• Aucun résultat trouvé

Determination of phytoplankton groups from ocean color spectral measurements in the Senegalo-Mauritanian upwelling

N/A
N/A
Protected

Academic year: 2021

Partager "Determination of phytoplankton groups from ocean color spectral measurements in the Senegalo-Mauritanian upwelling"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-01191676

https://hal.inria.fr/hal-01191676

Submitted on 2 Sep 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-

entific research documents, whether they are pub-

lished or not. The documents may come from

teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

Determination of phytoplankton groups from ocean

color spectral measurements in the

Senegalo-Mauritanian upwelling

Ymane Taoufiq, Ousmane Farikou, Séverine Alvain, Julien Brajard, Michel

Crépon, Malick Ngom, Sylvie Thiria

To cite this version:

Ymane Taoufiq, Ousmane Farikou, Séverine Alvain, Julien Brajard, Michel Crépon, et al.. Determi-

nation of phytoplankton groups from ocean color spectral measurements in the Senegalo-Mauritanian

upwelling. Ocean Optics, The Oceanography Society (TOS), Oct 2014, Portland, Maine, United

States. �hal-01191676�

(2)

o ean olor spe tral measurements in the

Senegalo-Mauritanian upwelling

Ymane Taouq 1

, Ousmane Farikou 2

, Séverine Alvain 3

, Julien

Brajard 1,4

, Mi hel Crépon 1

, Mali k Ngom 1

, and Sylvie Thiria 1

1

Sorbonne Universités (UPMC, Univ Paris 06), CNRS, IRD, MNHN,

LOCEAN Laboratory, IPSL, 4 pla e Jussieu, F-75005, Paris, Fran e

2

Université Cheikh Anta Diop, Dakar, Sénégal

3

Laboratoire d'O eanologie et de Geos ien es, CNRS-ULCO-USTL,

Wimereux, Fran e

4

INRIA, Ro quen ourt, Fran e

20 o tobre 2014

1 Introdu tion

O ean olormeasurementshavebeenintensivelyusedtoestimate hlorophyll-a

on entration (Chl-a in abreviation) in the surfa e waters of the o ean, marginal

seas and lakes.

Phytoplankton is the rst element in the o ean food webs and onsequently

drivestheo eanprodu tivity.Italsoplaysafundamentalrolein limateregulation

by trappingatmospheri CO2through gas ex hanges atthe sea surfa e. Withthe

growing interest in limate hange, one may ask how the dierent phytoplankton

populationswillrespondto hangesino ean hara teristi s(temperature,salinity)

and nutrient supply.

Pigment analysis by High Performan e Liquid Chormatography (HPLC) has

been widelyused to ategorizedbroadPhytoplan ton size lasses (PSC)orphyto-

plan ton fun tional types (PFT) [Hirata et al., 2011℄. Ea h phytoplan ton group

(PSC/PFT) is asso iated with diagnosti pigmentsand a onvertion formula an

(3)

ments.

Thesein-situmeasurementswereusedtobuildrelationshipsbetweenPSC/PFT

and o ean properties that an be derived from satellite o ean olor sensors (e.g.

Chl-a on entration or water leaving-radian e), whi h is of fundamental interest

tounderstand the phytoplanktonbehavior andto modelitsevolution [Uitzetal.,

2006,Ciotti and Bri aud, 2006,Hirata et al., 2008,Sathyendranath et al., 2014,

Alvain etal.,2005,Alvainet al.,2012℄.

In the present work, we propose a regional algorithm based on PHYSAT [Al-

vain et al., 2012℄, that estimates diagnosti pigments asso iated with PFT/PSC

fromsatelliteo ean olormeasurements.Theregionofappli ationisthesenegalo-

mauritean upwelling and the results fo used on the relative on entration of Fu-

oxanthin (Fu o) whi h is the main diagnosti pigment for Mi roplankton (

>

20µm

)and Diatoms.

2 Data

2.1 Satellite dataset

For this study, a satellite image ar hive of the senegalo-mauritean upwelling

(

8 o N

-

24 o N

,

14 o W − 20 o W

) obtained fromthe radiometerSeaWiFS wasused and

the year 2003 was hosen to be atest ase of the algorithm.

Ea h data is a daily image of the water-leaving ree tan es (

ρ w

) at four wa-

velengths (443nm, 490nm, 510nm and 555nm) and of the on entration of Chl-a

duringtheyear 2003.Theradian e at412nmwasnot retainedbe auseof thehigh

sensitivity of

ρ w

to olored dissolved organi matter (CDOM) at this wavelength.

Due tothe presen e ofsaharandusts inthis region,very fewestimations of

ρ w

andChl-awere availableanditmaylead tostrongover-estimationsof hlorophyll-

a [Gregg and Casey, 2004℄. For that reason, an atmopsheri orre tion algorithm

dedi ated tosaharan dust [Dioufet al.,2013℄ wasused to obtaina urate

ρ w

and

hl-adata.

As in [Ben Mustapha et al., 2014℄, the ree tan e ratio for ea h pixel was

omputed as follow:

Ra(λ) = ρ w (λ)/ρ wref (λ, chl − a)

(1)

The on entration

ρ wref

depends on the Chl-a on entration only.

ρ wref

was

al ulated for Chl-a values observed by SeaWiFS in the studied region using a

multilayer per eptron whi h is a lass of arti ial neural network able to model

any non linear fun tion. This is a dieren e ompared to [Ben Mustapha et al.,

(4)

2014℄ who used tabulated values. This permits to have a smoother

ρ wref

fun tion

even if the dependen y between

ρ wref

and Chl-a is not linear.

The satellite dataset made of the

Ra(λ)

during the year 2003 is thereafter

denoted DSAT.

2.2 The pigment dataset

Phytoplanktonpigmentsare ommonlyusedtodis riminatePSCandPFT[Hi-

rata etal., 2011℄.The strong hypothesis madein this work isthat the orrelation

between the satellite measurement (

ρ w

, Chl-a) and pigment on entrations is not dependantonthelo ationorthedateofthemeasurement.Itmeansthatifasatel-

litemeasurement anbeasso iatedwithapigment on entrationinoneparti ular

pla e, the asso iationmust stay relevantanywhere and atanytimein the o ean.

Forthatreason,itwasde ided touse alargeinsitu dataset ompiledatglobal

s ale during the whole SeaWiFS period. This dataset was ollo ated with the

ρ w

and Chl-a measured by SeaWiFSdata [BenMustaphaetal., 2014℄.Some missing

data was ompleted using aself-organizing map te hni s [Junninen etal., 2004℄.

The pigment dataset, denoted DPIG, is omposed of 1068 variables. Ea h va-

riable isa 10-dimensionalve tor dened as :

 Component 1: hlorophyll-a on entration

 Component 2: divinyl hlorophyll-a on entration ratio

 Component 3: peridin on entration ratio

 Component 4: fu oxanthin on entrationratio

 Component 5: 19'hexanoyloxyfuxanthine on entration ratio

 Component 6: zeaxanthin on entrationratio

 Component7to10: SeaWiFSRaat4wavelengths : 443nm,490nm,510nm

and 555nm.

Thepigmentratioaredenedasin[Alvainetal.,2005℄bynormalizingthepigment

on entration by the Chl-a and divinyl hlorophyll-a on entration.

3 Method

The algorithmwasdivided intwophases.Therst phase onsistsin lustering

the DPIG dataset to retrieve the link between the ree tan e ration

Ra

and the

pigment on entrationratio.The se ondphase onsistsinlabelingthe ree tan es

in DSAT interm of asso iated pigments.

(5)

The lusteringofDPIGwasdoneusingSelf-OrganizingMaps(herafterdenoted

SOM). The SOM [Kohonen, 1994℄ algorithmis a powerful non-linear lassier. It

aims at lusteringsamples ofamultidimensionaldataset(inour ase, DPIG) into

lasses represented by adedi ated network (the so- alledSOM map).

SOM is a neural lassier where ea h neuron of the map is asso iated with a

parti ularreferentve tor

V k

.ThedierentneuronsogtheSOMmapare onne ted

together and determine a topologi al (neighbourhood) relationship between the

dierentneurons (subset ofsimilar data).

In the present ase, the SOM map is a two-dimensional (

13 × 12

) grid that

represents the partition of the DPIG dataset. Ea h lass is asso iated with a so-

alled referent ve tor

V k

(

k = {1, 2, ...180}

).

V k

are al ulated by a weigted mean

ofelementsinDPIG. Therefore,

V k

has thesame dimensionasea helementofthe

dataset(inour ase

V k ∈ R 10

)and ontains 5relativepigment on entrationratio, the remote sensing hlorophyll-a on entration and

Ra

at4 wavelengths.

At the end of the lustering, ea h element of the dataset DPIG is asso iated

withthe referent

V k

(denotedthe BestMat hing Unit)whi histhe losestinterm

of the eu lidien distan e.

3.2 Labelisation

The labelisation phase onsists in asso iating ea h element of DSAT with a

pigment on entration ratio.

Ea h pixel

P j

of DSAT ontains the SeaWiFS

Ra

at the four wavelengths (443nm, 490nm, 510nm and 555nm). These elements an be dire tly ompared

with the omposants 7 to10 of the

V k

ve tor that represents

Ra

value inDPIG.

The problem is thus to determine the Best Mat hing Unit

V k

using only four

values amongthe10usedintheSOM map.Atrun ateddistan e (TD)that onsi-

dereonlytheexistingvalueswasused.TheBestMat hingUnit

V k

wasdetermined

using the TD.

Then,thepixel

P j

isdire tlyasso iatedwiththevaluesofthepigments on en-

tration ratioof

V k

.

With this method, ea h pixel

P j

is asso iated with 5 pigment on entration ratios. The underlying assumption is that the link between ree tan es and pig-

ment ratios is the same in DPIG than for DSAT. In the following, we fo us on

the fu oxanthin on entration ratio whi h isa ara teristi ofdiatoms and mi ro-

planktons.

(6)

Chloro−a

n 0.0609

0.686

1.31

Rdiva

n 0.0103

0.162

0.313

Rperid

n 0.00915

0.0443

0.0794

Rfuco

n 0.0336

0.141

0.248

R19HF

n 0.0513

0.17

0.288

Rzeax

n 0.00738

0.179

0.351

Ra(443)

n 0.251

0.78

1.31

Ra(490)

n 0.434

0.868

1.3

Ra(510)

n 0.431

0.805

1.18

Ra(555)

n 0.383

0.955

1.53

Fig. 1  Representation of the value of the 7 omposants of

R k

on the Self-

Organizing Map. Ea h image represent a omposant (6 pigments and 4

Ra

, ea h

node ofthe imagerepresent a lass. Here the dimension of the map is

13 × 12

4.1 Labelisation of the ree tan e spe tra

In this se tion, the asso iation between

Ra

spe tra and the pigment on en-

tration ratioare presented.

First,inFig.1,weshowthevaluesofallthe

V k

omponentsofthe

13×12

SOM

map. Ea h omponent was represented by the olor intensity of the grid point.It

an be noti e that values of the

V k

omponents were spatially well stru tured on

SOM. Anotherimportantremark isthatthe values ofea h omponenthas alarge

range of variation of the same order as the range of variation of DPIG. It means

that the SOM map has aptured most of the variability of the dataset.

(7)

As ea h

V k

ontains a value for the pigment on entration ratio, it is possible toestimateseveral typi alindexof PSC orPFT.It isanimportantfeature ofthis

algorithmthat doesnot estimateone parti ularPSC/PFT but asso iatesdire tly

pigment on entration ratiosthat an be used asproxies.

As an illustrationand a validationof the approa h, we an ompute the per-

entage of mi roplankton(Mi ro) following the formula[Hirata etal., 2011℄ :

Micro = 1.41 × (F uco + P erid)

(2)

where

F uco

(resp.

P erid

) denotes the on entration ratio of Fu oxanthin (resp.

Peridin).

In Fig. 2, we represent the per entage of mi roplankton ( al ulated using 2

with respe t with the hlorophyll-a on entration obtained for the referent ve -

tors

V k

. The relationshipbetween the Chl-a on entration and the Mi roplan ton per entage is onsistent with the relationship found in [Hirata etal.,2011℄ :

Micro = [a 0 + exp(a 1 log 10 (Chl − a) + a 2 )] 1

(3)

where

a 0 = 0.9117

,

a 1 = −2.7330

and

a 2 = 0.4003

.

We annoti ethat,in omparisonwiththisglobalrelationship,theregionalre-

lationshipfound usingSOM overestimatesthemi roplanktonper entageforsmall

value of Chl-a (

< 0.2mg/m3

). It would need further analyses to nd if it is an

artifa t of the algorithmor aregional spe i ity.

This is a rst validation of the orrelations found in the SOM map, and it

demonstrates the potentiallity of the approa h. The asso iation between remote

sensingree tan e spe tra andpigment on entrationsisane ient way toiden-

tify phytoplankton groups.

4.2 Labelisation of images

Usingthe trun ateddistan e (TD) des ribed inthe previous se tion,itis pos-

sible to asso iate a pixelof animage to areferent

V k

and thus to allthe pigment

on entration ratios. In this work, we present results of this asso iation with the

Fu oxanthin. AllpixelsfromDSATwere asso iatedwiththe Fu oxanthin on en-

tration ratio. In g 3, the mean ratio for ea h sequen e of 3 months is presented

(January toMar h JFM, April toJune AMJ, July to Septembre JAS and nally

O tober toDe ember OND).

We an observethe seasonalvariability of the asso iated Fu oxanthin on en-

tration ratio, with a maximum on entration and a southernmost extent at the

beginning of the year. Knowing that high Fu oxanthin on entration ratio are

hara teristi of the presen e of diatoms, this seasonal variability is onsistent

with previous studies of the senegalo-mauritanean upwelling variability [Farikou

(8)

10 −2 10 −1 10 0 10 1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mikroplankton proportion

Chl−a concentration (mg/m3)

Fig. 2  Per entage of Mi roplankton following Eq. 2 with respe t with the

hlorophyll-a on entration. Ea h ir le represents a referent ve tor of the SOM

map and the solid bla k-line represents the relationship in Eq.3

et al., 2013,Lathuilière et al., 2008℄, and the observations done during the EU-

MELI ruises [Claustre and Marty, 1995℄ and the Atlanti Meridional Transe

(AMT) [Aiken etal.,2009℄.

5 Con lusion

A regional lassi ation te hnique derived from [Ben Mustapha et al., 2014℄

that asso iates ree tan e spe tra with pigment on entration ratio was develop-

ped andtestedduringthe year2003inthe senegalo-mauritanianandtheFu oxan-

thin on entration ratio. It was shown that results was oherent with relations

found in literature. It also allows to retrieve the seasonal variability of the as-

so iated Fu oxanthin on entration ratio. It is thus possible to have signi ant

(9)

several period : January to Mar h JFM, April to June AMJ, July to Septembre

JAS and nallyO tober toDe ember OND

quantitativeindi es ( on entration ratio) ofphytoplankton groups.

This approa h gives a lot of opportunity to study variability of pytoplankton

groups (PSC or PFT) in the region of the senegal-mauritanean upwelling. This

study ouldbe ontinued forother lassi ationgroupsandvalidatedusingin-situ

data in this region.

A knowledgement

Theauthorsa knowledgeNASA/GSFC/DAACforprovidinga esstodailyL2

SeaWiFSprodu ts.Thisworkwasfundedbythefren hspa eagen yCNES/Tos a

program.

(10)

[Aiken et al.,2009℄ Aiken,J.,Pradhan, Y.,Barlow, R.,Lavender, S.,Poulton,A.,

Holligan,P.,andHardman-Mountford,N. (2009). Phytoplanktonpigmentsand

fun tionaltypes in the atlanti o ean :a de adal assessment, 19952005. Deep

Sea Resear h Part II : Topi alStudies in O eanography, 56(15) :899917.

[Alvain etal.,2005℄ Alvain, S., Moulin, C., Dandonneau, Y., and Bréon, F.-M.

(2005). Remote sensing of phytoplankton groups in ase 1 waters from global

seawifs imagery. Deep Sea Resear h Part I : O eanographi Resear h Papers,

52(11):19892004.

[Alvain etal.,2012℄ Alvain, S., Vantrepotte,V., Uitz,J.,and Duforêt-Gaurier, L.

(2012). Use of global satellite observations to olle t information in marine

e ology. Sensors for e ology, page 227.

[Ben Mustaphaet al.,2014℄ Ben Mustapha, Z., Alvain, S., Jamet, C., Loisel, H.,

andDessailly,D. (2014).Automati lassi ationofwater-leavingradian eano-

maliesfromglobalseawifsimagery:Appli ationtothedete tionofphytoplank-

tongroupsinopen o eanwaters. Remote Sensingof Environment,146:97112.

[Ciotti and Bri aud, 2006℄ Ciotti, A. M. and Bri aud, A. (2006). Retrievals of

a size parameter for phytoplankton and spe tral light absorption by olored

detritalmatterfromwater-leavingradian esatseawifs hannelsina ontinental

shelfregion o brazil. Limnologyand O eanography : Methods, 4 :237253.

[Claustre and Marty, 1995℄ Claustre, H. and Marty, J.-C. (1995). Spe i phy-

toplankton biomasses and their relation to primary produ tion in the tropi al

north atlanti . Deep Sea Resear h Part I : O eanographi Resear h Papers,

42(8):14751493.

[Diouf etal., 2013℄ Diouf, D., Niang, A., Brajard, J., Crepon, M., and Thiria, S.

(2013).Retrievingaerosol hara teristi sandsea-surfa e hlorophyllfromsatel-

liteo ean olormulti-spe tralsensorsusinganeural-variationalmethod.Remote

Sensing of Environment, 130 :7486.

[Farikou etal.,2013℄ Farikou, O., Sawadogo, S., Niang, A., Brajard, J., Mejia,

C., Crépon, M., and Thiria, S. (2013). Multivariate analysis of the senegalo-

mauritanianareaby mergingsatelliteremotesensingo ean olor and sstobser-

vations. Resear h Journal of EnvironmentalandEarh S ien es,5(12):756768.

[Gregg and Casey, 2004℄ Gregg, W. W. and Casey, N. W. (2004). Global and

regionalevaluation of the seawifs hlorophyll data set. Remote Sensing of En-

vironment,93(4) :463479.

[Hirata etal., 2008℄ Hirata, T., Aiken, J., Hardman-Mountford, N., Smyth, T.,

and Barlow, R. (2008). An absorption model to determine phytoplankton

(11)

112(6):31533159.

[Hirata etal., 2011℄ Hirata, T., Hardman-Mountford, N., Brewin, R., Aiken, J.,

Barlow, R., Suzuki, K., Isada, T., Howell, E., Hashioka, T., Nogu hi-Aita, M.,

etal.(2011).Synopti relationshipsbetweensurfa e hlorophyll-aanddiagnosti

pigmentsspe i tophytoplanktonfun tionaltypes. Biogeos ien es, 8(2):311

327.

[Junninen et al.,2004℄ Junninen, H., Niska, H., Tuppurainen, K., Ruuskanen, J.,

and Kolehmainen, M. (2004). Methods for imputation of missing values in air

quality data sets. Atmospheri Environment, 38(18) :28952907.

[Kohonen, 1994℄ Kohonen, T. (1994). Self-organizing map. Springer-Verlag.

[Lathuilièreet al.,2008℄ Lathuilière, C., E hevin, V., and Lévy, M. (2008). Sea-

sonal and intraseasonal surfa e hlorophyll-a variability along the northwest

afri an oast. Journal of Geophysi al Resear h : O eans (19782012), 113(C5).

[Sathyendranath et al.,2014℄ Sathyendranath, S., Aiken, J., Alvain, S., Barlow,

R., Bouman, H., Bra her, A., Brewin, R., Bri aud, A., Brown, C., Ciotti, A.,

et al. (2014). Phytoplankton fun tional types from spa e. (Reports of the In-

ternationalO ean-Colour Coordinating Group (IOCCG); 15), pages 1156.

[Uitzet al.,2006℄ Uitz,J.,Claustre, H.,Morel,A.,andHooker, S.B.(2006). Ver-

ti aldistribution of phytoplankton ommunitiesinopen o ean: An assessment

based onsurfa e hlorophyll. Journal of Geophysi al Resear h : O eans (1978

2012),111(C8).

Références

Documents relatifs

Average contribution of major algal groups to total chlorophyll a (Chl a) concentration at the subsurface chlorophyll maximum (SCM) depth in the deep waters of the Beaufort

The reconstruction of the total water vapour column of the NDACC OHP lidar measurements: using radiosonde data from op- erational radiosonde station at Nîmes at bottom of profile,

In the retrieval phase, the pigment concentration of a pixel is estimated by taking the pigment concentration values associated with the 2S-SOM cluster presenting the ocean-

Among the different particulate components, small-sized, mostly non-living, particles are believed to be generally a dominant source of the particulate backscattering coefficient

Le changement climatique et l’augmentation des températures globales perturbent l’abondance et la distribution de milliers d’organismes, aquatiques et terrestres, et certains

A genuine economic and monetary union requires establishing both a “fiscal centre” with fiscal capacity to meet the challenge of solidaristic reconstruction and transformation of

The Planck length (the length scale on which quantum fluctuations of the metric of the spacetime are expected to be of order unity) and the Planck time (the time scale on which

To this end, five upwelling indices based on sea surface temperature, surface wind