• Aucun résultat trouvé

Effective photon mass by Super and Lorentz symmetry breaking

N/A
N/A
Protected

Academic year: 2021

Partager "Effective photon mass by Super and Lorentz symmetry breaking"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: insu-01400228

https://hal-insu.archives-ouvertes.fr/insu-01400228

Submitted on 30 Nov 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Effective photon mass by Super and Lorentz symmetry

breaking

Luca Bonetti, Luís R. dos Santos Filho, José A. Helayël-Neto, Alessandro

D.A.M. Spallicci

To cite this version:

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Effective

photon

mass

by

Super

and

Lorentz

symmetry

breaking

Luca Bonetti

a,b,c

,

Luís

R. dos Santos Filho

d

,

José

A. Helayël-Neto

d

,

Alessandro D.A.M. Spallicci

a,b,c,

aUniversitéd’Orléans,ObservatoiredesSciencesdel’UniversenrégionCentre(OSUC),UMS3116,1AruedelaFérollerie,45071Orléans,France bUniversitéd’Orléans,CollegiumSciencesetTechniques(COST),PôledePhysique,RuedeChartres,45100Orléans,France

cCentreNationaledelaRechercheScientifique(CNRS),LaboratoiredePhysiqueetChimiedel’Environnementetdel’Espace(LPC2E),UMR7328,CampusCNRS, 3AAv.delaRechercheScientifique,45071Orléans,France

dCentroBrasileirodePesquisasFísicas(CBPF),RuaXavierSigaud150,22290-180Urca,RiodeJaneiro,RJ,Brasil

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received3August2016

Receivedinrevisedform17October2016 Accepted14November2016

Availableonline17November2016 Editor:J.Hisano Keywords: Supersymmetry Lorentzviolation Photons Dispersion

InthecontextofStandardModelExtensions(SMEs),weanalysefourgeneralclassesofSuperSymmetry (SuSy)and LorentzSymmetry(LoSy)breaking,leadingtoobservableimprintsatourenergyscales.The photondispersionrelationsshowanon-MaxwellianbehaviourfortheCPT(Charge-Parity-Timereversal symmetry)oddandevensectors.Thegroupvelocitiesexhibitalsoadirectionaldependencewithrespect tothebreakingbackgroundvector(oddCPT)ortensor(evenCPT).Intheformersector,thegroupvelocity maydecayfollowinganinversesquaredfrequencybehaviour.Thus,weextractamassiveCarroll–Field– JackiwphotontermintheLagrangianandshowthattheeffectivemassisproportionaltothebreaking vectorandmoderatelydependentonthedirectionofobservation.Thebreakingvectorabsolutevalueis estimatedbygroundmeasurementsandleadstoaphotonmassupperlimitof10−19eV or2×10−55kg,

andtherebytoapotentiallymeasurabledelayatlowradiofrequencies.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

We largely base our understanding of particle physics on the StandardModel(SM).Despitehavingproventobe averyreliable reference,therearestillunsolvedproblems,suchastheHiggs Bo-sonmassoverestimate,theabsenceofacandidateparticleforthe darkuniverse,aswellastheneutrinooscillationsandtheirmass.

Standard Model Extensions (SMEs) tackle these problems. Amongthem,SuperSymmetry (SuSy)[1,2]figures newphysicsat TeVscales[3].Since,inSuSy,BosonicandFermionicparticleseach haveacounterpart,theirmasscontributionscanceleachotherand allowthecorrectexperimentallowmassvaluefortheHiggsBoson. Lorentz Symmetry (LoSy) is assumed in the SM. It emerges

[4–7] that in the context ofBosonic strings, thecondensation of tensor fields is dynamically possible and determines LoSy viola-tion.Thereareopportunitiestotestthelowenergymanifestations ofLoSyviolation, through SMEs[8,9].The effectiveLagrangian is givenby the usual SM Lagrangian corrected by SM operators of anydimensionalitycontractedwithsuitableLorentzbreaking ten-sorial (or simply vectorial) backgroundcoefficients. In thisletter,

*

Correspondingauthorat:Universitéd’Orléans,ObservatoiredesSciencesde l’U-niversenrégionCentre(OSUC),UMS3116,1AruedelaFérollerie,45071Orléans, France.

E-mailaddress:spallicci@cnrs-orleans.fr(A.D.A.M. Spallicci).

we show that photons exhibit a non-Maxwellian behaviour, and possibly manifest dispersion at low frequencies pursued by the newlyoperatinggroundradio observatoriesandfuturespace mis-sions.

LoSy violation has been analysed phenomenologically. Stud-iesincludeelectrons,photons, muons,mesons,baryons,neutrinos and Higgs sectors. Limits on the parameters associated withthe breaking of relativistic covariance are set by numerous analyses

[10–12], including with electromagnetic cavities and optical sys-tems [13–19]. Also Fermionic strings have been proposed inthe presenceofLoSyviolation.Indeed,themagneticpropertiesof spin-lessand/orneutralparticleswithanon-minimalcouplingtoaLoSy violation background have been placed in relation to Fermionic matterorgaugeBosons[20–25].

LoSyviolationoccursatlargerenergyscalesthanthose obtain-ableinparticleaccelerators[26–32].Atthoseenergies,SuSyisstill anexactsymmetry,evenifweassumethatitmightbreakatscales closetotheprimordialones.However,LoSyviolationnaturally in-ducesSuSybreaking becausethebackgroundvector (ortensor) – thatimpliestheLoSyviolation–isinfactpartofaSuSymultiplet

[33],Fig. 1.

Thesequenceisassuredbythesupersymmetrisation,intheCPT (Charge-Parity-Timereversalsymmetry)oddsector,oftheCarroll– Field–Jackiw (CFJ)model[34] that emulatesa Chern–Simons[35] http://dx.doi.org/10.1016/j.physletb.2016.11.023

(3)

204 L. Bonetti et al. / Physics Letters B 764 (2017) 203–206

Fig. 1. BreakingenergyvaluesandtheLagrangians.AdifferenthierarchyofLoSy,SuSybreakingandGrandUnificationTheories(GUT)doesnotinterferewiththedispersion lawsofthephotonicsectoratlowenergies.

termandincludesabackgroundfield thatbreaks LoSy,underthe pointofviewoftheso-called(active)particletransformations.The latterconsistsoftransformingthepotential Aμ andthefield F μν , whilekeepingthebackgroundvector

V

μ unchanged.Forthe pho-ton sector, when unaffected by the photino contribution,the CFJ Lagrangianreads(ClassI)

LI

= −

1 4F

1 2

V

μAνF

˜

μν

,

(1)

˜

Fμν

=

1 2



μναβF αβ

,

(2)

where F

=

F μν Fμν .TheterminEq.(2)couplesthephotontoan external constant fourvector and itviolates parityeven ifgauge symmetryisrespected[34].IftheCFJmodelissupersymmetrised

[36], the vector

V

μ is space-like constant and is given by the gradient ofthe SuSy breakingscalar backgroundfield, presentin themattersupermultiplet.Thedispersion relationyields,denoting

= (

ω

,



k

)

,k2

= (

ω

2

− |

k

|

2

)

,and

(V

μkμ

)

2

= (

V

0

ω

− 

V · 

k

)

2,

k4

+

V

2k2

− (

V

μkμ

)

2

=

0

.

(3)

IfSuSyholdsandthephotinodegreesoffreedomareintegrated out,weareledtotheeffectivephotonicaction,i.e. theeffectofthe photinoonthephotonpropagation.TheLagrangian(1)isrecastas (ClassII)[33] LI I

= −

1 4F

+

1 4



μνρσ

V

μAνFρσ

+

1 4H F

+

MμνF μλFνλ

,

(4)

whereH ,thetensorMμν

= ˜

Mμν

+

1

/

4

η

μν M ,andMμν depend

˜

on thebackgroundFermioniccondensate,originatedbySuSy; Mμν is traceless, M is the trace of Mμν and

η

μν the metric. Thus, the Lagrangian,Eq.(4),intermsoftheirreducibletermsdisplaysas LI I

= −

1 4

(

1

H

M

)

F

+

1 4



μνρσ

V

μAνFρσ

+ ˜

MμνFμλFλν

.

(5)

Thecorrespondingdispersionrelationreads

k4

+

V

2

(

1

H

M

)

2k 2

1

(

1

H

M

)

2

V

μk μ

=

0

.

(6)

ThedispersionlawgivenbyEq.(6)isjustarescalingofEq.(3)

aswe integratedoutthephotinosector. Thebackground parame-tersare very small, beingsuppressedexponentially atthePlanck scale;theyrender thedenominatorinEq.(6)closetounity,

imply-ingsimilarnumericaloutcomesforthetwodispersionsofClasses I and II.

Theevensector[33] assumesthattheBosonicbackground, re-sponsible of LoSy violation, is a background tensor tμν . For the photon sector, if unaffected by the photino contribution, the La-grangianreads(ClassIII)

LI I I

= −

1 4F

16tμνF μκFν κ

4



tμν

η

μν



F

.

(7)

ThedispersionrelationforClassIII[37]is

ω

2

− (

1

+

ρ

+

σ

)

2

|

k

|

2

=

0

,

(8)

where

ρ

=

1

/

2K α

˜

α ,

σ

=

1

/

2K α

˜

β

˜

β

ρ

2,andK α

˜

β

=

tαβtμν pμ pν

/

|

k

|

2 areassociatedtoFermioniccondensates.

Integratingout thephotino [33],we turntotheLagrangian of ClassIV LI V

= −

1 4F

+

a 2tμνF μ κFνκ

+

b 2tμν

αF αμ

βFβν

,

(9)

where a is a dimensionless coefficient and b a parameter of di-mensionofmass−2 (herein,c

=

1,unlessotherwisestated).Forthe dispersionrelation,wewritetheEuler–Lagrangeequations,passto Fourierspace andsetto zerothedeterminantof thematrixthat multiplies the Fouriertransformed potential. However, given the complexityofthematrixinthiscaseandthesmallnessofthe ten-sortμν ,we developthe determinantinaseriestruncatedatfirst orderandget[37]

btk4

k2

+



3a

+

bk2



tαβkα

=

0

,

(10)

wheret

=

tμμ .

Fordeterminingthegroupvelocity,wefirstconsider

V

0

=

0 for

ClassI[38,39]andobtain

ω

4



2

|

k

|

2

+ | 

V

|

2



ω

2

+ |

k

|

4

+ |

k

|

2

| 

V

2



V



· 

k



2

=

0

.

(11)

In[39],theauthorsdonotexploittheconsequencesofthe dis-persionrelationsanddonotconsideraSuSyscenario.Dealingwith Eq.(11),wehaveneglectedthenegativeroots;itturnsoutthatthe two positive rootsdetermine identicalgroupvelocities dw

/

dk up to second order in

V

. For

θ

, the angle between the background vector

V

andk,



weget

vIg

|

θV=π/2

0=0

=

1

| 

V

|

2

8

ω

2

(

2

+

cos

(4)

Fig. 2. ForClassI,weplotthedelays[s],Eq.(16),fordifferentangles,Eqs.(12),

(13),using| V|=10−19eV[40],versusfrequency.Wehavesupposedthesourceto beatadistanceof4kpc.Thefrequencyrange0.1–1MHzhasbeenchosensince itistargetedbyrecentlyproposedlowradiofrequencyspacedetectors,composed byaswarmofnano-satellites;see[41]andreferencestherein.Thereisafeeble dependenceofthedelaysonθ.Thedelayisofabout50psat1MHzforθ=π/2, Eq.(13),andaroundhalfofthisvalueforθapproachingπ/2,Eq.(12).

for

θ

=

π

/

2. Insteadfor

θ

=

π

/

2, one ofthetwo solutions coin-cideswiththeMaxwellianvalue,whiletheotherisdispersive vI1g

|

θV=π/2 0=0

=

1

,

v I2 g

|

θ=π/2 V0=0

=

1

1 2

| 

V

|

2

ω

2

.

(13)

For

V

0

=

0,we suppose that the light propagatesalong the z

axis(k1

=

k2

=

0) whichforconvenienceisalongthelineofsight

ofthesource.Wethenobtain

ω

4

− [

2k2

3

+

V

12

+

V

22

+

V

32

]

ω

2

+

2

V

0

V

3k3

ω

+

k43

+ (

V

2

1

+

V

22

V

02

)

k23

=

0

.

(14)

Wenow set

V

3

=

0, that is,the light propagatesorthogonally

to the background vector. Further, for

V

spacelike and 4

V

02k23

/

| 

V|

4



1,wegettwogroupvelocities,oneofwhichisdispersive

vI1g

|

V3=0

=

1

V

2 0

| 

V

|

2

,

v I2 g

|

V3=0



α



1

1 2

| 

V

|

2

ω

2



.

(15) The solution vI1

g

|

V3=0 is always subluminal for

V

spacelike.

The solution vI2 g

|

V3=0 assumes

ω

 | 

V|

. Since

α

=

1

+

V

2 0

/

| 

V|

2, vI2g

|

V3=0 is superluminalfor

2

ω

>

| 

V|(

1

+ | 

V|

2

/

V

02

)

1/2.Further,

thevalueof

α

isnotLorentz–Poincaréinvariant.Superluminal be-haviourisavoidedassumingforbothsolutions

V

0

=

0.

Ifdealingonlywithanull

V

0 andwithdispersivegroup

veloc-ities,forasourceatdistance



,thetime delayoftwo photonsat differentfrequencies,AandB,isgivenby(inSIunits)



tCFJ

=



| 

V

|

2 2ch

¯

2



1

ω

2 A

1

ω

2 B



x

,

(16)

where x takes the values

(

2

+

cos2

θ )/

4, for Eq. (12), and 1 for

Eqs.(13),(15).Thedelays,Eq.(16),areplottedinFig. 2.Comparing withthedeBroglie–Proca(dBP)delay



tdBP

=



m2 γc3 2h

¯

2



1

ω

2 A

1

ω

2 B



,

(17)

weconcludethatthebackgroundvectorinducesaneffectivemass tothephoton,mγ ,ofvalue

mγ

=

| 

V

|

c2x

.

(18)

Equation (18)is gauge-invariant, butnot Lorentz–Poincaré in-variant.Nevertheless,thereisa subset ofLorentz–Poincaré trans-formation that leave the value of Eq.(18) unchanged. Under the assumption of

V

0

=

0 and thus

| 

V|

constant,the value ofmγ is

constant whenthe originofthe referenceis translatedalong the lineofsightoftheobserverto thesourceand/or underthe rota-tiongroup SO(3). Themassappears asthepoleofthetransverse componentofthephotonpropagator[39].

ClassII, justa rescaling of ClassI, implies identicalsolutions, differingbyanumericalfactoronly.

The group velocities of Classes III and IV show no sign of dispersion; they are slightly smaller than c – as light travelling throughmatter,butsufferfromanisotropytoalargerdegreethan inClassesIandII.Indeed,theisotropyislostduetothetensorial natureoftheLoSYandSuSybreakingperturbation.Thefeebleness ofthecorrectionsisduetothecoefficient

T

beingproportionalto thepowersofthetensortμν components, of10−19eV magnitude

[37]

vI I Ig ,I V

=

1

T



t1sin2

θ

cos2

ϕ

+

t2sin2

θ

sin2

ϕ

+

t3cos2

θ



,

(19)

where

θ

and

ϕ

aretheazimuthalandplanaranglesof



k with re-specttotheaxesrespectively.

Havingseenamassive-likephoton behaviourinthe group ve-locitiesoftheoddsector,werewriteEq.(1)intermsofthe poten-tialstoletamassive-liketermemerge

L

=

1 2



∇φ + ˙

A



2

1 2



∇ × 

A



2

+

V

0



A

·



∇ × 

A



2

∇φ ·





V

× 

A



− 

V

·





A

× ˙

A



.

Sincethe

φ

fieldappears onlythroughits gradient,inthe ab-senceof

φ

timederivatives andtherebyof dynamics,

∇φ

actsas an auxiliary field andcanbe integratedout fromtheLagrangian. Defining

χ

= ∇φ + ˙

A

2

V × 

A,weget L

=

1 2

χ

2

2



V



× 

A



2

+ 

V

·





A

× ˙

A



1 2



∇ × 

A



2

+

V

0



A

·



∇ × 

A



.

(20)

The Euler–Lagrangian equation for

χ

is disregarded since

χ

=

0. The term



V × 

A



2 is expanded as



V

2

δ

kn

V

k

V

n

×

AkAn

:=

Mkn



V



AkAn,where Mkn is asymmetric diagonalisable

matrix,thanks to a suitable matrix ofthe S O

(

3

)

rotationgroup. Performing such a changein Eq.(20),the termunderdiscussion changesinto

˜

AiM

˜

i jA

˜

j

=



V

2

˜

A22

+



V

2A

˜

23

,

(21)

therebyshowingamassive-likephotontermasinthedeBroglie– ProcaLagrangian.

The quest fora photon withnon-vanishing mass is definitely notnew.The firstattemptscanbe tracedback todeBrogliewho conceived an upper limit of 10−53 kg, and achieved a

compre-hensive formulation of the photon [42],also thanks to the rein-terpretation of the work of his doctorate student Proca. To the Lagrangian of Maxwell’s electromagnetism, they added a gauge breaking term proportional to the square of the photon mass. A laboratoryCoulomb’slawtestdetermined themassupperlimit of 2

×

10−50 kg [43]. In the solar wind, Ryutov found 10−52 kg

(5)

206 L. Bonetti et al. / Physics Letters B 764 (2017) 203–206

putintoquestion [47].1 Thelowestvalue foranymassisdictated

by Heisenberg’s principle m

≥ ¯

h

/

tc2, andgives 1

.

3

×

10−69 kg, where



t isthesupposedageoftheUniverse.

In this letter, we have focused on SuSy and LoSy breaking andderived theensuing dispersionrelations andgroupvelocities for four types of Lagrangians. All group velocities show a non-Maxwellianbehaviour,intheangulardependenceandthroughsub orsuperluminalspeeds.Superluminalbehaviourisexclusivetothe oddCPTsector, andmayoccur onlyifthetimecomponentofthe perturbing vector isnon-null.Further, in theodd CPTsector, the effectivemassshowsadispersion,proportionalto1

/

ω

2,asindBP

formalism.Conversely,tothedBPphoton,wheremassisimposed abinitio, the CFJ photon acquires a mass through a mechanism, namely from LoSy violation through the background vector. The otherdifferenceslieinthelackofLorentz–Poincaréinvarianceand intheangulardependenceoftheCFJphotonmass.

The delays are more important at lower frequencies andthe opening of the 0.1–100 MHz window would be of importance

[41].Elsewhere,wehaveanalysedthepolarisationandevincedthe transversalandlongitudinal(massive)modes[37].

From the rotation of the plane of polarisation from distant galaxies,orfromtheCosmicMicrowaveBackground(CMB), ithas beenassessedthat

|

V

μ

|

<

10−34eV[12,34,48].Thisresultis com-parabletotheHeisenberg masslimitvalue atthe ageofthe uni-verse.Alessstringent,butinteresting, limitof10−19eV [40] has

beenset through laboratory basedexperiments involving electric dipole moments of charged leptons or the inter-particle poten-tialbetweenFermionsandtheassociatedcorrectionstothe spec-trumoftheHydrogenatom.Theselatterestimatesimply,Eq.(18), a massupperlimitof10−55kg.

The detection of the CFJ massive photon can be pursued by other means, e.g., through analysisof Ampère’s law in the solar wind [47].Incidentally, the oddandeven CPTsectorscan be ex-perimentallyseparable[12].

What is the role of a massive photon for SMEs? String the-oryhashintedtomassivegravitonsandphotons[5,6],whileProca electrodynamicswas investigatedinthecontext ofLoSyviolation, butoutsideaSuSyscenario[20].However,ifLoSytakesplaceina supersymmetricscenario,thephotonmass maybe naturally gen-eratedfromSuSybreakingcondensates[33,36].Wepointoutthat theemergenceofamassivephotonispertinentalsotootherSME formulations.

LBandADAMS acknowledge CBPFforhospitality, whileLRdSF andJAHNaregratefultoCNPq-Brasilforfinancialsupport.All au-thorsthanktherefereeforstimulatingcomments.

References

[1]P.Fayet,Eur.J.Phys.C74(2014)2837,arXiv:hep-ph/0111282.

[2]J. Terning,ModernSupersymmetry –Dynamics andDuality,Oxford Science Publications,Oxford,2006.

[3]J.D.Lykken,in:C.Grojean,M.Spiropulu(Eds.),Proc.oftheEuropeanSchoolof HighEnergyPhysics,14–27June2009,Bautzen,CERN,Genève,2010,p. 101, YellowReportCERN-2010-002,arXiv:1005.1676[hep-ph].

[4]V.A.Kostelecký,S.Samuel,Phys.Rev.Lett.63(1989)224.

[5]V.A.Kostelecký,S.Samuel,Phys.Rev.Lett.66(1991)1811.

[6]V.A.Kostelecký,R.Potting,Nucl.Phys.B359(1991)545.

[7]V.A.Kostelecký,R.Potting,Phys.Lett.B381(1996)89,arXiv:hep-th/9605088.

[8]D. Colladay, V.A. Kostelecký, Phys. Rev. D 55 (1997) 6760, arXiv:hep-ph/ 9703464.

[9]D. Colladay, V.A. Kostelecký,Phys. Rev.D 85(1998) 116002, arXiv:hep-ph/ 9809521.

1 In[47],therearereferencestoevenmoreoptimistic,andlesssafe,limits(3× 10−63 kg),claimedwhenmodellingthegalacticmagneticfield.Forrecentstudies onpropagationlimitssee[49,50].

[10]Q.G. Bailey, V.A. Kostelecký, Phys. Rev. D74 (2006) 045001, arXiv:hep-ph/ 0407252.

[11]V.A.Kostelecký,J.D.Tasson,Phys.Rev.Lett.102(2009)010402,arXiv:0810.1459 [gr-qc].

[12]V.A.Kostelecký,N.Russell,Rev.Mod.Phys.83(2011)11,arXiv:0801.0287 [hep-ph].

[13]D.Bear,R.E.Stoner,R.L.Walsworth,V.A.Kostelecký,C.D.Lane,Phys.Rev.Lett. 85(2000) 5038,Erratum:Phys. Rev.Lett. 89(2002) 209902,arXiv:physics/ 0007049.

[14]D.F.Phillips, M.A. Humphrey, E.M. Mattison, R.E. Stoner, R.F.C. Vessot, R.L. Walsworth,Phys.Rev.D63(2001)111101,arXiv:physics/0008230.

[15]M.A. Humphrey, D.F.Phillips, E.M. Mattison, R.F.C. Vessot, R.E. Stoner, R.L. Walsworth,Phys.Rev.A68(2003)063807,arXiv:physics/0103068.

[16]H.Müller,C.Braxmaier,S.Herrmann,A.Peters,C.Lämmerzahl,Phys.Rev.D67 (2003)056006,arXiv:hep-ph/0212289.

[17]H.Müller,S.Herrmann,A.Saenz,A.Peters,C.Lämmerzahl,Phys.Rev.D68 (2003)116006,arXiv:hep-ph/0401016.

[18]H.Müller,Phys.Rev.D71(2005)045004,arXiv:hep-ph/0412385.

[19]N.Russell,Phys.Scr.72(2005)C38,arXiv:hep-ph/0501127.

[20]R. Casana,M.M. Ferreira Jr.,C.E.H. Santos, Phys. Rev.D78 (2008) 025030, arXiv:0804.0431[hep-th].

[21]R.Casana,M.M.FerreiraJr.,J.S.Rodrigues,M.R.O.Silva,Phys.Rev.D80(2009) 085026,arXiv:0907.1924[hep-th].

[22]K.Bakke,H.Belich,E.O.Silva,J.Math.Phys.52(2011)063505,arXiv:1106.2324 [hep-th].

[23]H.Belich,E.O.Silva,M.M.FerreiraJr.,M.T.D.Orlando,Phys.Rev.D83(2011) 125025,arXiv:1106.0789[hep-th].

[24]A.G.Lima,H.Belich,K.Bakke,Eur.Phys.J.Plus128(2013)154.

[25]C.A.Hernaski,H.Belich,Phys.Rev.D89(2014)104027,arXiv:1409.5742 [hep-th].

[26]M.S. Berger, V.A. Kostelecký, Phys. Rev. D65 (2002) 091701, arXiv:hep-th/ 0112243.

[27]S.G.Nibbelink,M.Pospelov,Phys.Rev.Lett.94(2005)081601,arXiv:hep-ph/ 0404271.

[28]A.Katz,Y.Shadmi,Phys.Rev.D74(2006)115021,arXiv:hep-ph/0605210.

[29]J.A.Helayël-Neto,H.Belich,G.S.Dias, F.J.L.Leal,W.Spalenza,Proc. Sci.032 (2010).

[30]C.F.Farias,A.C.Lehum, J.R. Nascimento,A.Y.Petrov,Phys. Rev.D86(2012) 065035,arXiv:1206.4508[hep-th].

[31]D.Redigolo,Phys.Rev.D85(2012)085009,arXiv:1106.2035[hep-th].

[32]M.Gomes,A.C.Lehum,J.R.Nascimento,A.Y.Petrov,A.J.daSilva,Phys.Rev.D 87(2013)027701,arXiv:1210.6863[hep-th].

[33]H.Belich,L.D.Bernald,P.Gaete,J.A.Helayël-Neto,F.J.L.Leal,Eur.Phys.J.C75 (2015)291,arXiv:1502.06126[hep-th].

[34]S.M.Carroll,G.B.Field,R.Jackiw,Phys.Rev.D41(1990)1231.

[35]G.Dunne,in:A.Comtet,T.Jolicœur,S.Ouvry,F.David(Eds.),Topological As-pectsofLow DimensionalSystems, 7–31July1998, LesHouches,in: École d’étédePhysiqueThéorique,vol. 69,Springer,Berlin,1999,p. 177, arXiv:hep-th/9902115.

[36]H.Belich,L.D.Bernald, P.Gaete, J.A.Helayël-Neto,Eur.Phys. J.C73(2013) 2632,arXiv:1303.1108[hep-th].

[37] L. Bonetti,L.R.dosSantosFilho,J.A.Helayël-Neto,A.D.A.M.Spallicci,Photon sectoranalysisofSuperandLorentzsymmetrybreaking(2016),inpreparation. [38]C.Adam,F.R.Klinkhamer,Nucl.Phys.B607(2001)247,arXiv:hep-ph/0306245.

[39]A.P. BaêtaScarpelli, H. Belich,J.L. Boldo,J.A. Helayël-Neto,Phys. Rev.D67 (2003)085021,arXiv:hep-th/0204232.

[40]Y.M.P. Gomes,P.C. Malta, Phys.Rev.D 94(2016) 025031, arXiv:1604.01102 [hep-ph].

[41] M.J.Bentum,L.Bonetti,A.D.A.M.Spallicci, Dispersionbypulsars,magnetars, fastradioburstsandmassiveelectromagnetismatverylowradiofrequencies, arXiv:1607.08820[astro-ph.IM],2016,toappearinAdv.Sp.Res.,http://dx.doi. org/10.1016/j.asr.2016.10.018.

[42]L.deBroglie,LaMécaniqueOndulatoireduPhoton.UneNovelleThéoriedela Lumière,Hermann,Paris,1940.

[43]E.R.Williams,J.E.Faller,H.A.Hill,Phys.Rev.Lett.26(1971)721.

[44]D.D.Ryutov,PlasmaPhys.Control.Fusion39(1997)A73.

[45]D.D.Ryutov,PlasmaPhys.Control.Fusion49(2007)B429.

[46]C.Patrignani,etal.,ParticleDataGroup,Chin.Phys.C40(2016)100001.

[47]A.Retinò,A.D.A.M.Spallicci,A.Vaivads,Astropart.Phys.82(2016)49,arXiv: 1302.6168[hep-ph].

[48]M.Goldhaber,V.Trimble,J.Astrophys.Astron.17(2010)17.

[49]L.Bonetti, J. Ellis, N.E.Mavromatos,A.S. Sakharov,E.K. Sarkisian-Grinbaum, A.D.A.M.Spallicci,Phys.Lett.B757(2016)548,arXiv:1602.09135[astro-ph.HE].

Références

Documents relatifs

conditions prevent the director field from being uniform, as it is the case in hybrid cells or in capillaries with ra- dial anchoring, then at equilibrium uniaxial order is de-

In doing so, we will highlight the fact that the velocity field u plays a special role in (1), in that we will require different levels of regularity on u and b to prove a

Finally, we introduce two core notions that are required to define our new algorithm: (i) Reducer, inactive and active permutation, and (ii) the effective symmetry breaking

Clément Grenat, van Nghi Nguyen, Sébastien Baguet, Régis Dufour, Claude-Henri Lamarque.. To cite

This work is structured as follows. 2, we sum- marise, complement and detail the results obtained in our letter [56], with some reminders to the appendix. Within the unique SME

Ambre Bouillant, Timothée Mouterde, Philippe Bourrianne, Christophe Clanet, David Quéré.. To cite

The idea is to completely solve the kinematics of the SUSY cascade decay by using the assumption that the selected events satisfy the same mass shell conditions of the

In Section 4, we evaluate the threshold corrections and effective potential generated at one- loop in the sectors arising from the action of a single Z 2 , namely the N =