòIíQóeë Ô Ú°ðÙì¤íQó ×¼æ Û Ø¯m±®âîôïöõÀV°.Ô÷§ #Ó®° zø`¨zØù² eB¯`®°¡<¦)¦ø`ÉzÓ¦å§ £`±®¡<`¢t®Xúm½*¹¤ºQ»¤û^ÇsÇÉ»Xåúm½¹¤ºv»ú¤ÊÉÈù»F¸±Æt»F¶É»^ׯ`¬`# ߤ°¯I® z ® ¢Sb£`¨¨Ã¢åѬ``«±z¦`åÔØÅÁ*¬`£`I°¬`£`âS®¨Ã¢´Æt»¼¹mêtü)»F¶ê<ý¸¶êtýÊÅ.¬z# ¦®°`¦o£`Á1¬`° ¯`¬`# í ² þ [ÿ RVÿv7*ÿ mR(mÿv (
(11) YÏV m 1 v *ÿ ࢴѦ®¡â¬`¨Ã¢t«¦o£`±¨k¯`®°¦ø`¨z±¡µ¢´¯`¬V¦B§ °±®äÑv¢S°s¢ ®¢t¨z®â¢B³¥s㮦 £`®´× ( Ø À¨ Á*¬`¢t¨r°## ®±°K¦e§ ¢t¨z¨¦ ¬`£`z¦Í£`±¨z¨Ã¢~¥¦#Ó±®°±« ¢·£±¨¡<¦£`¦ £·"! ¦å¯I®£`±®°¡µz¤¢t® ® ¢t£`z¥±£¯I¦¨z`¦t¡µQ² ³¢t`$¦ #%'&)è ( +* À~,× #%'&âØ ë °Ã¢Õ /0 #N,× *#4Ø 35&µ.× *Ø 6 &N,× *#8Ø ë 7 õ 1 -ä.× *#Ø ë 02 9 6 &N,× *#Ø ë õ ¨¡ :<;>=?#µ.× *#@Ø 35&N,× *#Ø 6 * ë 9 %. ACBDFEHGJI"KDMLON
(12) PIFQRLON
(13) PSQ
(14) P@T5L@I"U.DWV,X
(15) G,Z Y U,P@K[X
(16) T\G]L^P4_`GJQ L Z G5abIFcc
(17) GJI Z QIdU,E.e Z E,E Z eOIdL^DfKXT\P4U.UHI`L^DfQU,P@e.g'IFEHI Ih MijkL^GJDPlY imU.GRDfT\DfK[D"e.noI
(18) j"PlTJI h G\K[P@QU,GJD"QP h G5abU Zqp U,G]I>rfjfGJTRXe.Dfc
(19) T\P@KI`Q
(20) D"QWPY L^DfKXT\P<EHIFK[P@QfEHPeHGJU.D"T\E.DRs t.
(21) ¨¯`®°¦ø`¨z±¡µ¢o®z£`¬`¥ ¢) ¬`£`¢t®6* ë - Ú ×.* çÉØùÀ`£¤¢S¦ * ç·è?( ² ¦°Ã¢t¡<¦ °¬`¯`¯m¦®®° ¥sã` ¨Ã¢® ¢t£`z¥±e®z¥±±®°¥ ¢S ¢ °Ã¢ ¨Q©ñ¦t®t` e¯I¦t¥sã· ¥± # ®¢t¡<¦o¢t¨ ¥±¦¡<¯I¦t®°s¢S¡µ1¦µ¨z¦¥±¢t¨SÀ`¯m¦°Ã¢t¡<¦ä±¯`¢t`£`®-z\°±®°å£`¾¢*¨¦®e¢t¨z¨F©á¦®z åÁ*¬`£` ¥±¦`°£`® ¢t®°¨°±¬`# å¯`®¦ø¨±¡µ¢Õ ΢S ¦<¬`\±®°¡µ£`£`ÙÂX¦¡µ¦t®°ß¤°¡µ¦ä¦¨z¦¡µ¦t®°Ñ¦ä¢t¨z¨F©á¦®z`SÀ¤ÔVÀ¤ ¬`£Ã¢t®°t[Õ * ë Ô Ú ×,* çÉØ~¯I® * ç·è?( ² ¨¯`®°¦ø`¨z±¡µ¢o¯`¬V¦< § ±°±®°â`±®¢t¨z«±« ¢K ¦ä¢t¨¥±¢t¦<¡o¬`¨Ù £¡<±`°¦¤¢S¨Í¥±¦£±® ¢S`£`¦<¬` ±®°¡µ +
(22) è » X,× (^Û %sõ#ؾ ¢t¨ ¥sã` Vç ë è ·×î %'(ÅØ Ͱ ¬£`ât®°Í¨`°°±¡µ¢Õ * ç·?è (^ÛÀ * ë Ú .× * çÉØù² Îbz®±¡<¦)¥sã`娯¬`# ¦äߤ°¦5o§ ÇɺYê#é±»¼ýÊ~å¯I®Í¦`o ¬`\# ¦®°`¦ä£`±¨z¨F©á¦®zVç ¬B¥¬` åÚ Ã¢)£`Éߤ`Ù ¦ä åÚ × ¾çÉØ !â¯m±®Í¦ "7² àr©á£`±¢.Ѧt`£¤¢t¡<±#s¢S¨)#®¦*£`¦t ¢.£¤¢³¥sã`® ¦t £`±® ¯I®å ¬`£Ã¢t®°<r¯®±¥±£`# ů`®¦ø¨±¡< <§ ° ¢Ss¢\Á*¬±¨¨¢£¶s¸K¹¤»¼$½ ##êtÈ ÊNýÙê7Æt»¼¹mêtü)»F¶ê5Æ*ÊÉý^ÇÉ»Çɺ ÊÉü<êÒÆ#êtº ¸ê#ƽ¹
(23) ÇÉ»Çɺ ÊÉü<&ê %Yúm» ½7' ÇÊÉ)ü ( úmý »F¶sÊ %+*Æ*Êɺ ÊÉÈÉü)»¼¹mêtº ¸bÆ#ê½*,¹ #*ÊÉÈÉüNÊ Æt»XÆt» bÊs¸KüN¸Kȼû^ÇÉüN¸¸Ký¸KüN¸K.È - /¸ äÀt¥¦`k§ £`É ±®°¡µz¤¢t®°h¬``¢ ® ¢S°Ñ¦®°¡N¢t«¦ £`¥¦¦t®£`z¤¢t®·¨¦*¥ ¢t¨ztÀ*#Ó®°ø`¨zb¦¨¦t¡µ¦®Ñv¢å£`¢Ss¢o£¤)¢ 0-
(24) è » ,× ( Û %sõ#Ø s¢t¨z¥sã`tÕ !120}.× *#Ø ×Ø ë 0312µ.× *#Ø % ¯I®¦t`W *[5¬ 4<¥±#±¡<±# ÒÓz¥±z`¦[¢t¨¨Q©ñ¦t®t`S6 ² ¦¥sã 7 Vç 5§ #ÓS¢t®°Ã¢t# B¯I® ¥±¦`z¬`z¦`Àz¨z° ¡N)¢ 8¯s¬.§ ¡µ¯`¨z¥9 8)®z¬`¨Ù ®K¢ § -;:5Õ *,Ö< -;:¾.× *Ø =ë ë *² ³¢t¡<¦oÁ1¬``£ ® ¢S£`¦ä£`Ѧ®¡â¬`¨Ã¢t®°b¨QÕ >hÈs¸té±ýÊÉü<ê Æ*ÊÉ@ ý ?hÊɹ¤ºQÈ ¸b¸Ký¸KüN¸KAÈ - ¸·ÆtC» BE¶ D*GÈ ¸tF Æ*ÊÉIÈ H$B »FJÊ #*ÊÉý ²Î¢S K¦ +
(25) è » .× ( Û %sõ#ØÉÀ Vç è & e×vl î %'(ÅØ)£ ®¡<¤¢S®) 0 !è » X.× (^Û %sõ#ØÉÀ¥¦
(26) M0)ç L ×v¯m±® ë L ë N ¦t±`®5¬`¥±ÙS¢(§ £±¨¨Q©ñÉÓ1¬¤¢t¨z¥±¦¬`z¦1ØÉÀ ¢t¨\¥sã`7¨¦*¥ ¢t¨z¡µ# ¢tøø`â O10},× *#Ø 0P1q-:^,× *#ØÉQ ² B ¢t¨¥ ¢S¦N°V¯`¢t®¨z±®K¢ä§ £`ký »¼¹XÊêtÈùS» RERê#é±»¼ý »¼Tº ê' £`U äVÀ 0 ¢t®R¢<§ £ ¢.ë ý »¼¹XÊêtÈÉS» RERêt¹¤º Êɲ W °®°Ó*ât¡<¦}¥sã`5`¨b¥ ¢S¦}î ¨ ±¦®°±¡µ¢
(27) £`b¬``ÙѦ®¡<«« ¢t«¦£Y Xͱ¡µ¢t` ¨ . ë ࡵ¡µ¢)£`³¥sã!~¢t®«â¢t°¥¬`® ¢t¦<¨Q©ñÁ1¬`zÓS¢t¨z±`«±¢)Ñ®¢)°s¢Sø`¨zzS¢ § å®°°¦¨¬`ø¨ÙS¢§ £`±¨r®°¦ø`¨¡N¢ £`±[¨ Z~±#®¦ W ¨z¦¡<¦®°Ñ¦ t ² ¸ ^¸KÈÉü<êtýÊÉ_² \`Z~¦t`z£`±®°Ã¢t¡<¦`À¥¦¡<寮¡<¦ä¯¤¢t°¦`À¤z¨¯`®¦ø¨±¡µ¢o£`¨¥±# ®°¦ t ² M² \]?kêKÇ) `±¨r¥±¢ta¦ - ¸KÈùü<êtýÊÉ,² b °¬`¡<âS¡µ¦.î ë ¯m±®¡µ¯`¨zzߤ¥±¢t®â¨Ã¢´¥®Ù ¬® ¢.£`r¢t¨z¥±¬`)±¯®±d c ¦t`F²^³Ã¢åÁ*¬`£`V eB?è (gf = Ôh ?è * (q +* ¬`¤¢å®eѦ®¡µ¢t¨zÍ¢ ¥±¦*i 4<¥±#I¥¦¡µ¯¨±° £`¨¨Ã¢ Ѧ®¡µ¢ Ô h ë e *2jlknm Ô m * m o² Z~±®¥sãât¡<¦)¬`©ñ¢t¨z® ¢o°±®zbѦ®¡µ¢t¨z p h ë *2jqkrm p m * m ?è * (q +* s¢t¨z¥sã`åѦt®¡µ¢t¨¡<±# ·¢)Ót±®°zߤ¥±¢Ss¢ä¨F©á¬`¬¤¢S¨Ã¢S`« ¢Õ Ô h 1 p h ë p h 1 -tM% s £`¦Ó -;t*.× *Ø ë e*²å·t¬¤¢t¨¢t`£`¦µ¨ ¯I¦t±`«)£` *.z±# ®¢t¡oø`V¾¡<±¡oø®£`±¨z¨F©á±Á1¬¤¢t«¦` ¦t±`¢t¡µ¦Õ m u× e@vgwqemØ p ëv Ô v J× e wqemØ p m Oë x m u× eS%ùÔ v %yy9yf%ùÔ m % p v %yyyf% p m ì¤í Ø z|{VOï }>% × t Ø £`¦Ó x m ·§ ¬`©á±¯®±°z¦`b¯m¦¨z`¦¡<ât¨z~`m ¨¨zeÓS¢t®°Ã¢tø`z¨Q² W °®°Ó*ât¡<¦â¥sã x m `¦µ£`¯m±`£ £¤¢ pC~ ¯IK® Oï { À`Á1¬`z`£`¢S¬¡µ`£`¦ e we ë 7 õo¯m±® ¦t`G {VèË f Àb§ ¯m¦°ø`z¨ ®°°¦¨zÓt±® ¨°°±¡µ¢)ߤz ¦)£±Á1¬¤¢t«¦`¯m±® ®°¥¦®®°±`«±¢² }.
(28) b·ø`ø`âS¡µ¦µÁ*¬`£`¾¦t±1¬ ¦ ¥sã`s#*ÊɹXÊÉÈù»F¶êtüNÊɹ¤º Ê v ¨¯`®¦ø¨±¡µ¢N£`¨^¥±# ®¦.Ѧ®°¡N¢S¨N § ®°¦¨¬ø`¨z å¦t¨¦ä eB`¦Ò§ ¬`¤¢ä® ¢S£`¥£`±¨z¨F©á¬``zK¢§ ² t ² t _² \ >hÈ ¸té±ýÊÉü<êNÆ*ÊÉý¶sÊɹ¤ºQÈ ¸´¸Ký¸KüN¸KÈA- ¸)»¼¹5Æt»¼üNÊɹÇÉ»F¸K¹XÊb½*¹X¸K²M\´e¨z«±«±¢t`£`¦oz¨X¡<¦£`¦ ¥±¨Ã¢Sz¥±¦Ò£`±¨z¨ÇÊÉÈù»FÊü<ê ##t»F¸KȰêt¹¤ºQ»·\§ ¯m¦°ø¨ ¦t±`®£¤¢t¨z¨Ã¢5¦¨z¬`«±z¦`.Ѧ®°¡N¢t¨ztÀkѦ® c ¡N¢t«¦^¬`¨z¨Ã¢.¦t¨¬`«¦`ä`¨k¥ ¢t°¦B¦¨z¦®¡<¦tѦ`a² Ñv¢S° r°µ£`z¡µ¦t° ®°Ã¢t¡<¦´¥sã`µ¨Ã¢.¦t¨¬`«¦` ±®°Ñ¦®°¡N¢t¨zä§ ¥±¦#Ó®# âz ¬`\¥±® ¦Nz# ¦®°`¦ä£`±¨z¨F©á¦®z`SÀ¢S¨¨¦t® ¢o¢ Ó*®¡µ¡<¦) ®¦ÓS¢S¦ ¬`¤¢â°¦¨¬`«¦·£`¨I¯®¦ø`¨z±¡µ¢å£±¨m¥±±#®¦o¦¨z¦¡<¦®°Ñ¦±°¯`®¢)® ¢t¡<zͨ⬤¢â°±®° £ V¢ _c ¨¦®Àr£¤¢Ss¢5¨Q©ñ¬`¥±ÙS¢§ £`±¨z¨¦5°Ó*z¨¬`¯`¯m¦£`/ ¾¢ *¨¦®ä¢ Ó*®¡µ¡<¦5£`É ±®°¡µz¤¢S¦¨Ã¢°¦¨¬`«¦´£`±¨ ¯`®¦ø¨±¡µ¢)£`±¨¥±# ®°¦µ¦t¨¦¡<¦®°Ñ¦² k£`ât¡<¦Í¢t£`°¦·Á1¬¤¢t¨zer § ¨¡<±¥¥ ¢t`z¡<¦ ¥sã`ůI¦t®ø`øIkz¡µ¯m±£`z®V¨Ã¢ ¥±¦#Ót±®t±`«±¢·£`¨¨Ã¢ ¦¨z¬`«±z¦`å±®°åѦ®¡µ¢t¨SQ² b °¬`¡<±`£¦.¥sã`a e`¦°Ã¢<¬`¤¢N®¢t£`¥ £±¨¨Q©ñ¬`zK¢B§ ×`±¥±¢t®z¦ ¯I® ¢ Ót±®<¬`¤¢ ¦t¨¬`«¦`oѦt®¡µ¢t¨ Øe~ ±£Ï¢tø`øÃ¢.¡µ¦*£`¬`¨z¦.¬``Ùs¢t®°¦`À^ä§ ¬`7®°¬¨zs¢K ¦.¥±¨¢t°¥¦ £`¦Ó¬ ¦¢ Îbz®¥sã¨b¥sã`µzÑ ~ ÜÞ e w ë õľÁ1¬`z`£`r¢S£Ï¦t`r¯¤¢t°¦£`±¨z¨Ã¢´¯`®°¦¥±£`¬`®¢ z ® ¢SzÓS¢ ¯m±®h£`±®°¡µz¤¢t® p m À£`zÓ*z£`ât¡<¦¯I® £`¨¨eÁ1¬¤¢t# ÙS¢â§ ¥sãb£`zÓt±#s¢S`¦)¡µ¯`®°b¯` ¬ § ¯`¥¥±¦¨ztÕr¨Ã¢âÓt±¨z¦¥zS¢o§ ¥¦¥±¬`±`£`¦t`¦N¢)«±®¦<¨X¨¦®°¦ä§ ¢t¥±¥¬`¡o¬`¨¢t®°.¯`®°¦£¦t¯I¦t¦t`¦ ¡<¯I£`®°·¨¢ ¥±¦t1Ót±®°±`«±¢<£±¨¨¢ °¦¨¬`«¦·Ñ¦®°¡N¢t¨zt² 3Á1¬`° ¦)¬.¥±¨Ã¢Sz¥±¦o¯®¦ø`¨z±¡µ¢ ¥¦ úm»F¶s¶s¸Ký »kÆt» »Ç¸KÈù»¼² ³= e 7 Àå¢t¨¨z¦® ¢}¨Ã¢[¦t¨¬`«¦`7Ѧ®°¡N¢t¨z3ϧ øm±@£ß¤`Ùs¢3(¦¨z®7 V¦z`¥ ¢SM® ( ã`¢ ¡µ¦ ®¢S ¦ ¥sã`ë ä±° ä¬`¤¢ ¥±¦s¢t#µ¯m¦Ù ÙÓt¢âs¢t¨zo¥sã`tÕ e Û w Xï â¯m±®¦`¾î0ï ² Îb¬``Á1¬`.ů`¥¥±¦¨zh£`ÙÓ*¦t®Å¦`¦B¬``zѦt®¡<±¡<±# µ¥±¦# ®°¦¨¨¢S k´Á1¬`°¦5¯I®¡<´£`h£`S c ¡µ¦ ®¢t®o¨¢N¥±¦t1Ót±®°±`«±¢\£`¨¨¢N¦¨z¬`«±z¦`o°±®°âѦ®°¡N¢S¨t² ¨ k®°¦ø`¨z±¡µ¢N£`±¨ Z~±# ®°¦\¦¨z¦ c ¡µ¦®Ñ¦)£`³¥sã`k® ¦ £`d® \³z±¨ã¤¢)¦¨z¬`«±z¦`t² ¨*¥ ¢t°¦ e § ¬¤¢ ® ¢S£`¥ \*¯`®z¡µÙ ÙÓt¢ £±¨¨Q©ñ¬`zK¢§ À *¬`£`£zÓ*£`~⣬`~°¦t¦¥±¢tQÕ e.~ ¦¯`¯`¬`®°Qe)`¦Në~§ ¬`¤¢e® ¢t£¥±Å£`¨¨F©á¬``ÙS¢§ ²e±¨*¯`®z¡µ¦e¥ ¢t°¦Ô\h§ ¢t¤¢S¨z¥±¢t¡µ# r¨z` ¢S®«« ¢tø¨ .¦¨z¦Ò°\Ô"§ £`~¦®£`z`´ß¤`Ù ¦`Àk¯` ¬}§ ¯`®¥±¢t¡<±# \Ô Ú
(29) .× *#Ø *² e±¨ ®° ¢t# ¥ ¢t°¦ ¯I¦Ã¢t¡<¦ e À 6è}¿ åÄŨ¢´¦¨z¬`«±z¦`o°±®°âѦ®°¡N¢S¨N)§ øm±7£`Éߤ`Ùs¢´¡µ¢´¨Ã¢N°¬¤¢ v Ó# ¬¤¢t¨zh¥¦ë #Ó ®`« ¢e£`¯m±`£tÀK® ¢t«r¢S¨¯`®¥±£`±# h®z¬`¨Ùs¢S¦ £`#Îbz®¥s㨱À±Ñ¦® ±¡<±# £¤¢t¨¨zâ¯`®°¦¯`®°K¢.§ ¢t®Ù ¡<¥sã` £`±¨^1¬`¡<±®°¦ ®®¢t«±z¦¤¢t¨z e;Õ 8tÓt±¨¦*¥±ÙS¢N§ £r¢t¯`¯`®°¦°¡µ¢t«±z¦` £` 0¥¦® ¢t«¦¤¢S¨ 8² ࢠ±¦t®Ã¢<¢t¤¢S¨z¥±¢ä£±l ·¬`¡<±®° ¥±¦tÂI®µýÙYê -ùȰê R±»F¸K¹XÊ)¶s¸K¹¤ºv»¼¹¤½`ê奱¦¡< Ѧ£¤¢t¡<±T c s¢t¨z° ®°¬`¡<±# ¦<¯I®Í° ¬£`ât®°¨®¢t£`¦ä£`¢t¯¯`®¦°z¡N¢t«¦£`®°® ¢t«¦¤¢S¨ ¥±¦® ¢S«±¦t¤¢t¨Q² b £0¦t`·z®®¢t«±z¦¤¢t¨z´æ ® ¢S¡µÙ ¨F©ñ¢t¨t¦®Ù ¡< ¦ ¤® ¢t«¦` ¥¦# 1¬¤¢Ï£` ¢t¬`°±ÀÍ¢t°¦*¥±¢t¡µ¦ ¬`7¬`¥¥±±°z¦`ä£`¾®¢t«±z¦¤¢t¨zh!× k3" 9±Ø ÜÝ À£`° ·¶s¸K#¹ tÊÉuÈ #*Êɹ¤ºv»¼ÀX¥sã`)t¦£`¦t`¦´£`¨¨ ¬`±# ¯`®¦¯®ÉS¢§ Õ 3' ( è À *)+ 9SÀ, 3" ë 7 Ck3" itÀ~¢t¨¨z¦® ¢ ²å%× $\z¨z¦®´¢t¯`¯`®°¦°¡µ¢t«±z¦`Ø ±®µ¦`& k3" 9/w
(30) æ T 3' Yw(æ Ä ¦ 3' .è &s¢t¨z<¥sã7 3" ,w3æ /)× t v Øsì¤íùÀV¢t¨z¨¦®¢´±z°1 "}0 ïõ t ²å× W ¡µ¢t¨ÙS¢#§ ØÍ΢Ss¢t¨z¥sã`2 3" ë 43 3" '3 Ä. Y GJQnoI'E.E.GlIfL<L@I h P@e.PWLON
(31) PWX5P<e Z Q L^P@e,EHD982:<;,[ = U,G IFc
(32) cGJI9>'?A@B>DCFE P8L<D"Q E.P@K[XRDfeHI"Q
(33) P@I"KP@Q E.P Z D E " j
(34) Q f D Q ^ P . E @ P . e [ K J G Q F I Q d D ^ L D U Y k J
(35) Q 4 P . U U Q I D U H E e J G " D
(36) Q P F I TJT]IleHG]U,DfT Z cG\TJG E'I Y h P<TRX
(37) e.Dfc
(38) TJP<KI
(39) s#L Z P@U,EHI U.G E Z I K G\DfQ
(40) P h h G ?IH PMY D"E,E.P@Q
(41) GJc
(42) G\TJP[G\K[X5D"Q
(43) P@Q h D h P@T\TJPL^D"Q h G KZ G\DfQ
(44) G U Z GZ'L^K DkPNM>L^GJP<Q EHG h GPi O PRQ Z GJg'IFTJP<Q E.G I"T\T]I eHG]LON
(45) G\P4U EOIqLONP<i O U.G]I h G Dfe h G\Q
(46) P,S QG EHDj
(47) D'gkg"P@e.DU,PT> PY Z QI[eHI h G]L^P&URV P@U.GJK[I h P@T\TXW Z Q
(48) G\E IY IFTJTJD"eOI iZO Y []\_^` H ^s 576. a.
(49) ² V®·¦t`".ï õä°ã¤¢Õ } 2. ) Ï æ y t 9 9 òIí 9 i 9 òIí W °®°Ó*ât¡<¦NÁ1¬`z`£`¥sã` 8¨¢äÓt±¨z¦¥zS¢< § £`V¢t¯`¯`®°¦°¡µ¢t«±z¦`98<£` ¥¦® ¢S«±¦t¤¢t¨r § ¨#¢Ss¢ ¢t¨¨¢âÓ±¨z¦¥zK¢o§ £`¥±®°±¥z ¢<£` 9S² ³¢t¡<¦â¢t£±°¦)´t® ¢t£`¦ £`IѦt®¡o¬`¨¢t®em¯`®z¡µ ®z¬`¨Ùs¢S¤¯I¦tzzÓ* b`#¢S ÙÓ*I®°±¨Ã¢K zÓ*m¢t¨ k®°¦ø`¨z±¡µ¢µ£`¨ Z~1®¦ W ¨¦t¡µ¦®Ñ¦`²Í³ O8`å § øI7¢t¯`¯`®°¦°¡µ¢S ¦<£¤¢N®¢t«±z¦¤¢t¨z 8`À`±¨±¦ ¥sã`tÕk¨z¡
(50)
(51)
(52) ë j 9 ¢t¨z¨¦®¢z° ·¬`´®¡< ¦¨z¦¡<¦®°Ñ¦åÔ^,× *#Ø ë v *ojÀ¥sã`b`¦t âä¢t`¢t¨Ù ¥±¢t¡<±# ·¨ ¢t®°«±«±¢tø`z¨tÀ*Á1¬``£¨F©á¦®z `¦¢)°s¢Sø`¨zä×JZ~®°±¡<±® t5 ØÉ² ³.z#Ó±¥\z¨~®¢t£`¦5£`Í¢S¯`¯`®¦tz¡N¢S«±¦t`N£` ¥¦[® ¢t«¦¤¢S¨ § ¢S¨ ¯` ¬
(53) § ¯m¦¨z`¦¡<âS¨tÕ. 9 òIírë × òIí Ø¯m±®V¬`)Á1¬¤¢t¨z¥sã` 0õÀ¢t¨¨z¦® ¢ ¦®¡<~¦¨z¦¡<¦®°Ñ¦·ÔVÀ¥sã~ߤ°¨Q©ñ¦®°z` ¥±¦t Ô×võ#Ø ë v IÀXb§ ¢S¤¢t¨Ù z¥ ¢t¡<±# ¨z`±¢t®z«±«±¢tø`¨z ¨Q©ñ¦t®t`e§ °s¢Sø`¨zo×Q³±¨ a t ØÉ² "!$#&% ( ' ÇsÇÊÉÈ »vêtüN¸}E¶ D¤Ê7¸ #t¹¤»ÈÉ»Çɽ*ý ºFêtºx¸(¹XJÊ ##êtºQ» t¸ *N¶s¸KüNÊB»¼ýÍÈù»Çɽ*ý ºYêtº ¸[Æts» ?^È ÊÉüNÊÉ+È * Æ*Ê tÊ´ÊsÇsÇÊÉÈ KÊ - ¸KÈùü)½ýÙêtº ¸¶s¸KüNÊ´ÊsÇÉ»Çɺ ÊÉM¹ RêBÆt»~½¹ ¶s¸K¹¤ºvÈ ¸ÊsÇÊÉü úm»F¸BÊä¹X¸K¹ úm½ ¸B' ÊsÇsÇÊÉÈsÊ Kêtý »vÆ*¸ ú¤ÊÉÈ5ºQ½*ºQºv»)» #*ÊÉÈùü)*» ),+ɹ -êtºvºv»eú¤¸ÇsÇÉ»vêtüN¸BúmÈ ÊɹmÆ*ÊÉÈ Ê5½*¹m.ê -±½êtýªÇÉ»vêKÇÉ»âÈ ¸KºFê R±»F¸K¹XÊ -0/ 1325476S.× *#Ø ë v 98 *´ÊͶs¸K¹¤»¼½ ##êtÈùýÙêâ¶s¸K¹:-±½êtýªÇÉ»vêKÇÉ» ½¹NÆt» bÊs¸KüN¸Kȼû^ÇÉüN¸ êt¹mêtý »¼ºQ»F¶s¸*<;¾×,*#ØE*^¶ED¤Êmû^ÇsÇÉ»mý5= ¸KÈù»S#t»¼¹XÊE* ¸KºQº ÊɹXÊɹmÆ*¸å½¹ #*ÊÉÈùüNʸKý¸KüN¸KAÈ - ?¸ >X.× *#Ø ë ;ì¤í 1- / 1325476@1@;¾,× *#EØ *k¶s¸KA¹ >X×QõØ ë õ\BÊ >C¼×võ#Ø ë v 98 * ¶ED¤ÊåÈÉ»Çɽ*ý ºFê¸' »vêtüNÊɹ¤ºxÊêt¹mêtý »¼ºQ»F¶êtüNÊɹ¤º Êý »¼¹XÊêtÈù»SRERê#é±»¼ýÊD-±½êtýÊ)¶ED¤ÊbÇÉ»vêFEG) H ý »h»¼ÈÉȰê R±»F¸K¹mêtý » E¶ D¤Ê tÊÉÈù» û ¶êt¹X¸µýÙê5¶s¸K¹mÆtS» R±»F¸K¹XÊoÆt»Í¶ÉÈsÊsǶɻ¼ºFê.»¼¹¤ºQÈ ¸±Æ*¸KºvºYê\Æ# ê B »FJÊ #*ÊÉýǸK¹X¸ E¶ D*»vêtü<êtºQ»Îbz¦tÑv¢t# ÊÇÉ»Iúm ½ ¸N' Æt»¼üN¸ÇɺvȰêtÈ ÊoE¶ D¤ÊǸK¹X¸µÆt»^ü)»Çɽ*Ȱêåúm»FÊɹmIê ) e±¨ ¨Ã¢ Ót¦®¦7£`¨ (KJ ®°¬``¦ f ¡µz¨z¦® ¢¨h®°¬`¨z ¢S ¦5£e³±¨ z# ®¦*£`¬`¥±`£¦Ï¬``¢ ¥±¦`£«±z¦`.°5¬ 4<¥±# ¯I®)®°¦¨zÓt±®°.K¨ r®°¦ø`¨¡N¢£± ¨ Z~±#®¦Ò¦¨¦¡<¦®Ñ¦¯` ¬
(54) § £±øm¦¨M LÀ ¨F©á®®¢t«±z¦¤¢t¨z9 £`ÉÓ Ó®zß`¥ ¢t®°tKÕ N.× ~Ø ë k ¨¦ i òIí 3" i
(55) j 9 ² V¢t¨z´¥±¦£`«¦`5§ ¥sã`ât¡µ¢S ¢äz\¨z° ±®¢S ¬® ¢¶s¸K¹mÆt»SR±»F¸K¹XÊ Æt»POÍÈù½¹X¸b t¨z®® ¢S«±¦t¤¢t¨I¥sã`å¨Ã¢ä¦*£`£`Ñv¢t`¦ä¦t`¦ £`° k¹¤½üNÊÉÈù»ÅÆtQ» OÍÈù½*¹X¸K² J ®°¬``¦µ£`¡<¦°® ¢)¦¨z®b¥sã` ±°°¦`¦<£`¬`奱¦s¢t#V¬`zÓ®¢t¨ s¢t¨z¥sã`1oX ¨Ã¢ä¦t¨¬`«¦`°±®z Ѧ®°¡N¢S¨¥±¦t1Ót±®°o¬`£¥¦N£`®¢tzS¦ Rm× ~ØÉÀ £`¦ÓT Rm× ~Øeï U Rí Wì V ð tó ² e±¨¨¢Ï£`z¡µ¦t° ®¢t«±z¦`\£` J ®°¬``¦[· ®¦ÓS¢t`¦}£±¨¨zB ¡<B¯m±®.¨zB¥¦° ¢t# U í U v Ä ¯I¦z¥são z¨®¢tz¦µ£¾¥±¦t1Ót±®°±`«±¢.£`¯m±`£o£¤¢t¨z¨Ã¢ä¥±¦s¢t# U v ® ¢S¡µÙ ¬`5±°¯I¦t`±`«Ã¢t¨ztÀ § z¡µ¯m¦®s¢t# ¦t±`®å¨Ã¢o¡<¨z¦®°· ¡µ¢o¯m¦°ø`z¨b¯m±® U v ² ¬®°¬`¨z ¢S X¯`®±# ¢S ߤÁ*¬1§Y°¦`¦µ°s¢K ¦t±1¬¥¦¨¡< ¦*£`¦ä£`z®° ¦<£`±¨z¨ ±®° ¡µ¢tt¦®¢t# FS² e±¨ [Z ¦*¥±¥¦W« R ¬ z¨«« ¢t£`¦·¬¤¢b¥±¦ ®°¬`«±z¦` ¦¡< ®°¥±¢ÀS£ ¢ ÈÉ»¼¹X¸KÈùü<êtý S» RERê R±»F¸K¹X)Ê #*Ês¸KüNÊɺQÈù»F¶êtÀk£`z¡µ¦ ®¢¨F©á¦t¡µ¢t¨ÙS¢.§ £`±¨z¨Ã¢¥¦`£`z«±¦t`.£` J ®°¬``¦`Õ ° ¨F©á®®¢t«±z¦` `¦t÷§ ¬`31¬`¡µ®¦7£` J ®°¬``¦Ï¢t¨¨z¦® ¢\±z°¬ ®¡<.£` £`ÙÂX¦¡µ¦t®°ß¤°¡µ¦ ¢t¤¢t¨zz z¥±¦Ô^.× *#Ø ë v *,j yyyÀÅ¥sã.`¦}¢5¢t¤¢t¨zz¥ ¢S¡µ1µ¨z`±¢t®z«±«±¢tø`¨zt² `¦¨z®§ ¯I¦°zø`¨zb¯`®`£`®å¨XÓS¢t¨z¦® U v ë ² ³¦t®¦¦<Á1¬`z`£``¢S ¬`®¢t¨¡<±#¨¬`1£`¦¡µ¢t`£`SÕ ² V®¢S ¢t®z¨X¥ ¢S¦<îÒï t À¤¯I¦z¥sã ¨X¡µÉ ¦*£`¦ä£` Z ¦*¥±¥±¦t«<§ ¯`®°¦¯`®°¦)£`¨¥±¢t¦<î ë Ä Q . ). . w. \5] NP T]IL^DfQ h G K GJD"Q
(56) P h G^ e Z QDlU.GJIXG,Z Y h P<c5D"TJP h P<TJTJIlL^D"Q h G K G\DfQ
(57) P Z U.IFEHI h IQ_kGJPa`fP<T j U.Pa` Z P h IFTJT\P X
(58) e.DfX
(59) eHG\P<E I Y h G L^eHP@UHL^G\EHI h P<GL<D"Qkg"P@e`fP<Q E.G h P<GCblGJDFnoIFQ EHP<G P h IFTJT\P X
(60) eHD"Xe.GJP^E'I Y h GL<D"Qkg"P@e`fP<Q K I h P<TJTJP U.P<eHGJPdce T\Df` U ehg U e P c e r g Uhei jX5P<eSDf`"Q
(61) GCj@kEs l.
(62) ² W `±®° U v ë ¥¦\¡<¦££`®°° k×¼Ó±£ R ¦t®°ÓS¢t«¦` t ² ¯¤¢t`² t( ØÉÄ } ² Z~¦`°£`® ¢t®°åz¨¥ ¢S¦<`¦\¢t¤¢t¨zz z¥±¦`² Xͬ`¢t®£`¦Ï¢t¨z¨Ã¢7£`¦¡µ¢t`£¤¢ t ØÉÀ ¬¤¢(°¡µ¢(¢t¥¥±¬`®¢Ss¢Ï£`±¨z¨F©ñ¢t¥±¥¬`¡o¬`¨¢t«±z¦`.£` ¯`z¥±¥±¦t¨ £`zÓ*°¦®±¨¥ ¢t°¦µî ë À ¥±ã`¢µ¯m±®¡<±°¦ l £¦t±`®âz¨XÓS¢t¨¦t® U v ë ¥±¦tB¡< ¦*£` £`®°F² Z~¦£±®¢t¡<¦)Á*¬`£`X¨¥±¢t¦<¡o¬`¨Ù £¡<±`°¦¤¢S¨Íî7ï t ² t ² }² \
(63) >hÈ ¸té±ýÊÉü<êÆ*ÊÉýh¶sÊɹ¤ºQÈ ¸\¸Ký¸KüN¸K.È - ¸´»¼¹}Æt»¼üNÊɹÇÉ»F¸K¹XÊâü<ê ##t»F¸KÈ ÊäÆt» ½*¹X¸K² \Bࢴ¥±¨¢t c zß`¥ ¢t«¦` £`±®¡<X¢S¤¢t¨Ù z¥ ¢t¡<±# e¨z` ¢S®«« ¢tø¨¤±¨¥±¢t¦ä£`£¡<±`°¦` ¯` ¬N§ t® ¢t`£ £`¬``¦B§ ¡<¦¨z¦)¯` ¬ § ®z¥±¥±¢ä ¬ ¦t® ¢ä`¥¦¡µ¯¨ ¢)¢t`¥sã`å`¨¥±¢t¦N¢t¤¢t¨zz¥±¦g² Xez¥±¦®°£`ât¡<¦ ø`®ÉÓ±¡<±#o¢t¨z¥±¬``IÑ® ¢)®z¬`¨Ùs¢SX¯` ¬.§ z¡µ¯m¦®s¢t# Q² ³¢âÁ1¬`£`G 7è » X.× (^Û %sõØh¢t°¬`¡<ât¡<¦o¥sã`z¨I£zÂI±®`«±¢t¨·£`G ¢t¨¨Q©ñ¦t®t` °Ã¢âz Ѧ®¡µ¢)£`âtt¦¤¢t¨z ÕM ç ë Æt»vê #J× e%yy9y % eSØÉÀ e )è ( f ²ÅÎbz®±¡<¦)¥sã` Vçâä§ Èù»Ç¸K¹mêt¹¤º Ê ° ±z°¦`¦ " í %yyyf% " Û èÌ" N è %yyyf% î ås¢t¨zX¥sã`SÕ " j j " ï t e í
(64) yyy+e í
(65) wqe
(66) ë Qõ y í Û § Ñv¢t¥±z¨ ¥±¦t1Ó*z`¥±®m¥sã`·¨Ã¢¥±¦£`«¦`Í£`¹X¸K¹ Èù»Ç¸K¹mêtM¹ Rê·§ ¥¦`£`z«±¦t`Í`±¥±¢t®¢ e¬Ñ c ( ߤ¥±z±# ͯm±®r®z¦¨ÙÓ® `±®°¥±¢t¡µ# ͨ*¯`®¦tø`¨¡N¢bî.£`z¡µ`z¦¤¢t¨zhѦ®°¡N¢S¨t² W °±®Ó¢t¡<¦ ¥sã` ±¨¥ ¢S¦<î ë Á1¬`° ¢µ¥±¦t`£`«¦®z¨b¥¦¡µ e`¦Ïå§ ®¢t£`z¥±£`¨¨F©á¬``ÙS¢§ ² Îbz®±¡<¦
(67) ¥sã`
(68) Vç\¢t¯`¯¤¢S®° z±`7¢S¨äÆ*¸Kü)»¼¹¤»F¸[Æt» >e¸K»¼¹X¶êtÈ Ê< SÕ °¬`¯ e ¦t¯`¯`¬`®° Ñ e ² ¨b¥¦¡<¯`¨¡µ1 ¢t®B£`±¨£`¦t¡µz`¦Ï£` V¦t`¥±¢tM® [ 5§ ¥sã`¢t¡N¢K ¦ Æ*¸Kü)»¼¹¤»F¸}Æt» B »FJÊ #*ÊÉý ² ¨ ¯`®°¡<¦7®°¬`¨z ¢S ¦7¥sã` Ó¦t¨¢t¡µ¦5¡<±«±¦t¤¢t®7 § £`¦Ó*¬ ¦(
(69) ¢ ¦¥ ¢tM®
(70) × }#ØùÕ ¦` ±®°¡µr£`t£`zÂI±¦¡<¦®ß¤¡<¦ ¢t`¢t¨Ù ¥¦~£`tîoÓt¢S®Ã¢Sø`¨zK¥¦¡<¯`¨rz¨t¥¬`£`ÙÂX®±«±Ã¢S¨r¢t¨z¨F©á¦®z â´¦5®z¦¤¢S1âä¢t¯¯¤¢t®°±`¢´¢t¨¾£¦¡µz`¦<£` V¦z`¥ ¢tM® t Àrâ§ ¢t¤¢t¨zz z¥ ¢t¡<±# ¥¦`¬#¢S ¦ ¢t¨¨¢o¬¤¢ä¯¤¢t® ¨z` ¢S®t² Z~¦.¬¢t¨z¦o£`IÁ*¬`¢t¬`.°±¥¦¨¦`À* ®¢t¨Ã¢t°¥±¢t`£`¦o¡<¦¨Ù ®z¬`¨Ùs¢SIz1±®°¡µ£`FÀ1Ó¦t¨Ã¢S¡µ¦ ®¥¦®£`¢t®ä¨V®z¬`¨Ùs¢S¦.£` J ®¬`¦
(71) × ( ØùÕb¦r±®°¡µä£`r£`ÙÂX¦¡<¦®°ß¤°¡µ¦´¢t¤¢t¨zz z¥±¦´£rî Ót¢S®Ã¢Sø`¨zÅ¥¦¡<¯`¨N¨~¥¬` £`ÙÂX®`«±¢t¨N¢t¨¨Q©ñ¦®°z`)¢£`âS¦¤¢t¨ztÀV`¦[®z¦¤¢S1tÀr¥¦ ¬° ¨¢t¬ ¦ÓS¢t¨z¦®£¡<¦*£`¬`¨¦ä¬`zs¢S®¦À¡µ¢<`¦tB® ¢S£`¥£`±¨z¨F©á¬``zK¢§ Àå¥sã`åÓ±®°zߤ¥sãV¬``¢ ¥±±®s¢.¥±¦t`£`«¦)¢t®Ù ¡<¥ ¢ À a ×£`°s¢(¶s¸K¹mÆtS» R±»F¸K¹XÊ)Æt» OÍÈù½*¹X¸ ü)½ý ºv»vÆt»¼üNÊɹÇÉ»F¸K¹mêtýÊØå§ ¢t¤¢t¨zz z¥ ¢t¡<±# ¥±¦t`¬`¢S ¦<¢t¨z¨Ã¢â°¬¤¢<¯`¢t®°å¨z`±¢t®S² ¨z`±¢(¥±¦ ·®°¬`¨z ¢S e¥±¨¢t°¥ Á1¬*§Yb¯m¦°¢tø`ø`¢t¡µ¦Ï¬ z¨z«±« ¢K ¦( üNÊɺx¸±Æt»âÆt»¼È ÊɺQºv» £`±¨z¨ÇÊÉÈù»FÊü<ê ##t»F¸KÈêt¹¤ºv»¼ÀÅÁ*¬±° ¡<¦£` ã`¢t``¦Ï¨Ã¢5¥ ¢t®¢S±®°°¥±¢Ò£`ͯm¦t ®) ® ¢Ks¢S® ¨ ¯`®¦ø¨±¡µ¢73Á*¬±°¦\z`£`¯m±£`±# ¡µ# B£`¢t¨¨¢£`¡<±`°¦tÀ ¢Sø`ø`âS¡µ¦7¥±¦tx§YͯI¦S ¬¦ ¦t±`® a ¥±¦`£«±z¦`hÇɽ ¶É»FÊɹ¤ºQ»¯m±®®z¦¨ÙÓ±®°)¨^¯®¦ø`¨z±¡µ¢´£`±¨r¥±# ®°¦B¦¨z¦¡<¦®°Ñ¦µ¯I® îÒï ² XͰ¯I¦t`£`±£`¦ä¥±¦ §Y¯¤¢t®«Ã¢t¨z¡µ# ¢t¨z¨Ã¢â£`¦t¡N¢t£¤¢ ØÉ² V¢t°Ã¢t¡<¦ Á1¬`z`£`*¢ ¥±¦t`z£`±®¢t®h¨Ã¢Í£`¦¡µ¢t`£¤ ¢ }#ØÉÀS¥±¦`h§ ¨z¦· ¬`£`z¦ £`¥±¢t*`¦o¢t¤¢t¨zz z¥±Q² t. G\KIFQ h GJI"K[D>G\T T\P<E,EHD"eHPdG\Q EHP<eHP@UHU.IFE.DIFTJT_W SXXRP@Q h G]L^P r h G XRP@e Z QRI h G]U.L Z U.U.GJD"Q
(72) PdI"X
(73) X
Documents relatifs
siderare il caso in cui i coefficienti di f (z) dipendano da dati sperimentali di- versi, ciascuno dei quali raggiungibile con diversa approssimazione. Reale di
conoscono i punti, del contorno, dove la funzione f (x , y) assume valori in- tieri, o, meglio, valori multipli intieri (li una assegnata costante k ; ma
FELD H EI M: Équations intégrales pour les polynomes d’ Hermite à une et plusieurs variables, pour les polynomes de Laguerre, et pour les fonctions hypergéométriques
Diamo infine alcune maggiorazioni relative alle medie (C, 1) delle serie di FOURIER, e delle loro coniugate, delle funzioni Lip a in due o più variabili
definizione estesa alle funzioni di due variabili non sembra porti alla classe delle funzioni a variazione doppia finita (estensione formale della classica
soddisfano alle condizioni richieste dai teoremi dei ~~. Essa in qualunque campo finito che non comprende Forigine è prende nell’intorno dell’ origine anche valori
che per le equazioni caratteristiche delle funzioni jacobiane può anche scriversi :. E poichè sappiamo dalla teoria delle Funzioni ellit- t che
L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les
CHICCO, Dirichlet problem for a class of linear second order elliptic partial differential equations with discontinuous coefficients, Ann. CHICCO, Principio di
L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les
L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les
caso particolare di due variabili risulta continua nel suo domi- nio di definizione ~). GAGLIARDO, Problema al contorino per equazioni differenziali lineari di tipo
ellittica in un certo dominio ~5. B80~1’DER, Strongly ettiptic systems of differential equations, Contributions to the tlieory of partial differential
1. TIBALDO, sulla diffei-enziabiuta asintotica quasi regolare delle di tre variabiti. LODIGIANI, Sulla differenziabilità asintotica regotare delle funzioni di
tr°e 1;ariabiH. [Rendiconti del Seminario Matematico dell’Università di Padova, Vol. SCORZA DRAGONI ; I Un teorema s2ctle funzioni continue ri- spetto ad e misurabili
bili per S movimenti tali che il moto assoluto di ognuno dei due corpi sia rotatorio uniforme- denotiamo con (Ù2 le velo- cità angolari di S~ e rispettivamente
alle variabili separatamente si possa estrarre una successione che converga quasi uniformemente in modo regolare.. Detto criterio si ottiene facilmente con
L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les
riuscendo le derivate parziali prime della u assolutamente continue, secondo quanto segue. anche, in particolare, dalle considerazioni del
http://www.numdam.org/.. ZWIRNER: I Su un pooblema di valori al contorno per equazioni differenziali del secondo ordine [Rendiconti del Seminario Matematico della R..
purchè, beninteso, la funzione alla quale vengono applicati questi operatori soddisfi a quelle condizioni per cui è lecito invertire l’ ordine delle derivazioni
successione convergente uniformemente, in tale campo, verso un limite finito (che risulta allora una funzione olomorfa), oppure3. verso l’infinito
dei primi tre ordini, limitate, i secondi membri delle equazioni parametriche del contorno stesso, e derivate dei primi due or- dini, anche limitate, la funzione