• Aucun résultat trouvé

HIGH TEMPERATURE AND HIGH FIELDS MAGNETIC PROPERTIES OF A HoBa2Cu3O7 SINGLE CRYSTAL

N/A
N/A
Protected

Academic year: 2021

Partager "HIGH TEMPERATURE AND HIGH FIELDS MAGNETIC PROPERTIES OF A HoBa2Cu3O7 SINGLE CRYSTAL"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00229259

https://hal.archives-ouvertes.fr/jpa-00229259

Submitted on 1 Jan 1988

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

HIGH TEMPERATURE AND HIGH FIELDS

MAGNETIC PROPERTIES OF A HoBa2Cu3O7

SINGLE CRYSTAL

G. Chouteau, M. Potel, P. Gougeon, H. Noël, J. Levet, M. Guillot, J. Tholence

To cite this version:

(2)

JOURNAL DE PHYSIQUE

Colloque C8, Supplkment au no 12, Tome 49, dbcembre 1988

HIGH TEMPERATURE AND HIGH FIELDS MAGNETIC PROPERTIES OF A

HoBa2Cu307 SINGLE CRYSTAL

G. Chouteau (I), M. Potel (4), P. Gougeon (4), H. No61 (4), J. C. Levet (4), M. Guillot (')

and J. L. Tholence (3)

(I) Service National des Champs Intenses, CNRS, B P 116X, 38042 Grenoble Cedex, France1

(') Laboratoire Louis Ndel, CNRS, B P 166X, 38042 Grenoble Cedex, FranceL

(3) Centre de Recherche sur les TrCs Basses TempCratures, CNRS, B P 166X, 38042 Grenoble Cedeq France1

(4) Laboratoire de Chimie Mindrale B, Universitk de Rennes, CNRS, U.A. 254, Avenue du Gknkrale Leclerc, 35042 Rennes Cedex, France

Abstract. - In HoBa2Cu307-, the magnetic moment per Ho is far from the maximum moment of the H O ~ + ion. A

magnetic anomaly depending on the cooling rate is observed around 60 K. It is attributed to a structural transition.

Introduction

In the REBa&u307-, compounds due to the large distance between the RE ions, the magnetic ordering temperature is in the Kelvin range or even below in the case of holmium [I]. The insensitivity of the su- perconducting state to the presence of the RE indicates that the spin-dependent exchange interaction with the super conducting electrons is weak. In this paper we present a study of the high field high temperature mag- netic properties of the compound with holmium. Spe- cial attention was devoted to the crystalline field effect. We have also studied the influence of the cooling rates.

Experimental

The magnetization of a single crystal was measured with the field parallel and perpendicular to the c-axis between 4 K and 300 K in two different apparatus: in the first one the field is produced by a Bitter coil and can be varied from zero up to 18 T with various rates ranging from 30 min to several hours in the second one, a superconducting coil producing a maximum field of

11 T is used and the field variation is slow: six hours were necessary to obtain the magnetization curves.

1. SUPERCONDUCTING STATE. - The figure 1 shows the hysteresis curves obtained a t 4.2 K. In the case H

//

c the flux jumps are much more numerous when the field is rapidly varied (Bitter coil, Fig. 1 continuous curve) than when the field varies slowly (superconducting coil Fig. 1 dots). As we mentioned earlier 121 this effect is of thermal origin. In bulk materials the energy flow asso- ciated with the vortice motion is not easily evacuated because of the low thermal diffusivity.

Fig. 1. - Hysteresis cycles at 4.2 K up to 18 T (rapid field sweep) and 11 T (slow field sweep).

2. PARAMAGNETIC STATE.

-

Above the critical field

Hcz the magnetization is proportional t o the field up to 11 T. No saturation tendency is 0bserve.d in both directions ( H parallel or H perpendicular to the c- axis). For the case H perpendicular t o c, the pinning is very low and the superconducting part of the mag- netization is small. Tbus the averaged magnetization M = (M+

+

M-)

/

2 (where M+ is the magnetization measured by increasing the field and M- the magne- tization measured by decreasing it) gives a good way of obtaining the paramagnetic contribution even below

H,z. We also find it proportional to the field. Above 100 K a slight positive curvature is observed below

3

teslas. The anisotropy of M is small. In figure 2 we have plotted the quantity X T as a function of T where

X is the static "susceptibility" M

/

H measured in a 10 teslas field for the case H perpendicular to the c-axis. We proceed as follows: first of all the sample is cooled down to 4 K in zero field then heated up to 300 K under the measuring field and cooled down again to

4 K under the same field. Figure 2 (dots) shows the

'~aboratoires associbs B l'Universit.6 Joseph Fourier, Grenoble, France.

(3)

C8 - 2166 JOURNAL DE PHYSIQUE

Fig. 2. - X.T versus T, with X = M/H, H = 10 T. Dots: slow cooling, crosses: quenching. The insert shows t h e anomaly around 60 K with H // c and H perp. t o c.

curve obtained after a slow cooling (6 hours from 300 K

down t o 4 K): it exhibits a plateau above 100 K and a downwards curvature below this temperature. It is worthnoticing that since the critical temperature at H = 10 T is 60 K this curvature cannot be attributed t o the superconductivity. The value of XT a t the plateau, 9 emu/mole, is smaller than the high temper- ature Curie constant of the ~ 0 ions (14 emu/mole). ~ '

This fact associated with the absence of saturation of the magnetization in 10 T shows that the crystal field levels of the ~ 0 ions in this high Tc compound are ~ '

spread out over a wide range of temperature, the low- est levels being non magnetic, in good agreement with previous results [3, 41.

In figure 2 (crosses) we have plotted the same quan- tity after a rapid cooling (four minutes from 300 K down t o 4 K). A broad anomaly can be observed be- tween 150 and 250 K. In this range, contrary t o the first experiment, the behavior is hysteretic. Above 250 K the two curves (crosses and dots) superimpose. In the insert we show the variation of X T deduced from the magnetization curves in both directions. This cor- responds t o a rapid cooling. A maximum is clearly present around 60 K. It cannot be associated with a magnetic order because it occurs a t a too high tem- perature. It should be noted that, in this case, X is obtained by a root mean square determination of the slope d M

/

d H below 10 T , and thus differs from the quantity M

/ H

measured in the above experiments. It probably includes a part of diamagnetism due to superconductivity. Since the susceptibility depends on the cooling rate we should invoke the existence of a structural transition between 60 and 300 K leading t o a change in the distribution of the low lying crys- tal field ehergy levels. The existence of a structural transition has been recently suggested in the YBaCuO compounds a t 240 K [5] and a lattice distortion was observed around Tc [6].

3. THE CRITICAL FIELD. - We have determined the critical field H as the field a t which the hysteresis of the magnetization begins. This criterion is not very accurate because the slope d M

/

cLH

tends t o zero near Hc2. This is probably the reason why our values

are lower than the values determined by the resistive method [7]. However, as shown in the figure 3, the cur- vature of the curve Hc2 (T) is positive near Tc in good agreement with the numerous results of the literature and confirms the fact that this property is intrinsic and does not depend on the measuring method.

Fig. 3. - Critical field Hc2 versus T, deduced from the hysteresis of the magnetization curves.

Conclusion

We have confirmed that the ~ 0 ions are in a non ~ '

magnetic state in the HoBaCuO compound. A mag- netic anomaly occurs around 60 K when the sample is quenched from room temperature. It does not appear on very slow cooling. We think that it could be the sig- nature of a structural transition occurring well above 60 K and below the tetragonal-orthorhombic transi- tion.

[I] Shimizu, S., Friedberg, S. A., Hayri, E. A. and Greenblatt, M., Phys.

Rev.

B 36 (1987) 7129. [2] Tholence, J. L., N&l, H. Levet, J. C., Potel,

M., Gougeon, P., Chouteau, G. and Guillot, M., In. Conf. Dn High Tc Superconductors Inter- laken (Feb. 23-March 3) Switzerland, t o appear

i n Physica B.

[3] Hulliger, F. and Ott

,

H. R., 2. Phys. B. 67 (1987)

291.

[4] Shelton, R. N., McCallum, R. W., Darnento,

M. A., Gschneider Jr., K. A., Ku, H. C., Yang, H. D., Lynn, J. W., Li, W.-H. and Li, Q., Physica B 148 (1987) 285.

[5] Beal-Monod, M. T., J. Phys. France 49 (1988) 295.

[6] Horn, P. M., Keane, D. T., Held, G. A., Jordan- Sweet, J. L., Kaiser, D. L. and Holtzbzerg, F.,

Phys.

Rev.

Lett. 59 (1987) 2772.

Références

Documents relatifs

variations in the relative intensities of the two sets of satellite reflections for different crystals, (ii) the observation of single domains by electron.. diffraction [5

After melting and quenching, the high temperature modification (HT-TbTiGe) adopts the tetragonal CeScSi-type whereas after annealing at 1073 K, the low temperature form (LT-TbTiGe)

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The aPtm, the stress at which the transformation starts at a given constant temperature, is strain-rate independent but the hysteresis descri- bed by the stress-strain

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

ﺚﺤﺒﻟاو ﻲﻟﺎﻌﻟا ﻢﻴﻠﻌﺘﻟا ةرازو ﻲﻤﻠﻌﻟا جﺎﺤﻟوأ ﺪﻨﺤﻣ ﻲﻠﻛأ ﺪﻴﻘﻌﻟا ﺔﻌﻣﺎﺟ - ةﺮﻳﻮﺒﻟا - ّﻴﻠﻛ ّﻠﻟاو بادﻵا ﺔ تﺎﻐ ﺔﻐﻠﻟا ﻢﺴﻗ ﻲﺑﺮﻌﻟا بدﻷاو ﺔﻌﻣﺎﺟ ةرﯾوﺑﻟا لﻔطﻟا ﺔﻐﻟ

Die Definitionen wurden von Illustrationen (Szene einer Taufe für „Motiv“) begleitet und mündlich erläutert. Im weiteren Verlauf der Erarbeitungsaufgabe wurde deutlich, dass die

requirements of the local industrial/professional community will have become equilibrated at an unfortunately low level, and his prior attention will be directed at negotiating