• Aucun résultat trouvé

DENSITY OF STATES IN THE GAP OF a-As2Se3 BY PHOTOCURRENT TRANSIENT SPECTROSCOPY

N/A
N/A
Protected

Academic year: 2021

Partager "DENSITY OF STATES IN THE GAP OF a-As2Se3 BY PHOTOCURRENT TRANSIENT SPECTROSCOPY"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220739

https://hal.archives-ouvertes.fr/jpa-00220739

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DENSITY OF STATES IN THE GAP OF a-As2Se3 BY PHOTOCURRENT TRANSIENT SPECTROSCOPY

D. Monroe, J. Orenstein, M. Kastner

To cite this version:

D. Monroe, J. Orenstein, M. Kastner. DENSITY OF STATES IN THE GAP OF a-As2Se3 BY

PHOTOCURRENT TRANSIENT SPECTROSCOPY. Journal de Physique Colloques, 1981, 42 (C4),

pp.C4-559-C4-562. �10.1051/jphyscol:19814121�. �jpa-00220739�

(2)

DENSITY OF STATES I N THE GAP OF a-As2Se3 BY PHOTOCURRENT TRANSIENT SPECTROSCOPY

*

D.

onr roe:

J. Orenstein and ++ M. Kastner MIT, Cambridge, MA, U.S.A.

Abstract.- Dispersive photocurrent in a-As2Se3, for T ~ ~ O O K , provides a measure of the density of localized states near the mobility edge. The power law transients correspond to a density of states which is exponential,

g(~)=exp ( - E / ~ T ~ )

,

with T .L 500K. Recent measurements below 200K show deviations from the high temperature behavior. Possible explanations are discussed.

The transport properties of amorphous semiconductors are complicated by the in- teraction of the carriers with a large number of localized states. As a result, the mobility, as measured by either time-of-flight (TOP) or transient photocurrent (PC) experiments, is time-dependent (dispersive). Under favorable circumstances, however, such as those found in a - ~ s ~ s e ~ l . a n d a - ~ i : ~ * , the current is simply related to the density of states (DOS) and can m fact be inverted to give the form of the DOS.

The familiar theories of dispersive transport3 are quite complex because they aim to treat both dispersion due to multiple trapping (MT) in states distributed in energy and dispersion due to hopping with a distribution of trap separations. The MT case yields to a much simpler and more physically direct analysis4, however, be- cause each trap interacts only with the transport states (above the mobility edge) and not with other traps. Actually, at finite temperatures, a high density of

"traps" may in fact serve as transport states, and in this case the meaning of the

"edge" is somewhat altered. In MT one considers only transfers between transport states and individual traps: (1) thermal excitation of carriers above the edge, with a rate V(E)=Vo(E) exp(-E/~T)

,

and (2) trapping, with a rate per trap of Vo(E) (n(t)/

Nc), where n(t) is the number of carriers above the edge, and Nc is the number of transport states within kT of the edge. Carriers which are close to the edge are quickly thermally excited and may be retrapped anywhere in energy, whereas deeper carriers stay trapped. As time goes on, more and more carriers are trapped deep in energy, and the number excited to the edge, which are responsible for transport, goes down. The dispersive transport simply reflects the slow process of thermali- zation of the carriers in the traps.

A moderate distribution of energies, even for constant vo(E), gives rise to an exponentially broad distribution of release rates. At a given time delay after the initial carrier injection (we use a lOns dye laser pulse), there are two types of traps: shallow traps, with-V(E)t>>l, which are in equilibrium with the transport states, and deep traps, with V(E)t<<l, which have been filled by trapping but not emptied. The shallow traps have a Fermi distribution function, the same Fermi func- tion which describes the occupation of the transport states. The deep traps are occupied only to the extent that mobile carriers have fallen into them since the initial excitation. These two regions are separated by a demarcation energy E

d at which the excitation rate is comparable to the time delay (V(Ed)t=l).

The PC data for As2Se3 can be fit assuming that V. is only weakly dependent on energy (with a value around 1012s-l), and that the W S is exponential: g (3) =

(NL/kTo)exp(-E/kTo), with T0.L550K. NL is the total number of Xocalized states only if this distribution extends all the way to the edge. For this DOS, or any DOS

*

This work was supported by National Science Foundation Grants Nos. DMR 78-00836 and DMR 78-24135.

on

Monroe is supported by an NSF Fellowship.

+ +

Present address: Bell Laboratories, Murray ill, New Jersey 01974

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19814121

(3)

JOURNAL DE PHYSIQUE

FIGURE 1. Amorphous As2Se3 i s e x c i t e d

10" I

0-•

I

G 3

10-'

T I M E D E L A Y ( s e c 1

w i t h a lOns p u l s e from a t u n a b l e dye l a s e r , A=700nm, p u l s e energy %2-lOuJ.

lOOOV i s a p p l i e d a c r o s s c o p l a n a r e l e c - t r o d e s , 2mm a p a r t . Shown h e r e i s t h e p h o t o c u r r e n t a t t h e s p e c i f i e d time de- l a y a f t e r t h e e x c i t i n g l a s e r p u l s e , normalized t o t h e p u l s e energy. A s t h e temperature g e t s below 200K, t h e s l o p e becomes s i g n i f i c a n t l y s t e e p e r t h a n 1-T/To.

which i s r a p i d l y d e c r e a s i n g , most of t h e c a r r i e r s w i l l be a t Ed. ~ o s t of t h e c a r - r i e r s i n shallow s t a t e s a r e a t Ed ( f o r T<To) because o f t h e Boltzmann f a c t o r . Most of t h e deep s t a t e s a r e a t Ed because t h e i r number f o l l o w s t h e DOS. Thus t h e r e i s a p a c k e t of c a r r i e r s , l o c a l i z e d i n energy, which moves through t h e DOS according t o Ed=kTkn (Vat)

.

The c u r r e n t i s p r o p o r t i o n a l t o t h e number of c a r r i e r s i n t r a n s p o r t s t a t e s , n ( t ) . T h i s i s j u s t t h e number of c a r r i e r s (almost a l l of them) a t Ed, m u l t i p l i e d by t h e a p p r o p r i a t e Boltzmann f a c t o r and a degeneracy f a c t o r , -Nc/g(Ed). ~ h u s n(t)=exp(-Ed/

kT) /g(Ed)

.

For our e x p o n e n t i a l DOS, t h i s g i v e s i ( t ) a t - l * , where C1=T/To. T h i s simple p i c t u r e was confirmed by PC measurements1 f o r T>200K which gave e x c e l l e n t agreement w i t h t h e p r e d i c t e d s l o p e of t h e l o g i v e r s u s l o g t p l o t , a s a f u n c t i o n of temperature. We a r e p r e s e n t l y t r y i n g t o f i n d t h e source of t h e a p p a r e n t d i s c r e p a n c y between t h i s r e s u l t and t h e TOF r e s u l t s , which were i n t e r p r e t e d a s having a tempera- t u r e independent s l o p e .

These h i g h temperature PC measurements g i v e t h e DOS a t e n e r g i e s kTkn(Vot) from about -35 t o .6eV from t h e edge. ( T h i s i s t h e d e n s i t y of h o l e t r a p s , s i n c e TOF measurements show t h a t e l e c t r o n s a r e immobile i n a-As2Se3.) To extend t h e DOS de- t e r m i n a t i o n t o lower e n e r g i e s we r e p l a c e d t h e l o a d r e s i s t o r w i t h a more e l e g a n t cur- r e n t t o v o l t a g e c o n v e r t e r t o i n c r e a s e s e n s i t i v i t y and made measurements below 200K.

The d a t a , shown i n F i g u r e 1, d e v i a t e s i g n i f i c a n t l y from t h e u=T/To behavior. The c u r v e s a r e n o t i c a b l y s t e e p e r (more d i s p e r s i v e ) t h a n one would p r e d i c t from t h e s i m - p l e t h e o r y . A t 77K t h e c u r v e s a r e even s t e e p e r and may h a - ~ e a s l o p e n e a r -2, b u t t h e d a t a a r e t o o n o i s y t o know, o r even t o p l o t on t h e f i g u r e . The d e v i a t i o n from p r e v i o u s behavior i s shown most d r a m a t i c a l l y i n e g u r e 2. ~ i e d j e ~ h a s seen s i m i l a r r e s u l t s f o r a-Si:H as t h e t e m p e r a t u r e i s lowered, w i t h C1 going t o z e r o a t roughly 90K.

(4)

f

T H I S W O R K a s a f u n c t i o n of sample tempera- t u r e . Data down t o 200K show e x c e l l e n t agreement w i t h a s l o p e - ( l - a ) , w i t h a=T/To. The 77K d a t a could n o t be f i t w i t h o u t throwing o u t many n o i s y p o i n t s , and i s t h e r e f o r e p r e j u d i c e d .

There a r e two ways t o understand t h e s e r e s u l t s . The f i r s t p o s s i b l e e x p l a n a t i o n i s t h a t t h e model i s complete a s s t a t e d , b u t t h e simple f u n c t i o n a l dependencies on energy could be d i f f e r e n t c l o s e r t h a n .3eV t o t h e edge. T h i s means t h a t e i t h e r (1) t h e DOS i s becoming f l a t o r even developing a gap n e a r t h e edge, o r ( 2 ) t h e e x c i - t a t i o n p r e f a c t o r v ( E ) i s v a r y i n g i n some e x p o n e n t i a l l y r a p i d f a s h i o n , presumably due t o an energy dependent b a r r i e r t o t r a p p i n g . E i t h e r of t h e s e would r e f l e c t i n - t e r e s t i n g changes i n t h e s t a t e s n e a r t h e m o b i l i t y edge, f o r example, changes due t o t h e much s t r o n g e r e l e c t r o n phonon coupling of l o c a l i z e d s t a t e s . The o t h e r p o s s i b l e e x p l a n a t i o n i s t h a t a new conduction p r o c e s s i s becoming i m p o r t a n t . The obvious p o s s i b i l i t y h e r e i s hopping d i r e c t l y between l o c a l i z e d s t a t e s . C e r t a i n l y , a t very low t e m p e r a t u r e s , no c a r r i e r s would be e x c i t e d t o t h e t r a n s p o r t s t a t e s , and a l l cur- r e n t must b e due t o hopping. Before hopping becomes t h e p r i n c i p a l mode of conduc- t i o n however, it may s t i l l b e v k i b l e by i t s e f f e c t on t h e t h e r m a l i z a t i o n of c a r - r i e r s , a l t h o u g h t h e c u r r e n t i s s t i l l dominated by c a r r i e r s e x c i t e d t o t h e edge. A s i n g l e c a r r i e r e x c i t e d t o t h e edge can g e n e r a t e much more c u r r e n t t h a n a

s i n g l e hop. I f t h i s t h e r m a l i z a t i o n d u e t o hopping o c c u r s f a s t e r t h a n t h a t due t o e x c i t a t i o n t o t h e band, t h e demarcation energy w i l l s h i f t f a s t e r t h a n p r e d i c t e d , and t h e c u r r e n t w i l l f a l l f a s t e r a s w e l l . A n a l t e r n a t e t h e r m a l i z a t i o n was a l r e a d y sug- g e s t e d by t h e s h i f t o f t h e photoinduced a b s o r p t i o n spectrum a t 20K.' A t h i g h tem- p e r a t u r e s , t h e t r a n s i e n t PA spectrum s h i f t s t o h i g h e r (deeper) e n e r g i e s l i k e kTkn(vot) a s t h e c a r r i e r p a c k e t t h e r m a l i z e s , b u t a t 20K t h e s h i f t , w h i l e s m a l l e r t h a n a t h i g h t e m p e r a t u r e s , i s g r e a t e r t h a n t h e kTRn(vot) s h i f t p r e d i c t e d from t h e MT model.

A t p r e s e n t t h e low temperature d a t a i s n o t good enough t o a l l o w us t o d i s t i n - g u i s h between t h e s e two p o s s i b l i t i e s , e i t h e r one of which would b e q u i t e i n t e r e s t i n g . Whatever t h e answer t o t h i s new p u z z l e , however, t h e simple, p h y s i c a l i n s i g h t pro- v i d e d by t h e MT model i s s u f f i c i e n t t o e x p l a i n a l l o f t h e h i g h e r temperature d a t a . It h a s a l s o b e e n s u c c e s s f u l l y used t o u n d e r s t a n d recombination, a s w e l l a s t h e TOF t r a n s i t t i m e , i n a simple p h y s i c a l way8.

(5)

JOURNAL DE PHYSIQUE

REFERENCES

Orenstein, J. and Marc Kastner, published in May 25, 1981 Phys. Rev. Lett.

Tiedje, T. and A. Rose, to be published in Solid State Corn.

Scher, Harvey and Elliot W. Montroll, Phys. Rev. B= (1975) 2455.

Schmidlin, F. W., Phys. Rev. B e (1977) 2362.

~oolandi, J., Phys. Rev. B E (1977) 4466.

pfister, G. and H. Scher, Adv. Phys.

3

(1978) 747.

Reported at March meeting of American Physical Society, Phoenix, Arizona, USA, March, 1981.

Orenstein, J., Ph.D. Thesis, Massachusetts Institute of Technology (1981).

Orenstein, J. and Marc Kastner, to be published.

Références

Documents relatifs

3 - G - V curves at # frequencies As the frequency is increased the value of the capacitance per unit area obtained as a function of the applied voltage decreases and

You are right, but the equilibrium concentration of such a species (in a system for which hopping but not turning is possible) is, based on statistics plus relative proton and

&lt;v 0.5) observed in some vitreous systems/l ,2/ cannot be interpreted by a constant density of two level defects /3,4/ leading to a linear temperature depen- dence. Here we

This new method which offers at least one order of magnitude enhancement over conventional photoconductivity technique is used to determine the optical absorption of a a-Si:H

Abstract.- A basic ideaof ICTS (Isothermal Capacitance Transient Spectroscopy) fora system of continuously-distributed gap state and experimental data by the ICTS applied

Cluster analysis revealed five distinct clusters: Entitled Narcissist, Entitled Non-Narcissist, Unobtrusive Entitlement, Not Entitled, and Performance Avoidant.. The

[r]

Cette désignation a pour objectif, si nécessaire, d’associer un proche aux choix thérapeutiques que pourraient être amenés à faire les médecins qui vous prendront