• Aucun résultat trouvé

Constructive Tensor Field Theory through an example

N/A
N/A
Protected

Academic year: 2021

Partager "Constructive Tensor Field Theory through an example"

Copied!
82
0
0

Texte intégral

(1)

HAL Id: hal-02075357

https://hal.archives-ouvertes.fr/hal-02075357

Submitted on 21 Mar 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Constructive Tensor Field Theory through an example

Fabien Vignes-Tourneret

To cite this version:

(2)

Constructive Tensor Field Theory

through an example

Vincent Rivasseau1 Fabien Vignes-Tourneret2 1Université Paris-Saclay

(3)

Outline

Random tensors, random spaces Loop Vertex Expansion

(4)

Random tensors, random spaces

Random tensors, random spaces

Why? How?

(5)

Random surfaces

2D quantum gravity and matrix models:

• Matrix models provide a theory of random discrete surfaces weighted by a discretized Einstein-Hilbert action.

Evidence for matrices being the right discretization of 2D quantum gravity.

• In the last 10 years, much progress from probabilists:

Random metric surfaces (e.g. Brownian map).

• Universal limit of large planar maps.

(6)

Why tensor fields?

1.

Generalize matrix models to higher dimensions

• w.r.t. their symmetry properties

• provide a theory of random spaces

(7)

Why tensor fields?

1.

Generalize matrix models to higher dimensions

• w.r.t. their symmetry properties

• provide a theory of random spaces

(8)

Invariant actions

Symmetry

Consider T , T : ZD → C, complex rank D tensors with no symmetry.

Matrix models: invariant under (at most) two copies of U(N). Tensor models (rank D): invariant under D copies of U(N).

Tn1n2···nD −→ X m Un(1)1m1U (2) n2m2· · · U (D) nDmDTm1m2···mD

(9)

Invariant actions

Symmetry

Consider T , T : ZD → C, complex rank D tensors with no symmetry.

Matrix models: invariant under (at most) two copies of U(N). Tensor models (rank D): invariant under D copies of U(N).

Tn1n2···nD−→ X m Un(1)1m1U (2) n2m2· · · U (D) nDmDTm1m2···mD

(10)

Invariant actions

Symmetry

Consider T , T : ZD → C, complex rank D tensors with no symmetry.

Matrix models: invariant under (at most) two copies of U(N). Tensor models (rank D): invariant under D copies of U(N).

Tn1n2···nD−→ X m Un(1)1m1U (2) n2m2· · · U (D) nDmDTm1m2···mD

Invariants as D-coloured graphs

1 2 4 3

(11)

Invariant actions

Symmetry

Consider T , T : ZD → C, complex rank D tensors with no symmetry.

Matrix models: invariant under (at most) two copies of U(N). Tensor models (rank D): invariant under D copies of U(N).

Tn1n2···nD−→ X m Un(1)1m1U (2) n2m2· · · U (D) nDmDTm1m2···mD

Invariants as D-coloured graphs (bipartite D-reg. properly edge-coloured)

1 2 4 3

(12)

Invariant actions

Symmetry

Consider T , T : ZD → C, complex rank D tensors with no symmetry.

Matrix models: invariant under (at most) two copies of U(N). Tensor models (rank D): invariant under D copies of U(N).

Tn1n2···nD−→ X m Un(1)1m1U (2) n2m2· · · U (D) nDmDTm1m2···mD

Invariants as D-coloured graphs (bipartite D-reg. properly edge-coloured)

(13)

Invariant actions

Symmetry

Consider T , T : ZD → C, complex rank D tensors with no symmetry.

Matrix models: invariant under (at most) two copies of U(N). Tensor models (rank D): invariant under D copies of U(N).

Tn1n2···nD−→ X m Un(1)1m1U (2) n2m2· · · U (D) nDmDTm1m2···mD

Invariants as D-coloured graphs (bipartite D-reg. properly edge-coloured)

(14)

Invariant actions

Symmetry

Consider T , T : ZD → C, complex rank D tensors with no symmetry.

Matrix models: invariant under (at most) two copies of U(N). Tensor models (rank D): invariant under D copies of U(N).

Tn1n2···nD−→ X m Un(1)1m1U (2) n2m2· · · U (D) nDmDTm1m2···mD

Invariants as D-coloured graphs (bipartite D-reg. properly edge-coloured)

(15)

Invariant actions

Symmetry

Consider T , T : ZD → C, complex rank D tensors with no symmetry.

Matrix models: invariant under (at most) two copies of U(N). Tensor models (rank D): invariant under D copies of U(N).

Tn1n2···nD−→ X m Un(1)1m1U (2) n2m2· · · U (D) nDmDTm1m2···mD

Invariants as D-coloured graphs (bipartite D-reg. properly edge-coloured)

(16)

Invariant actions

Symmetry

Consider T , T : ZD → C, complex rank D tensors with no symmetry.

Matrix models: invariant under (at most) two copies of U(N). Tensor models (rank D): invariant under D copies of U(N).

Tn1n2···nD−→ X m Un(1)1m1U (2) n2m2· · · U (D) nDmDTm1m2···mD

Invariants as D-coloured graphs (bipartite D-reg. properly edge-coloured)

(17)

Invariant actions

Symmetry

Consider T , T : ZD → C, complex rank D tensors with no symmetry.

Matrix models: invariant under (at most) two copies of U(N). Tensor models (rank D): invariant under D copies of U(N).

Tn1n2···nD−→ X m Un(1)1m1U (2) n2m2· · · U (D) nDmDTm1m2···mD

Invariants as D-coloured graphs (bipartite D-reg. properly edge-coloured)

(18)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

• Feynman graphs

(19)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

• Feynman graphs

= (D + 1)-coloured graphs = D-Triang. spaces

1 1 2

0 0

(20)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

• Feynman graphs

= (D + 1)-coloured graphs = D-Triang. spaces

1 1 2

0 0

(21)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

• Feynman graphs =(D + 1)-coloured graphs

= D-Triang. spaces

1 1 2

0 0

(22)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

(23)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

Feynman graphs = (D + 1)-coloured graphs=D-Triang. spaces

(24)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

Feynman graphs = (D + 1)-coloured graphs=D-Triang. spaces

(25)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

Feynman graphs = (D + 1)-coloured graphs=D-Triang. spaces

(26)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

Feynman graphs = (D + 1)-coloured graphs=D-Triang. spaces

(27)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

Feynman graphs = (D + 1)-coloured graphs=D-Triang. spaces

(28)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

Feynman graphs = (D + 1)-coloured graphs=D-Triang. spaces

(29)

Invariant actions

Feynman graphs

• Action of a tensor model

S(T , T ) = T · T +X

B∈I

gBTrB[T , T ],

I⊂ {D-coloured graphs of order > 4} interaction vertices

Feynman graphs = (D + 1)-coloured graphs=D-Triang. spaces

(30)

Loop Vertex Expansion

Random tensors, random spaces Loop Vertex Expansion

Why? How?

(31)

Loop Vertex Expansion

Motivations

LVE = main constructive tool for matrices and tensors

• Originally designed for random matrices. [Rivasseau 2007]

• Initial goals:

1. Constructive φ∗44 ,

2. Simplify Bosonic constructive theory.

1. Classical constructive techniques unsuited to matrices/tensors.

(32)

Loop Vertex Expansion

Motivations

LVE = main constructive tool for matrices and tensors

• Originally designed for random matrices. [Rivasseau 2007]

• Initial goals:

1. Constructive φ∗44 ,

2. Simplify Bosonic constructive theory.

1. Classical constructive techniques unsuited to matrices/tensors.

(33)

Loop Vertex Expansion

Motivations

LVE = main constructive tool for matrices and tensors

• Originally designed for random matrices. [Rivasseau 2007]

• Initial goals:

1. Constructive φ∗44 ,

2. Simplify Bosonic constructive theory.

1. Classical constructivetechniquesunsuited to matrices/tensors.

(34)

Loop Vertex Expansion

Motivations

LVE = main constructive tool for matrices and tensors

• Originally designed for random matrices. [Rivasseau 2007]

• Initial goals:

1. Constructive φ∗44 ,

2. Simplify Bosonic constructive theory.

1. Classical constructive techniques unsuited to matrices/tensors.

n + 2 faces at order n

(35)

Loop Vertex Expansion

Motivations

LVE = main constructive tool for matrices and tensors

• Originally designed for random matrices. [Rivasseau 2007]

• Initial goals:

1. Constructive φ∗44 ,

2. Simplify Bosonic constructive theory.

1. Classical constructive techniques unsuited to matrices/tensors.

4n indices

(36)

Loop Vertex Expansion

Motivations

LVE = main constructive tool for matrices and tensors

• Originally designed for random matrices. [Rivasseau 2007]

• Initial goals:

1. Constructive φ∗44 ,

2. Simplify Bosonic constructive theory.

1. Classical constructive techniques unsuited to matrices/tensors.

2n + 2 free indices

(37)

Loop Vertex Expansion

Motivations

LVE = main constructive tool for matrices and tensors

• Originally designed for random matrices. [Rivasseau 2007]

• Initial goals:

1. Constructive φ∗44 ,

2. Simplify Bosonic constructive theory.

1. Classical constructive techniques unsuited to matrices/tensors.

(38)

Loop Vertex Expansion

Motivations

LVE = main constructive tool for matrices and tensors

• Originally designed for random matrices. [Rivasseau 2007]

• Initial goals:

1. Constructive φ∗44 ,

2. Simplify Bosonic constructive theory.

1. Classical constructive techniques unsuited to matrices/tensors.

(39)

Loop Vertex Expansion

Motivations

LVE = main constructive tool for matrices and tensors

• Originally designed for random matrices. [Rivasseau 2007]

• Initial goals:

1. Constructive φ∗44 ,

2. Simplify Bosonic constructive theory.

1. Classical constructive techniques unsuited to matrices/tensors.

(40)

Loop Vertex Expansion

Motivations

LVE = main constructive tool for matrices and tensors

• Originally designed for random matrices. [Rivasseau 2007]

• Initial goals:

1. Constructive φ∗44 ,

2. Simplify Bosonic constructive theory.

1. Classical constructive techniques unsuited to matrices/tensors.

(41)

The BKAR forest formula

Fix an integer n > 2.

f a function of n(n−1)2 variables x`, sufficiently differentiable. • Kn, complete graph on {1, 2, . . . , n}. #E (Kn) = n(n−1)2 Then, f (1, 1, . . . , 1) =X F Z dwFFf (XF(wF)) where

the sum is over spanning forests of Kn, • R dwF:=Q`∈E (F ) R1 0 dw`, • F :=Q`∈E (F ) ∂x`, • XF = (x`F)`∈E (Kn) with x F

(42)

The BKAR forest formula

Fix an integer n > 2.

f a function of n(n−1)2 variables x`, sufficiently differentiable. • Kn, complete graph on {1, 2, . . . , n}. #E (Kn) = n(n−1)2 Then, f (1, 1, . . . , 1) =X F Z dwFFf (XF(wF)) where

the sum is over spanning forests of Kn, • R dwF:=Q`∈E (F ) R1 0 dw`, • F :=Q`∈E (F ) ∂x`, • XF = (x`F)`∈E (Kn) with x F

(43)

Loop Vertex Expansion

Analyticity of the free energy of φ4 0 Z (λ) = Z R eλ2φ 4 d µ(φ), d µ(φ) =d φ 2πe −1 2φ 2

Theorem

log Z is analytic in the cardioid domainλ ∈ C : |λ| < 1 2cos

2(1

2arg λ) .

Proof. LVE is done in 3 steps: 1. Intermediate field representation,

2. Replication of fields,

(44)

Loop Vertex Expansion

Analyticity of the free energy of φ4 0 Z (λ) = Z R eλ2φ 4 d µ(φ), d µ(φ) =d φ 2πe −1 2φ 2

Theorem

log Z is analytic in the cardioid domainλ ∈ C : |λ| < 1 2cos

2(1

2arg λ) .

Proof. LVE is done in 3 steps: 1. Intermediate field representation,

2. Replication of fields,

(45)

Loop Vertex Expansion

Analyticity of the free energy of φ4 0

(46)

Loop Vertex Expansion

Analyticity of the free energy of φ4 0

1. Intermediate field representation:

(47)

Loop Vertex Expansion

Analyticity of the free energy of φ4 0

1. Intermediate field representation:

(48)

Loop Vertex Expansion

Analyticity of the free energy of φ4 0

1. Intermediate field representation:

(49)

Loop Vertex Expansion

Analyticity of the free energy of φ4 0 log Z =X n>1 1 n! X T ⊂Kn Z dwT Z h Y `∈E (T ) ∂σi (`) ∂σj(`) n Y i =1 V (σi) i d µCT(w )(~σ) =1 2 X n>1 (−λ/2)n−1 n! X T ⊂Kn Z dwT Z h n Y i =1 (di− 1)! (1 − ıσiλ)di i d µCT(w )(~σ). Using 1 − ıσλ >cos( 1 2arg λ), we get | log Z | 61 2 ∞ X n=1 1 n!  |λ| 2 cos2(1 2arg λ) n−1 X T ⊂Kn n Y i =1 (di− 1)! 6 2 ∞ X n=1  2|λ| cos2(1 2arg λ) n−1

which is convergent for all λ ∈ C such that |λ| <1 2cos

2(1

(50)

Loop Vertex Expansion

Analyticity of the free energy of φ4 0 log Z =X n>1 1 n! X T ⊂Kn Z dwT Z h Y `∈E (T ) ∂σi (`) ∂σj(`) n Y i =1 V (σi) i d µCT(w )(~σ) =1 2 X n>1 (−λ/2)n−1 n! X T ⊂Kn Z dwT Z h n Y i =1 (di− 1)! (1 − ıσiλ)di i d µCT(w )(~σ). Using 1 − ıσλ >cos( 1 2arg λ), we get | log Z | 61 2 ∞ X n=1 1 n!  |λ| 2 cos2(1 2arg λ) n−1 X T ⊂Kn n Y i =1 (di− 1)! 6 2 ∞ X n=1  2|λ| cos2(1 2arg λ) n−1

which is convergent for all λ ∈ C such that |λ| <1 2cos

2(1

(51)

An example at work

Random tensors, random spaces Loop Vertex Expansion

An example at work

(52)

The T

44

field theory

• Tensor fields: T : Z4→ C, Tn, Tn with n, n ∈ Z4. • Free action: • Interactions: V (T , T ) = g2 4 X c=1 Vc(T , T ), Vc(T , T ) = c T T T T

• Formal partition function:

Z0(g ) = Z

eg2 P

(53)

The T

44

field theory

• Tensor fields: T : Z4→ C, Tn, Tn with n, n ∈ Z4. • Free action: d µC(T , T ) =  Y n,n dTnd Tn 2i π  det(C−1) e− P n,nTnC −1 nn Tn, Cn,n= (16jmax)nn n2+ 1 δn,n, n 2 := n12+ n 2 2+ n 2 3+ n 2 4, 16jmax= 1n2+16M2jmaxδn,n. • Interactions: V (T , T ) = g2 4 X c=1 Vc(T , T ), Vc(T , T ) = c T T T T

• Formal partition function:

Z0(g ) = Z

eg2 P

(54)

The T

44

field theory

• Tensor fields: T : Z4→ C, Tn, Tn with n, n ∈ Z4. • Free action: Cn,n= δn,n (16jmax)nn n2+ 1 , n 2 := n21+ n 2 2+ n 2 3+ n 2 4. • Interactions: V (T , T ) = g2 4 X c=1 Vc(T , T ), Vc(T , T ) = c T T T T

• Formal partition function:

Z0(g ) = Z

eg2 P

(55)

The T

44

field theory

• Tensor fields: T : Z4→ C, Tn, Tn with n, n ∈ Z4. • Free action: Cn,n= δn,n (16jmax)nn n2+ 1 , n 2 := n21+ n 2 2+ n 2 3+ n 2 4. • Interactions: V (T , T ) = g2 4 X c=1 Vc(T , T ), Vc(T , T ) = c T T T T

• Formal partition function:

Z0(g ) = Z

eg2 P

(56)

The T

44

field theory

Perturbative renormalisation

Proposition

T4

4 is renormalisable to all orders of perturbation.

Power counting similar to the one of φ4 3.

• 2 divergent 2-point graphs:

• 7 divergent melonic vacuum graphs

• 3 divergent non melonic vacuum graphs:

N1

c c

(57)

The T

44

field theory

Perturbative renormalisation

Proposition

T4

4 is renormalisable to all orders of perturbation.

Power counting similar to the one of φ4 3.

• 2 divergent 2-point graphs:

• 7 divergent melonic vacuum graphs

• 3 divergent non melonic vacuum graphs:

N1

c c

(58)

The T

44

field theory

Perturbative renormalisation

Proposition

T4

4 is renormalisable to all orders of perturbation.

Power counting similar to the one of φ4 3.

• 2 divergent 2-point graphs:

c Mc 1 c Mc 2

• 7 divergent melonic vacuum graphs

• 3 divergent non melonic vacuum graphs:

N1

c c

(59)

The T

44

field theory

Perturbative renormalisation

Proposition

T4

4 is renormalisable to all orders of perturbation.

Power counting similar to the one of φ4 3.

• 2 divergent 2-point graphs: Mc1, Mc2 • 7 divergent melonic vacuum graphs

• 3 divergent non melonic vacuum graphs:

N1

c c

(60)
(61)

The T

44

field theory

Perturbative renormalisation

Proposition

T4

4 is renormalisable to all orders of perturbation.

Power counting similar to the one of φ4 3.

• 2 divergent 2-point graphs: Mc1, Mc2

• 7 divergent melonic vacuum graphs: Vi, i = 1, 2, . . . , 7 • 3 divergent non melonic vacuum graphs:

N1

c c

(62)

The T

44

field theory

Analyticity

• Renormalised partition function:

Zjmax(g ) = N Z eg2 P cVc(T ,T )+T · T P G∈M (−g )|G| SG δG  d µC(T , T ), M = {Mc 1, M c 2, c = 1, 2, 3, 4} ,

log N = (finite) sum of the counterterms of the divergent vacuum connected graphs.

Theorem (Rivasseau, V.-T. 2017)

There exists ρ > 0 such that limjmax→∞log Zjmax(g ) is analytic in the cardioid domain defined by |arg g | < π and |g | < ρ cos2(1

(63)

The T

44

field theory

Analyticity

• Renormalised partition function:

Zjmax(g ) = N Z eg2 P cVc(T ,T )+T · T P G∈M (−g )|G| SG δG  d µC(T , T ), M = {Mc 1, M c 2, c = 1, 2, 3, 4} ,

log N = (finite) sum of the counterterms of the divergent vacuum connected graphs.

Theorem (Rivasseau, V.-T. 2017)

There exists ρ > 0 such that limjmax→∞log Zjmax(g ) is analytic in the cardioid domain defined by |arg g | < π and |g | < ρ cos2(1

(64)

The general strategy

0. Renormalised partition function:

Zjmax(g ) = N Z eg 2 P cVc(T ,T )+T · T P G∈M (−g )|G| SG δG  d µC(T , T ).

1. Intermediate field representation:

(65)

The general strategy

0. Renormalised partition function:

Zjmax(g ) = N Z eg 2 P cVc(T ,T )+T · T P G∈M (−g )|G| SG δG  d µC(T , T ). 1. Intermediate field representation: σc ∈ HermMjmax, c = 1, 2, 3, 4

(66)

The general strategy

0. Renormalised partition function:

Zjmax(g ) = N Z eg 2 P cVc(T ,T )+T · T P G∈M (−g )|G| SG δG  d µC(T , T ). 1. Intermediate field representation: σc ∈ HermMjmax

Zjmax(g ) = N eδt Z e− Tr log(I −Σ)−ıλP c mTrcσcd ν I(~σ). 2. Renormalised action: Zjmax(g ) = Z

e− Tr log3(I −U)−Tr(D1Σ2)−λ22 :σ · Qσ:d ν I(~σ)

U = Σ + D1+ D2

D1= −λ2C1/2ArM1C1/2, D2= λ4C1/2ArM2C1/2 log3(I −U) = log(I −U) + U +U

(67)
(68)

The general strategy

0. Renormalised partition function:

Zjmax(g ) = N Z eg 2 P cVc(T ,T )+T · T P G∈M (−g )|G| SG δG  d µC(T , T ). 1. Intermediate field representation: σc ∈ HermMjmax

Zjmax(g ) = N eδt Z e− Tr log(I −Σ)−ıλP c mTrcσcd ν I(~σ). 2. Renormalised action: Zjmax(g ) = Z

(69)

The general strategy

(70)

The general strategy

0. Renormalised partition function:

Zjmax(g ) = N Z eg 2 P cVc(T ,T )+T · T P G∈M (−g )|G| SG δG  d µC(T , T ). 1. Intermediate field representation: σc ∈ HermMjmax

Zjmax(g ) = N eδt Z e− Tr log(I −Σ)−ıλP c mTrcσcd ν I(~σ). 2. Renormalised action: Zjmax(g ) = Z

(71)

The general strategy

4. Multiscale Loop Vertex Expansion: [Gurau, Rivasseau 2014] • 2 forest formulas on top of each other (2-jungle formula) • First, a Bosonic forest then a Fermionic one

log Zjmax(g ) = ∞ X n=1 1 n! X J tree jmax X j1=1 · · · jmax X jn=1 Z d wJ Z d νJJ hY B Y a∈B −χBjaWja(σa)χBjai • wJ = weakening parameters w`, ` ∈ E (J )

(72)

The general strategy

4. Multiscale Loop Vertex Expansion: [Gurau, Rivasseau 2014] • 2 forest formulas on top of each other (2-jungle formula) • First, a Bosonic forest then a Fermionic one

log Zjmax(g ) = ∞ X n=1 1 n! X J tree jmax X j1=1 · · · jmax X jn=1 Z d wJ Z d νJ J hY B Y a∈B −χBjaWja(σa)χBjai = ∞ X n=1 1 n! X J tree jmax X j1=1 · · · jmax X jn=1 Z d wJ Y B  Y a,b∈B a6=b (1 − δjajb)  IB IB= Z B Y a∈B Wja(σa) d νB= X G Z  Y a∈B e−Vja(~σa)A G(σ) d νB(σ)

(73)
(74)

The general strategy

Bosonic bounds |IB| 6 Z Y a∈B e2|Vja(~σa)|d ν B | {z } INP B , non-perturbative 1/2 X G Z |AG(σ)|2d νB | {z } IP B, perturbative 1/2 5. Non-perturbative bound:

Theorem

(75)

The general strategy

Bosonic bounds |IB| 6 Z Y a∈B e2|Vja(~σa)|d ν B | {z } INP B , non-perturbative 1/2 X G Z |AG(σ)|2d νB | {z } IP B, perturbative 1/2 6. Perturbative bound:

Theorem

Let B be a Bosonic block. Then there exists K ∈ R∗+ such that

IBP(G) 6 K|B|−1 (|B| − 1)!37/2

ρe(G) Y a∈B

(76)

The general strategy

0. Renormalised partition function

1. Intermediate field representation

2. Renormalised action

3. Multiscale decomposition

4. Multiscale Loop Vertex Expansion

5. Non-perturbative Bosonic bound

6. Perturbative Bosonic bound

(77)

The general strategy

0. Renormalised partition function

1. Intermediate field representation

2. Renormalised action

3. Multiscale decomposition

4. Multiscale Loop Vertex Expansion

5. Non-perturbative Bosonic bound

6. Perturbative Bosonic bound

(78)

Conclusion and perspectives

• Tensor field theory provides a combinatorial theory of random D-spaces.

• In the last 8 years, a lot of results with tensors:

1

N-expansion, perturbative and constructive renormalisation, continuum

limit of the dominant triangulations, double scaling limit, uniform random complexes etc.

Regarding T4

4, one could also prove Borel summability and analyticity of the connected correlation functions.

T54(just renormalisable, asymptotically free)

• New Loop Vertex Representation [Rivasseau 2017]

(79)

Conclusion and perspectives

• Tensor field theory provides a combinatorial theory of random D-spaces.

• In the last 8 years, a lot of results with tensors:

1

N-expansion, perturbative and constructive renormalisation, continuum

limit of the dominant triangulations, double scaling limit, uniform random complexes etc.

Regarding T4

4, one could also prove Borel summability and analyticity of the connected correlation functions.

T54(just renormalisable, asymptotically free)

• New Loop Vertex Representation [Rivasseau 2017]

(80)
(81)

Non-perturbative bounds

Theorem

For ρ small enough and for any value of the w interpolating parameters, IBNP= Z Y a∈B e2|Vja(~σa)|d ν B6 O(1)|B|eO(1)ρ 3/2|B| . Proof.

1. Expand each node:

e2|Vja|= pa X k=0 (2|Vja|) k k! + Z 1 0 dtja(1 − tja) pa(2|Vja|) pa+1 pa! e 2tja|Vja|.

2. Crude non-perturbative bound: (Quadratic bound)

Z Y a∈B e2|Vja(~σ a)| d νB6 K|B|eK 0ρMj1 .

3. Power counting (via quartic bound)beats both combinatorics and

(82)

Perturbative bound

Theorem

Let B be a Bosonic block. Then there exists K ∈ R∗+ such that

IBP(G) = Z |AG(σ)|2d νB6 K|B|−1 (|B| − 1)! 37/2 ρe(G) Y a∈B M−481ja.

AG(σ) depends on σ (essentially) through resolvents.

If not for resolvents, AG would be the amplitude of a convergent graph.

Références

Documents relatifs

On the evaluation of one-loop Feynman amplitudes in euclidean quantum field theory.. Annales

Annales de l’Institur Henri Poincare - Section A.. In section 2 we have shown that there exists a gauge that allows easy verification of unitarity; the work of ref. 7

using measurements of the displacement fields at macroscale and mesoscale on a single specimen submitted to a given external load at macroscale, requires new methods for identifying

Uniform Borel summability in the coupling constant has been proven for vector, matrix and tensor quartic models [Riv07; Mag+09; Gur13a; DGR14; GK15], based on the loop vertex

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In that case, attachment kinetics to the core and jog density are high enough for the vacancies to reach a local equilibrium all along the dislocation line and, therefore, the

We consider a random partition of the vertex set of an arbitrary graph that can be sampled using loop-erased random walks stopped at a random independent exponential time of parameter

We prove that for each n ∈ N , such a model has a unique equilibrium state and study in details the asymptotics of this equilibrium as n → ∞ : (I) the distribution of the mass of