• Aucun résultat trouvé

Introduction to modelization of thick and heterogeneous plates

N/A
N/A
Protected

Academic year: 2021

Partager "Introduction to modelization of thick and heterogeneous plates"

Copied!
99
0
0

Texte intégral

(1)

HAL Id: hal-01134568

https://hal-enpc.archives-ouvertes.fr/hal-01134568

Submitted on 23 Mar 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Introduction to modelization of thick and heterogeneous

plates

Arthur Lebée, Karam Sab

To cite this version:

Arthur Lebée, Karam Sab. Introduction to modelization of thick and heterogeneous plates. Rencontres

franciliennes de mécanique, Jun 2014, Paris, France. �hal-01134568�

(2)

Introduction to modelization of thick and

heterogeneous plates

Arthur Leb´

ee, Karam Sab

Laboratoire Navier (UMR CNRS 8205)

(3)

The 3D Problem

σ

t ij,j

= 0

on Ω.

σ

t ij

= C

ijkl

(x

3

)

ε

tkl

on Ω

.

σ

t i3

=

±T

on

ω

±

.

ε

t ij

= u

t (i,j)

on Ω

.

u

t i

= 0

on

∂ω

×] − t/2, t/2[

I

monoclinic

C

:

C

αβγ3

= C

333α

= 0

I

symmetrically laminated plate

I

symmetric transverse load

T

±

=

p

3

2

e

3

C

∼∼

(x

3

)

: even

T

− +

T

− −

ω

+

ω

ω

∂ω

e

3

e

2

e

1

⇒ pure bending:

I

u

3

and

σ

α3

even / x

3

I

u

α

,

σ

αβ

and

σ

33

odd / x

3

(4)

Introduction

Building a plate model?

For typical width L let t

→ 0

I

Solve a 2D problem

I

“fair” 3D displacement localization

(5)

Some energy principles...

I

Statically admissible fields:

SA

3D

=

n

σ

ij

/

σ

ij ,j

= 0

and

σ

±

t

2

 · ±e

3

=

P

3

2

e

3

o

SA

3D,0

⇔ P

3

= 0

I

Kinematically admissible fields:

KA

3D

=

u

i

/

u

i

= 0 on

∂ω

×

−

2

t

,

t

2



KA

3D,0

= KA

3D

I

Orthogonality between KA

3D,0

and SA

3D,0

:

∀u

∈ KA

3D,0

, σ

∈ SA

3D,0

,

Z

(6)

Introduction

Some energy principles...

I

Potential energy:

u

3D

= argmin

u

∈KA

3D



W

3D

ε

(

u

)

 −

Z

ω

P

3

u

+

3

+ u

3

2

d

ω



where W

3D

=

1

2

R

ε

(

u

) :

C

∼∼

: ε

(

u

)d Ω

I

Complementary energy:

σ

3D

= argmin

n

W

∗3D

σ



o

where

W

∗3D

=

1

Z

σ

:

S

: σ

d Ω

(7)

The 2-energy principle

∀ˆu

∈ KA

3D

,

∀ˆ

σ

∈ SA

3D

:

W

3D



ε

u

ˆ

 − S

∼∼

: ˆ

σ



= W

∗3D



ˆ

σ

− C

∼∼

: ε

u

ˆ





= W

∗3D



ˆ

σ

− σ

3D



+ W

3D



ε



ˆ

u

− u

3D



W

∗3D



σ

ˆ

− C

: ε

u

ˆ





provides an error estimate in terms of constitutive

equation.

(8)

Introduction

Contents

The case of homogeneous and isotropic plates

The case of laminated plates

Applications

Cylindrical bending of laminates

Extension to periodic plates

The case of cellular sandwich panels

(9)

Contents

The case of homogeneous and isotropic plates

The case of laminated plates

(10)

The case of homogeneous and isotropic plates

Natural scaling of the stress

SA

3D

σ

αβ,β

+

σ

α3,3

= 0

σ

α3,α

+

σ

33,3

= 0

σ

33

(

±t/2) = ±P

3

/2

σ

α3

(

±t/2) = 0

σ

α3

=

Z

x

3

−t/2

σ

αβ,β

dz

σ

33

=

Z

x

3

t/2

σ

α3,α

dz

− P

3

/2

σ

αβ

∼ t

0

σ

α3

∼ t

1

,

σ

33

∼ t

2

and

P

3

∼ t

2

(11)

From 3D equilibrium to 2D

Plate generalized stresses:

(

M

αβ

(x

1

, x

2

) =

hx

3

σ

αβ

i ∼ t

2

Q

α

(x

1

, x

2

) =

α3

i

∼ t

2

h•i =

Z

t 2

t 2

• dx

3

2D equilibrium equations:



α3,α

+

σ

33,3

i = 0

hx

3

αβ,β

+

σ

α3,3

)

i = 0



Q

α,α

+ P

3

= 0

M

αβ,β

− Q

α

= 0

Boussinesq (1871); Mindlin (1951)...

(12)

The case of homogeneous and isotropic plates

“Kirchhoff’s assumption”

At leading order in t:



ε

αβ

= x

3

K

αβ

where

K

αβ

=

−U

3,αβ

σ

i3

' 0 + O(t

1

)

plane stress

ε

33

6= 0!!

In-plane stress:

σ

αβ

= C

αβγδ

σ

ε

δγ

= x

3

C

αβγδ

σ

K

δγ

where C

σ

(13)

The Kirchhoff-Love plate problem

Bending constitutive equation:

M

αβ

=

hx

3

σ

αβ

i =

x

3

2

C

αβγδ

σ

K

δγ

=

−D

αβγδ

U

3,δγ

D

∼∼

=

t

3

12

C

∼∼

σ

Statically admissible fields:

SA

KL

:

{M

αβ

/M

αβ,αβ

+ P

3

= 0

}

Kinematically compatible fields:

KA

KL

:

U

3

/U

3

= 0

and

U

3,n

= 0 on

∂ω,

n

outer normal to

ω

(14)

The case of homogeneous and isotropic plates

Building

SA

3D

fields

ˆ

σ

αβ

= x

3

C

αβγδ

σ

d

δγζ

M

ζ

=

12x

3

t

3

M

αβ

∼ t

0

ˆ

σ

α3

=

Z

x

3

−t/2

σ

αβ,β

dz

=

3

2t



1

4x

2

3

t

2



M

αβ,β

∼ t

1

ˆ

σ

33

=

Z

x

3

−t/2

σ

α3,α

dz

− P

3

/2 =

3x

3

2t



1

4x

2

3

3t

2



P

3

∼ t

2

σ

ˆ

=

s

M

(x

3

) :

M

+

s

∼−

Q

(x

3

)

· M

· ∇

 +

s

P

3

(x

3

)P

3

(15)

Building

KA

3D

fields

Strains

ˆ

ε

=

ˆ

ε

αβ

= x

3

d

αβγδ

M

γδ

= S

αβγδ

σ

ˆ

δγ

+







S

αβ33

σ

ˆ

33

ˆ

ε

α3

=

3

4Gt



1

4x

2

3

t

2



M

αβ,β

= 2S

α3β3

σ

ˆ

β3

ˆ

ε

33

=

12νx

3

Et

3

M

αα

= S

33αβ

σ

ˆ

αβ

+







S

3333

σ

ˆ

33

(16)

The case of homogeneous and isotropic plates

Building

KA

3D

fields

Integration

ˆ

u

3

=

Z

x

3

ˆ

ε

33

(z)dz + U

3

=

u

M

3αβ

(x

3

)M

βα

|

{z

}

∼t

1

+ U

3

|{z}

∼t

−1

where:

u

M

3αβ

(x

3

) =

ν

2Et

 12x

3

2

t

2

− 1



δ

αβ

and

Du

M

3αβ

(x

3

)

E

= 0

(17)

Building

KA

3D

fields

Integration

ˆ

u

3

=

Z

x

3

ˆ

ε

33

(z)dz + U

3

=

u

M

3αβ

(x

3

)M

βα

|

{z

}

∼t

1

+ U

3

|{z}

∼t

−1

ˆ

u

α

=

Z

x

3

ε

α3

(z)

− ˆ

u

3,α

dz =

u

M

αβγδ

(x

3

)M

δγ,β

|

{z

}

∼t

2

− x

3

U

3,α

|

{z

}

∼t

0

where:

u

M

αβγδ

(x

3

)M

δγβ

=

x

3

2Et



6(1 +

ν)



1

4x

2

3

3t

2



M

αβ,β

+

ν



1

4x

2

3

t

2



M

ββ,α



(18)

The case of homogeneous and isotropic plates

Building

KA

3D

fields

Integration

ˆ

u

3

=

Z

x

3

ˆ

ε

33

(z)dz + U

3

=

u

M

3αβ

(x

3

)M

βα

|

{z

}

∼t

1

+ U

3

|{z}

∼t

−1

ˆ

u

α

=

Z

x

3

ε

α3

(z)

− ˆ

u

3,α

dz =

u

M

αβγδ

(x

3

)M

δγ,β

|

{z

}

∼t

2

− x

3

U

3,α

|

{z

}

∼t

0

u

ˆ

= U

3

e

3

− x

3

U

3,α

e

α

+

u

M

3αβ

(x

3

)M

βα

e

3

+

u

M

αβγδ

(x

3

)M

δγ,β

e

α

(19)

Application of the Two-Energy principle

Consider U

3

KL

and

M

KL

the solution of the Kirchhoff-Love plate problem

and define:

σ

KL

=

s

M

(x

3

) :

M

KL

+

s

∼ −

Q

(x

3

)

·

M

KL

· ∇



+

s

P

3

(x

3

)P

3

u

KL

= U

KL

3

e

3

− x

3

U

KL

3,α

e

α

+

u

M

3αβ

(x

3

)M

βα

KL

e

3

+

u

M

αβγδ

(x

3

)M

KL

δγ,β

e

α

We have:

ε

(

u

KL

)

− S

∼ ∼

: σ

KL

=

s

P

3

33

P

3

S

αβ33

0

0

0

0

S

3333

∼ t

2

(20)

The case of homogeneous and isotropic plates

Application of the Two-Energy principle

ε

(

u

KL

)

− S

∼∼

: σ

KL

∼ t

2

W

3D



ε

(

u

KL

)

− S

∼∼

: σ

KL



∼ t

5

Would lead to a relative error in t

2

...

σ

KL

∈ SA

3D

but

u

KL

∈ KA

/

3D

(21)

Reissner’s original plate model (1945)

min of

W

∗3D

Let us consider:

ˆ

σ

=

s

M

(x

3

) :

M

+

s

Q

(x

3

)

· Q

+

s

P

3

(x

3

)P

3

with

SA

RM

=

n

(

M

,

Q

)

/ Q

α,α

+ P

3

= 0

and

M

αβ,β

− Q

α

= 0

on

ω

o

W

∗3D



σ

3D



min

(M

,

Q

)∈SA

RM

W

∗3D

σ

ˆ

 ≤ W

∗3D



σ

KL



is a better approximation of W

∗3D

σ

3D



(22)

The case of homogeneous and isotropic plates

Reissner’s original plate model (1945)

Dualization



Q

α,α

+ P

3

= 0

×U

3

M

αβ,β

− Q

α

= 0

×ϕ

α



Q

α

γ

α

=

ϕ

α

+ U

3,α

M

αβ

χ

αβ

=

ϕ

(α,β)

KA

RM

=

{(U

3

, ϕ

α

)

/ U

3

= 0

and

ϕ

α

= 0 on

∂ω

}

(23)

Reissner’s original plate model (1945)

Constitutive equation

W

∗RM

M

,

Q



= W

∗3D

σ

ˆ



=

1

2

Z

ω

T

M

Q

P

3

d

∼∼

0

5Et

δ

0

5Gt

6

δ

0

5Et

δ

0

17t

140E

M

Q

P

3

d

ω

χ

αβ

|{z}

∼t

−1

= d

αβγδ

M

δγ

|

{z

}

∼t

−1

+

5Et

δ

αβ

P

3

|

{z

}

∼t

1

γ

α

=

6

5Gt

Q

α

∼ t

1

(24)

The case of laminated plates

Contents

The case of homogeneous and isotropic plates

The case of laminated plates

(25)

Field Localization

Following the same procedure leads to:

ˆ

σ

=

s

M

(x

3

) :

M

+

_

s

R

(x

3

) ·

·· M

|

{z

}

∼t

1

+

_

s

_

T

(x

3

) ·

··· M

2

+

s

P

3

(x

3

)P

3

|

{z

}

∼t

2

ˆ

u

= U

3

e

3

− x

3

U

3,α

e

α

+

u

M

3αβ

(x

3

)M

βα

e

3

+

u

R

αβγδ

(x

3

)M

δγ,β

e

α

where

R

_

=

M

and

T

∼∼

=

R

_⊗

(26)

The case of laminated plates

Building

SA

3D

fields

ˆ

σ

αβ

= x

3

C

αβγδ

σ

d

δγζ

M

ζ

=

s

M

αβγδ

(x

3

)M

δγ

ˆ

σ

α3

=

Z

x

3

−t/2

σ

αβ,β

dz

=

s

R

α3βγδ

(x

3

)M

δγ,β

ˆ

σ

33

=

Z

x

3

−t/2

σ

α3,α

dz

− P

3

/2 =

s

T

33αβγδ

(x

3

)M

δγ,βα

+

s

P

33

3

(x

3

)P

3

(27)

The Bending-Gradient constitutive equation

Extending Reissner’s approach?:

ˆ

σ

=

s

M

(x

3

) :

M

+

_∼

s

R

(x

3

) ·

·· R

_

+









s

_ _

T

(x

3

) ·

··· T

∼∼

+







s

P

3

(x

3

)P

3

Let us define:

ˆ

σ

=

s

M

(x

3

) :

M

+

_

s

R

(x

3

) ·

·· R

_

with: ˆ

σ

· ∇

= 0 + O(t

1

) only.

W

∗BG

M

,

R

_

 = W

∗3D

σ

ˆ

 =

1

2

Z

ω

M

:

d

∼∼

:

M

+

R

_

··· f

__

··· R

_



d

ω

(28)

The case of laminated plates

The Bending-Gradient theory for thick plates

I

Equilibrium equations:

BG:



R

αβγ

= M

αβ,γ

× Φ

αβγ

R

αββ,α

+ P

3

= 0

× U

3

RM:



Q

α

= M

αβ,β

× ϕ

α

Q

α,α

+ P

3

= 0

× U

3

I

Mechanical meaning of

R

_

Q

α

= R

αββ



Q

1

= R

111

+ R

122

= M

11,1

+ M

12,2

Q

2

= R

121

+ R

222

= M

21,1

+ M

22,2

(29)

The Bending-Gradient theory for thick plates

I

Equilibrium equations:

BG:



R

αβγ

= M

αβ,γ

× Φ

αβγ

R

αββ,α

+ P

3

= 0

× U

3

RM:



Q

α

= M

αβ,β

× ϕ

α

Q

α,α

+ P

3

= 0

× U

3

(30)

The case of laminated plates

The Bending-Gradient theory for thick plates

I

Equilibrium equations:

BG:



R

αβγ

= M

αβ,γ

× Φ

αβγ

R

αββ,α

+ P

3

= 0

× U

3

RM:



Q

α

= M

αβ,β

× ϕ

α

Q

α,α

+ P

3

= 0

× U

3

Equilibrium

Work of internal forces

Work on Boundary

BG:

(

R

αβγ

= M

αβ,γ

R

αββ,α

+ P

3

= 0

M

αβ

Φ

αβ,

+

R

αβγ

αβγ

+ I

αβγ

U

3,

)

M

αβ

Φ

αβγ

n

γ

+

R

αββ

n

α

U

3



Q

α

= M

αβ,β

M

αβ

ϕ

(α,β)

+

M

αβ

n

β

ϕ

α

+

(31)

The Bending-Gradient theory for thick plates

I

Equilibrium equations:

BG:



R

αβγ

= M

αβ,γ

× Φ

αβγ

R

αββ,α

+ P

3

= 0

× U

3

RM:



Q

α

= M

αβ,β

× ϕ

α

Q

α,α

+ P

3

= 0

× U

3

Equilibrium

Work of internal forces

Work on Boundary

BG:

(

R

αβγ

= M

αβ,γ

R

αββ,α

+ P

3

= 0

M

αβ

Φ

αβ,

+

R

αβγ

αβγ

+ I

αβγ

U

3,

)

M

αβ

Φ

αβγ

n

γ

+

R

αββ

n

α

U

3

RM:



Q

α

= M

αβ,β

Q

α,α

+ P

3

= 0

M

αβ

ϕ

(α,β)

+

Q

α

α

+ U

3,α

)

M

αβ

n

β

ϕ

α

+

Q

α

n

α

U

3

(32)

The case of laminated plates

The Bending-Gradient theory for thick plates

I

Equilibrium equations:

BG:



R

αβγ

= M

αβ,γ

× Φ

αβγ

R

αββ,α

+ P

3

= 0

× U

3

RM:



Q

α

= M

αβ,β

× ϕ

α

Q

α,α

+ P

3

= 0

× U

3

Equilibrium

Work of internal forces

Work on Boundary

BG:

(

R

αβγ

= M

αβ,γ

R

αββ,α

+ P

3

= 0

M

αβ

Φ

αβ,

+

R

αβγ

αβγ

+ I

αβγ

U

3,

)

M

αβ

Φ

αβγ

n

γ

+

R

αββ

n

α

U

3



Q

α

= M

αβ,β

M

αβ

ϕ

(α,β)

+

M

αβ

n

β

ϕ

α

+

(33)

Local Fields reconstruction

Once the plate problem is solved (U

3

BG

, Φ

_

BG

,

M

BG

,

R

_

BG

known), we

suggest the following field reconstruction:

I

σ

BG

=

s

M

(x

3

) :

M

+

_

s

R

(x

3

) ·

·· R

_

+

__

s

T

(x

3

) ·

··· R

_

+

s

P

3

(x

3

)P

3

I

u

BG

= U

3

e

3

− x

3

U

3,α

e

α

+

u

3αβ

M

(x

3

)M

βα

e

3

+

u

R

αβγδ

(x

3

)R

δγβ

e

α

(34)

Applications

Contents

The case of homogeneous and isotropic plates

The case of laminated plates

Applications

Cylindrical bending of laminates

Extension to periodic plates

The case of cellular sandwich panels

(35)

Contents

The case of homogeneous and isotropic plates

The case of laminated plates

Applications

Cylindrical bending of laminates

Extension to periodic plates

The case of cellular sandwich panels

(36)

Applications Cylindrical bending of laminates

Pagano’s boundary value problem

(Pagano, 1969)

CFRP layers with different orientiations:

x

3

p

3

/2

p

3

/2

σ

11

(x

3

) = 0

σ

12

(x

3

) = 0

u

3

(x

3

) = 0

x

1

x

2

L

(37)

Practical Localization...

Kirchhoff-Love

I

σ

KL

=

s

M

(x

3

) :

M

KL

+

((

((

((

((

(

(

s

∼ −

Q

(x

3

)

· M

KL

· ∇

 +







s

P

3

(x

3

)P

3

I

u

KL

= U

3

KL

e

3

− x

3

U

KL

3,α

e

α

+

u

M

3αβ

(x

3

)M

βα

KL

e

3

+

((

((

((

((

(

u

M

αβγδ

(x

3

)M

KL

δγ,β

e

α

Bending-Gradient

I

σ

BG

=

s

M

(x

3

) :

M

+

_

s

R

(x

3

) ·

·· R

_

+









s

_ _

T

(x

3

) ·

··· R

_

+







s

P

3

(x

3

)P

3

I

u

BG

= U

3

e

3

− x

3

U

3,α

e

α

+

u

M

3αβ

(x

3

)M

βα

e

3

+

u

R

αβγδ

(x

3

)R

δγβ

e

α

(38)

Applications Cylindrical bending of laminates

Stress distributions for a

[30

,

−30

, 30

]

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4

L/t = 1.00

KL BG Pagano 0.0 0.2 0.4 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(39)

Stress distributions for a

[30

,

−30

, 30

]

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4

L/t = 1.39

KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(40)

Applications Cylindrical bending of laminates

Stress distributions for a

[30

,

−30

, 30

]

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4

L/t = 1.95

KL BG Pagano 0.0 0.2 0.4 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(41)

Stress distributions for a

[30

,

−30

, 30

]

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4

L/t = 2.71

KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(42)

Applications Cylindrical bending of laminates

Stress distributions for a

[30

,

−30

, 30

]

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4

L/t = 3.79

KL BG Pagano 0.0 0.2 0.4 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(43)

Stress distributions for a

[30

,

−30

, 30

]

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4

L/t = 5.28

KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(44)

Applications Cylindrical bending of laminates

Stress distributions for a

[30

,

−30

, 30

]

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4

L/t = 7.37

KL BG Pagano 0.0 0.2 0.4 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(45)

Stress distributions for a

[30

,

−30

, 30

]

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4

L/t = 10.28

KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(46)

Applications Cylindrical bending of laminates

Stress distributions for a

[30

,

−30

, 30

]

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4

L/t = 14.34

KL BG Pagano 0.0 0.2 0.4 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(47)

Stress distributions for a

[30

,

−30

, 30

]

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4

L/t = 20.00

KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(48)

Applications Cylindrical bending of laminates

Displacement distributions for a

[30

,

−30

, 30

]

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u(0, b/2, x)/(pλ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 u(a/2, 0, x)/(pλ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u(a/2, b/2, x)/huP agi −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(49)

Displacement distributions for a

[30

,

−30

, 30

]

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u1(0, b/2, x3)/(p3λ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 u2(a/2, 0, x3)/(p3λ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u3(a/2, b/2, x3)/huP ag3 i −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(50)

Applications Cylindrical bending of laminates

Displacement distributions for a

[30

,

−30

, 30

]

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u(0, b/2, x)/(pλ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 u(a/2, 0, x)/(pλ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u(a/2, b/2, x)/huP agi −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(51)

Displacement distributions for a

[30

,

−30

, 30

]

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u1(0, b/2, x3)/(p3λ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 u2(a/2, 0, x3)/(p3λ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u3(a/2, b/2, x3)/huP ag3 i −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(52)

Applications Cylindrical bending of laminates

Displacement distributions for a

[30

,

−30

, 30

]

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u(0, b/2, x)/(pλ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 u(a/2, 0, x)/(pλ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u(a/2, b/2, x)/huP agi −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(53)

Displacement distributions for a

[30

,

−30

, 30

]

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u1(0, b/2, x3)/(p3λ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 u2(a/2, 0, x3)/(p3λ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u3(a/2, b/2, x3)/huP ag3 i −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(54)

Applications Cylindrical bending of laminates

Displacement distributions for a

[30

,

−30

, 30

]

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u(0, b/2, x)/(pλ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 u(a/2, 0, x)/(pλ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u(a/2, b/2, x)/huP agi −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(55)

Displacement distributions for a

[30

,

−30

, 30

]

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u1(0, b/2, x3)/(p3λ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 u2(a/2, 0, x3)/(p3λ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u3(a/2, b/2, x3)/huP ag3 i −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(56)

Applications Cylindrical bending of laminates

Displacement distributions for a

[30

,

−30

, 30

]

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u(0, b/2, x)/(pλ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 u(a/2, 0, x)/(pλ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u(a/2, b/2, x)/huP agi −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(57)

Displacement distributions for a

[30

,

−30

, 30

]

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u1(0, b/2, x3)/(p3λ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 u2(a/2, 0, x3)/(p3λ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u3(a/2, b/2, x3)/huP ag3 i −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(58)

Applications Cylindrical bending of laminates

Stress distributions for a

[45

,

−45

]

4

, 45

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4

L/t = 1.00

KL BG Pagano 0.0 0.2 0.4 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(59)

Stress distributions for a

[45

,

−45

]

4

, 45

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4

L/t = 1.39

KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(60)

Applications Cylindrical bending of laminates

Stress distributions for a

[45

,

−45

]

4

, 45

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4

L/t = 1.95

KL BG Pagano 0.0 0.2 0.4 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(61)

Stress distributions for a

[45

,

−45

]

4

, 45

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4

L/t = 2.71

KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(62)

Applications Cylindrical bending of laminates

Stress distributions for a

[45

,

−45

]

4

, 45

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4

L/t = 3.79

KL BG Pagano 0.0 0.2 0.4 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(63)

Stress distributions for a

[45

,

−45

]

4

, 45

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4

L/t = 5.28

KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(64)

Applications Cylindrical bending of laminates

Stress distributions for a

[45

,

−45

]

4

, 45

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4

L/t = 7.37

KL BG Pagano 0.0 0.2 0.4 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(65)

Stress distributions for a

[45

,

−45

]

4

, 45

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4

L/t = 10.28

KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(66)

Applications Cylindrical bending of laminates

Stress distributions for a

[45

,

−45

]

4

, 45

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4 KL BG Pagano 0.0 0.2 0.4

L/t = 14.34

KL BG Pagano 0.0 0.2 0.4 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(67)

Stress distributions for a

[45

,

−45

]

4

, 45

stack

−10 −5 0 5 10 t2σ 11(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 22(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano −0.4 −0.2 0.0 0.2 0.4

L/t = 20.00

KL BG Pagano −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −10 −5 0 5 10 t2σ 12(a/2, b/2, x3)/(p3λ2) −0.4 −0.2 0.0 0.2 0.4 KL BG Pagano

(68)

Applications Cylindrical bending of laminates

Displacement distributions for a

[45

,

−45

]

4

, 45

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u(0, b/2, x)/(pλ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.4−0.3−0.2−0.10.0 0.1 0.2 0.3 0.4 u(a/2, 0, x)/(pλ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u(a/2, b/2, x)/huP agi −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(69)

Displacement distributions for a

[45

,

−45

]

4

, 45

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u1(0, b/2, x3)/(p3λ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.4−0.3−0.2−0.10.0 0.1 0.2 0.3 0.4 u2(a/2, 0, x3)/(p3λ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u3(a/2, b/2, x3)/huP ag3 i −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(70)

Applications Cylindrical bending of laminates

Displacement distributions for a

[45

,

−45

]

4

, 45

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u(0, b/2, x)/(pλ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.4−0.3−0.2−0.10.0 0.1 0.2 0.3 0.4 u(a/2, 0, x)/(pλ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u(a/2, b/2, x)/huP agi −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(71)

Displacement distributions for a

[45

,

−45

]

4

, 45

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u1(0, b/2, x3)/(p3λ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.4−0.3−0.2−0.10.0 0.1 0.2 0.3 0.4 u2(a/2, 0, x3)/(p3λ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u3(a/2, b/2, x3)/huP ag3 i −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(72)

Applications Cylindrical bending of laminates

Displacement distributions for a

[45

,

−45

]

4

, 45

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u(0, b/2, x)/(pλ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.4−0.3−0.2−0.10.0 0.1 0.2 0.3 0.4 u(a/2, 0, x)/(pλ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u(a/2, b/2, x)/huP agi −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(73)

Displacement distributions for a

[45

,

−45

]

4

, 45

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u1(0, b/2, x3)/(p3λ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.4−0.3−0.2−0.10.0 0.1 0.2 0.3 0.4 u2(a/2, 0, x3)/(p3λ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u3(a/2, b/2, x3)/huP ag3 i −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(74)

Applications Cylindrical bending of laminates

Displacement distributions for a

[45

,

−45

]

4

, 45

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u(0, b/2, x)/(pλ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.4−0.3−0.2−0.10.0 0.1 0.2 0.3 0.4 u(a/2, 0, x)/(pλ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u(a/2, b/2, x)/huP agi −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(75)

Displacement distributions for a

[45

,

−45

]

4

, 45

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u1(0, b/2, x3)/(p3λ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.4−0.3−0.2−0.10.0 0.1 0.2 0.3 0.4 u2(a/2, 0, x3)/(p3λ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u3(a/2, b/2, x3)/huP ag3 i −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(76)

Applications Cylindrical bending of laminates

Displacement distributions for a

[45

,

−45

]

4

, 45

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u(0, b/2, x)/(pλ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.4−0.3−0.2−0.10.0 0.1 0.2 0.3 0.4 u(a/2, 0, x)/(pλ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u(a/2, b/2, x)/huP agi −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(77)

Displacement distributions for a

[45

,

−45

]

4

, 45

stack

−2.0−1.5−1.0−0.50.0 0.5 1.0 1.5 2.0 u1(0, b/2, x3)/(p3λ3) −0.4 −0.2 0.0 0.2 0.4 x3 /t KL BG Pagano −0.4−0.3−0.2−0.10.0 0.1 0.2 0.3 0.4 u2(a/2, 0, x3)/(p3λ) −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano 0.0 0.2 0.4 0.6 0.8 1.0 1.2 u3(a/2, b/2, x3)/huP ag3 i −0.4 −0.2 0.0 0.2 0.4 KLBG Pagano

(78)

Applications Cylindrical bending of laminates

Convergence for a

[30

,

−30

, 30

]

stack

100 101 102 103 Slenderness: L/t 10−6 10−5 10−4 10−3 10−2 10−1 100 101 Stress Error KL BG 100 101 102 103 Slenderness: L/t 10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 Deflection Error KL BG

(79)

Contents

The case of homogeneous and isotropic plates

The case of laminated plates

Applications

Cylindrical bending of laminates

Extension to periodic plates

The case of cellular sandwich panels

(80)

Applications Extension to periodic plates

Extension to periodic plates

I

Unit-cell and average estimates

I

Bending auxiliary problem (Caillerie, 1984)

(81)

Applications Extension to periodic plates

Extension to periodic plates

I

Unit-cell and average estimates

I

Bending auxiliary problem (Caillerie, 1984)

P

K

σ

K

· ∇

= 0

σ

K

=

C

y



: ε

K

ε

∼ K

= y

3

K

+ ∇

s

u

− per

σ

K

· e

3

= 0 on free faces

∂Y

± 3

σ

K

· n

skew-periodic on lateral edge

∂Y

l

u

per

(

y

) (y

1

, y

2

)-periodic on lateral edge

∂Y

l

→ gives:

Localization

u

K

σ

K

related to the curvature

K

(82)

Applications Extension to periodic plates

Extension to periodic plates

I

Unit-cell and average estimates

I

Bending auxiliary problem (Caillerie, 1984)

I

Shear auxiliary problem

P

R

σ

R

· ∇

+

σ

M

(

y

) = 0

σ

R

=

C

y



: δ

⊗s

u

− M

+ ∇

−⊗ s

u

− R



σ

R

· e

3

= 0 on free faces

∂Y

± 3

σ

R

· n

skew-periodic on lateral edge

∂Y

l

u

R

(

y

(83)

Contents

The case of homogeneous and isotropic plates

The case of laminated plates

Applications

Cylindrical bending of laminates

Extension to periodic plates

The case of cellular sandwich panels

(84)

Applications The case of cellular sandwich panels

Justification of the Sandwich Theory

I

Divide in 3 layers

(homogeneous skins and heterogeneous core)

I

Bending auxiliary problem

(85)

Applications The case of cellular sandwich panels

Justification of the Sandwich Theory

I

Divide in 3 layers

(homogeneous skins and heterogeneous core)

I

Bending auxiliary problem

I

Contrast assumption

⇔ t

f

 t

s

:

→ t

s

/t

f

Contrast ratio

⇒ Skins under traction/compression

⇒ Core not involved in Bending stiffness

(86)

Applications The case of cellular sandwich panels

Justification of the Sandwich Theory

I

Divide in 3 layers

(homogeneous skins and heterogeneous core)

I

Bending auxiliary problem

I

Shear auxiliary problem

I

f

R

becomes

f

(Q)

+ Direct homogenization scheme

I

The BG is degenerated into RM model

I

f

(Q)

confirms the classical intuition

(87)
(88)

Applications The case of cellular sandwich panels

Application to the chevron pattern

(89)

Applications The case of cellular sandwich panels

Application to the chevron pattern

Shear forces

localization σ

(Q)

I

Overall shearing

of the core

skins distorsion

I

Critically

influence shear

force stiffness

(90)

Applications The case of cellular sandwich panels

Application to the chevron pattern

Shear forces

localization σ

(Q)

I

Overall shearing

of the core

I

Out-of-plane

skins distorsion

I

Critically

influence shear

force stiffness

&

(91)

Application to the chevron pattern

Shear forces

localization σ

(Q)

I

Overall shearing

of the core

I

Out-of-plane

skins distorsion

I

Critically

influence shear

force stiffness

0.2 0.5 1 2 5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 k2 sF11 ρGmh Kelsey− Kelsey+ BG, tf= 0.1 and ts= 0.1: ts/tf= 1 BG, tf= 0.1 and ts= 0.2: ts/tf= 2 BG, tf= 0.1 and ts= 0.5: ts/tf= 5 BG, tf= 0.1 and ts= 1: ts/tf= 10 BG, tf= 0.1 and ts= 2: ts/tf= 20 BG, tf= 0.1 and ts= 5: ts/tf= 50

(92)

Applications Why all periodic plates are not “Reissner” like...

Contents

The case of homogeneous and isotropic plates

The case of laminated plates

Applications

Cylindrical bending of laminates

Extension to periodic plates

The case of cellular sandwich panels

(93)

Homogenizing an orthogonal beam lattice?

=

+

Thick-plate model

(macro)

2 St-Venant Beams

(micro)

Localization

e

−2

e

−1

1

2

b

b

p

3−3

e

e

−1

e

−2

e

−3

ω

∂ω

(94)

Applications Why all periodic plates are not “Reissner” like...

Field localization

−bM12 bM11 bM12 bM22

e

−2

e

−1

1

2

Bending moment

r

(M)

,

m

(M)

:

Apply

M

”on average” on the unit-cell

(Caillerie, 1984) 1

r

−(M)

=

2−

r

(M)

= 0

− 1

m

−(M)

=

−bM

12

bM

11

0

1

and

2

m

−(M)

=

bM

12

bM

22

0

2

(95)

Field localization

−bM12 bM11 bM12 bM22

e

−2

e

−1

1

2

−bR122 (s − b 2) bR121(s − b 2)

e

−2

e

−1 bR122(s −b 2) bR121(s −b 2) bQ1 bQ2

Bending moment

r

(M)

,

m

(M)

:

Apply

M

”on average” on the unit-cell

(Caillerie, 1984)

Bending gradient

r

(R)

,

m

(R)

:

Assume M

αβ

= R

αβγ

x

γ (Leb´ee and Sab, 2013a)

1

r

−(R)

=

0

0

b

(R

111

+ R

122

)

|

{z

}

Q1

1 1

m

−(R)

=

bR

121



s −

b2



bR

122



s −

b2



0

1 2

r

−(R)

=

0

0

b

(R

121

+ R

222

)

|

{z

}

Q2

2 2

m

−(R)

=

−bR

122



s −

b2



bR

121



s −

b2



0

2

(96)

Applications Why all periodic plates are not “Reissner” like...

Field localization

−bM12 bM11 bM12 bM22

e

−2

e

−1

1

2

−bR122 (s − b 2) bR121(s − b 2)

e

−2

e

−1 bR122(s −b 2) bQ2

Bending moment

r

(M)

,

m

(M)

:

Apply

M

”on average” on the unit-cell

(Caillerie, 1984)

Bending gradient

r

(R)

,

m

(R)

:

Assume M

αβ

= R

αβγ

x

γ (Leb´ee and Sab, 2013a)

Reissner-Mindlin

r

(Q)

,

m

(Q)

:

Assume cylindrical bending

(Whitney, 1969; Cecchi and Sab, 2007)

Q

1

= R

111

, Q

2

= R

222

,

R

121

= R

122

= R

221

= R

112

= 0

1

r

(Q)

=

0

0

and

1

m

(Q)

=

0

0

(97)

Application: lattice rotated

45

and cylindrical bending

I

Exact solution

I

Plate solution + Localization

(98)

Applications Why all periodic plates are not “Reissner” like...

Application: lattice rotated

45

and cylindrical bending

I

Exact solution

I

Plate solution + Localization

(RM and BG)

-0.3 -0.2 -0.1 0 0.1 Bending Moment m2∗m Exact BG RM=KL -0.2 -0.2 -0.15 -0.1 -0.05 0 T orsion m1 ∗m Exact BG RM=KL

Références

Documents relatifs

L’objectif du travail présenté est la définition du nombre et de la forme des sous- domaines d’une structure élastique dans le cadre de la maximisation de la rigidité globale de

Even recent implementa- tions of the REW concepts, such as in the REWv4.0 model (Fenicia et al., 2005; Reggiani and Rientjes, 2005; Varado et al., 2006), the CREW model (Lee et

Figure 5: Typical flow curve obtained for some pasty materials under imposed, apparent shear rate: the solid line corresponds to the rheological behavior of the material

We show in this paper that revisiting the use of 3D equilibrium in order to derive transverse shear stress as Reissner (1945) did for homogeneous plates leads to a full bending

Specifically, we observe, for decreasing V , first a fluid-like regime (A), in which the whole granular layer is sheared, with a homogeneous strain rate except near the walls; then

However, the shear plane interaction energies are low (of the order of 1 eV, as discussed below) relative to the formation energies. The close agreement between theory and

As the wall friction coefficient, confinement pressure has a strong effect on velocity pro- files: for negligible wall friction, increasing the normal force widens the top

investigation of shear band localization conditions for finite elastic-plastic rate independent deformations of damaged solids.. A combination of isotropic