• Aucun résultat trouvé

WDM and Directed Star Arboricity

N/A
N/A
Protected

Academic year: 2021

Partager "WDM and Directed Star Arboricity"

Copied!
24
0
0

Texte intégral

(1)

HAL Id: inria-00132396

https://hal.inria.fr/inria-00132396v3

Submitted on 3 May 2007

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Omid Amini, Frédéric Havet, Florian Huc, Stéphan Thomassé

To cite this version:

Omid Amini, Frédéric Havet, Florian Huc, Stéphan Thomassé. WDM and Directed Star Arboricity.

[Research Report] RR-6179, INRIA. 2007, pp.20. �inria-00132396v3�

(2)

inria-00132396, version 3 - 3 May 2007

a p p o r t

d e r e c h e r c h e

9

-6

3

9

9

IS

R

N

IN

R

IA

/R

R

--6

1

7

9

--F

R

+

E

N

G

Thème COM

WDM and Directed Star Arboricity

Omid Amini — Frédéric Havet — Florian Huc

— Stéphan Thomassé

N° 6179

Janvier 2007

(3)
(4)

Unité de recherche INRIA Sophia Antipolis

OmidAmini

∗†

, Frédéri Havet

, FlorianHu

‡ †

, Stéphan Thomassé

§

ThèmeCOMSystèmes ommuni ants

ProjetMASCOTTE

Rapportdere her he n° 6179Janvier200720pages

Abstra t: A digraph is

m

-labelled ifeveryar sis labelledby an integerin

{1, . . . , m}

. Motivated by wavelength assignment for multi asts in opti al star networks, we study

n

-ber olourings of labelled digraph whi h are olouringsof the ar sof

D

su h that at ea hvertex

v

, forea h olour

λ

,

in(v, λ) +

out(v, λ) ≤ n

with

in(v, λ)

thenumberofar s oloured

λ

entering

v

and

out(v, λ)

thenumberoflabels

l

su h that there existsan ar leaving

v

of label

l

oloured

λ

. One likesto nd theminimum number of olours

λ

n

(D)

su h that an

m

-labbelleddigraph

D

has an

n

-ber olouring. Inthe parti ular ase, when

D

is

1

-labelled then

λ

n

(D)

is the dire ted star arbori ty of

D

, denoted

dst(D)

. We rst show that

dst(D) ≤ 2∆

(D) + 1

and onje turethat if

(D) ≥ 2

then

dst(D) ≤ 2∆

(D)

. Wealso prove

that if

D

is sub ubi then

dst(D) ≤ 3

and that if

+

(D), ∆

(D) ≤ 2

then

dst(D) ≤ 4

. Finally, we study

λ

n

(m, k) = max{λ

n

(D) | D

is

m

-labelledand

(D) ≤ k}

. We show that if

m ≥ n

then

 m

n

 k

n



+

k

n



≤ λ

n

(m, k) ≤

 m

n

 k

n



+

k

n



+ C

m

2

log k

n

forsome onstant

C

.

Key-words: WDM opti alnetworks,multi asting,graph olouring, omplexity

Thisproje thasbeensupportedbyeuropeanproje tsISTFETAEOLUSandCOST293.

É olePolyte hnique

Projet Mas otte, CNRS/INRIA/UNSA, INRIA Sophia-Antipolis, 2004 route des Lu ioles BP 93, 06902 Sophia-AntipolisCedex,Fran eoamini,fhavet,fhu sophia .inr ia.f r

ThisauthorispartiallysupportedbyRégionProven eAlpesCted'Azur.

§

(5)

Résumé:

Undigrapheestappelé

m

-étiquetési haquear possèdeunlabeldansl'ensemble

{1, . . . , m}

. Motivé par l'allo ation de fréquen es dans les réseaux optiques WDM, nous étudions les

n−

bres olorations d'undigraphe

m

-étiqueté

D

. Celles- isontles olorationsdesar sde

D

tellesquepour haquesommet

v

de

D

et haque ouleur

λ

,

in(v, λ) + out(v, λ) ≤ n

in(v, λ)

est le nombre d'ar sentrants

v

olorés ave

λ

,et

out(v, λ)

estlenombredelabels

l

telsqu'ilexisteunar sortantde

v

étiqueté

l

et oloré

λ

. Le but est de trouverle nombre minimumde ouleurs

λ

n,m

(D)

tel quetout digraphe

m

-étiquetéadmette une

n

-bres olorationave enombrede ouleurs. Dansle asparti ulierd'uneseulebreet lorsque

D

est

1−

étiqueté, e irevientàtrouverl'arbori itéétoilede

D

,notée

dst(D)

.

Nous démontrons que pour tout digraphe

D

, on a

dst(D) ≤ 2∆

(D) + 1

. Nous étudions ensuite

l'arbori iteéétoiledesdigraphesdedegréborné. Nousprouvonsquepourlesorientationsdesgraphesde

degrémaximumtrois,onatoujours

dst ≤ 3

. Pourlesorientationsrégulièresdesgraphesdedegré

4

, on démontreque

dst ≤ 4

. Cal ulerlavaleurexa tede

dst

est

N P

-durmêmepourla lassedegraphesorientés dedegréauplus

4

. Finalement,nousétudions

λ

n

(m, k) = max{λ

n

(D) | D

est

m

-étiqutéand

(D) ≤

k}

. Nous prouvonsque si

m ≥ n

alors

 m

n

 k

n



+

k

n



≤ λ

n

(m, k) ≤

 m

n

 k

n



+

k

n



+ C

m2 log k

n

pour une onstante

C

.

Mots- lés : réseaux optiques WDM, multi asting, allo ation de fréquen es, oloration de graphes,

(6)

1 Introdu tion

The originof this paperis the study of wavelength assignment for multi asts in star network. Partial

results are already obtained by Brandt and Gonzalez [4℄. We are given a star network in whi h a

enter node is onne ted by an opti al ber to a set of nodes

V

. Ea h node

v

of

V

sends a set of multi asts

M

1

(v), . . . , M

s(v)

(v)

tothesetsofnodes

S

1

(v), . . . , S

s(v)

(v)

. UsingWDM(wavelength-division multiplexing), dierent signals may be sent at the same time through the same ber but on dierent

wavelengths. The entralnodeisanall-opti altransmitter: hen e,itmayredire tasignalarrivingfrom

a node on aparti ular wavelength to someof the other nodes on the samewavelength. Thereforefor

ea hmulti ast

M

i

(v)

,

v

should sendthemessagetothe entralnodeonasetofwavelengthssothat the entralnoderedire tittoea hnodeof

S

i

(v)

usingoneofthesewavelengths. Theaimistominimizethe totalnumberofusedwavelengths.

Werststudy theveryfundamental asewhentheberisuniqueandea hvertex

v

sendsaunique multi ast

M (v)

to the set

S(v)

of nodes. Let

D

be the digraph with vertex set

V

su h that the out-neighbourhood of a vertex

v

is

S(v)

. Note that this is a digraph and nota multidigraph (there is no multiplear s)as

S(v)

isaset. Thentheproblemistondthesmallest

k

su hthatthereexistsamapping

φ : V (D) → {1, . . . , k}

satisfyingthetwo onditions:

(i)

φ(uv) 6= φ(vw)

; (ii)

φ(uv) 6= φ(u

v)

.

Su hamappingis alleddire tedstar

k

- olouring. Thedire tedstar arbori ity ofadigraph

D

,denoted by

dst(D)

, istheminimuminteger

k

su hthat thereexists adire ted star

k

- olouring. Thisnotionhas beenintrodu edin[6℄andisananalogofthestararbori itydenedin[1℄. Anarbores en eisa onne ted

digraphin whi h everyvertexhas indegree

1

ex ept one, alled root,whi h hasindegree

0

. A forestis thedisjointunionofarbores en es. A starisanarbores en ein whi h theroot dominatesalltheother

verti es. A galaxyisaforestofstars. Clearly,every olour lassofadire tedstar olouringisagalaxy.

Hen e,thedire tedstar arbori ityof adigraph

D

istheminimumnumberofgalaxiesinto whi h

A(D)

maybepartitioned.

For avertex

v

, its indegree

d

(v)

orresponds to the number of multi asts it re eives. A sensible

assumption is that anode re eives abounded numberof multi asts. Hen e, Brandt and Gonzalez [4℄

studied the dire ted star arbori ity of a digraph

D

with maximum indegree

. They showed that

dst(D) ≤ ⌈5∆

/2⌉

. This upper bound is tight if

= 1

be ause odd ir uits have dire ted star

arbori ity

3

. Howeverit anbeimprovedforlargervalueof

= 1

. We onje turethatif

≥ 2

,then

dst(D) ≤ 2∆

.

Conje ture 1 Everydigraph

D

withmaximumindegree

k ≥ 2

satises

dst(D) ≤ 2k

.

This onje turewouldbetightasBrandt[3℄showedthatforevery

k

,thereisana y li digraph

D

k

su h that

(D

k

) = k

and

dst(D

k

) = 2k

. Note that to provethis onje ture, it is su ient to prove it for

k = 2

and

k = 3

. Indeeda digraphwith maximumindegree

k ≥ 2

has anar -partitioninto

k/2

digraphswith maximum indegree

2

if

k

is evenand into

(k − 1)/2

digraphs with maximumindegree

2

andonewithmaximumindegree

3

. Inse tion2,weshowthat

dst(D) ≤ 2∆

+ 1

andsettleConje ture1

fora y li digraphs.

Remark2 Notethatwerestri tourselvestodigraphs,i.e. ir uitsoflengthtwoarepermitted,butnot

multiplear s. Whenmultiplear sareallowed,alltheboundsabovedonothold. Indeedthemultidigraph

T

k

withthreeverti es

u

,

v

and

w

and

k

parallelar s

uv

,

vw

and

wu

satises

dst(T

k

) = 3k

. Moreover,this exampleisextremalsin eeverymultidigraphsatises

dst(D) ≤ 3∆

. Indeedletusshowitbyindu tion:

pi kavertex

v

withoutdegree at most

in aterminal strong omponent. A strong omponent

C

of adigraph is terminal if there is no ar leaving

C

, i.e. with tailin

C

and head outsideof

C

. If

v

has

(7)

noinneighbour,it isisolatedand weremoveit. Otherwise, we onsider any ar

uv

. Its olourmustbe dierentfromthe oloursof the

d

(u)

ar sentering

u

,the

d

+

(v)

ar sleaving

v

andthe

d

(v) − 1

other

ar sentering

v

,soatmost

3∆

− 1

ar sintotal. Hen e,removethear

uv

,applyindu tion,andextend the olouringto

uv

. Therefore,formultidigraphs,thebound

dst(D) ≤ 3∆

issharp.

Wethen studythedire ted stararbori ityofadigraphbounded withmaximumdegree. Thedegree

of a vertex

v

is

d(v) = d

(v) + d

+

(v)

. It orresponds to the degree of the vertex in the underlying

multigraph. (Wehaveedgeswithmultipli ity

2

ea htimethereisa ir uitoflengthtwointhedigraph.) The maximum degree of adigraph

D

, denoted

∆(D)

, or simply

when

D

is learly understood from the ontext,is

max{d(v), v ∈ V (D)}

. Letus denoteby

µ(G)

, themaximummultipli ityofanedgein a multigraph. ByVizing'stheorem,one an olourtheedgesofamultigraphwith

∆(G) + µ(G)

oloursso thattwoedgeshavedierent oloursiftheyarein ident. Sin ethemultigraphunderlyingadigraphhas

maximummultipli ityatmosttwo,foranydigraph

D

,

dst(D) ≤ ∆ + 2

. We onje turethefollowing: Conje ture 3 Let

D

be adigraphwith maximumdegree

∆ ≥ 3

. Then

dst(D) ≤ ∆

.

This onje turewouldbetightsin eeverydigraphwith

∆ = ∆

hasdire tedstararbori ityatleast

. Inse tion3,weproveConje ture3holdswhen

∆ = 3

.

Pinlou and Sopena [9℄ studied a strongerform of dire ted star arbori ity, alled a ir uiti dire ted

stararbori ity. Theyaddtheextra onditionthatany ir uithastohaveat leastthree distin t olours.

Note that su h anotion applies only to oriented graphs that are digraphs without ir uit of length 2.

Indeedsu ha ir uitmaynotre eive

3

olours. Theyshowedthatthea ir uiti dire tedstararbori ity ofasub ubi (i.e. ea hvertexhasdegreeatmost

3

)orientedgraphisat mostfour. Wegiveanewand veryshortproofofthisresult.

ArststeptowardsConje tures1and3would beto provethefollowingstatement whi h isweaker

thanthesetwo onje tures.

Conje ture 4 Let

k ≥ 2

and

D

be adigraph. If

max(∆

, ∆

+

) ≤ k

then

dst(D) ≤ 2k

.

This onje tureholds and is farfrom beingtightfor largevaluesof

k

. IndeedGuiduli [6℄ showedthat if

max(∆

, ∆

+

) ≤ k

then

dst(D) ≤ k + 20 log k + 84

. Guiduli's proof is basedon thefa t that,when bothoutandindegree arebounded, the olourof anar dependsonthe olouroffew otherar s. This

boundeddependen yallowstheuseoftheLovászLo al Lemma. Thisideawasrstused byAlgorand

Alon [1℄, for the star arbori ityof undire ted graphs. Note also that Guiduli's resultis (almost) tight

sin ethere are digraphs

D

with

max(∆

, ∆

+

) ≤ p

and

dst(D) ≥ p + Ω(log p)

(see [6℄). Notealso that similarly asfor Conje ture1,it issu ientto proveConje ture4for

k = 2

andk=

3

. InSe tion 4,we provethat Conje ture4holdsfor

k = 2

. Bytheaboveremark,itimpliesthatConje ture4holdsforall even

k

.

InSe tion5, weinvestigatethe omplexity ofnding thedire ted stararbori ityof adigraph.

Un-surprisingly, this is an NP-hard problem. More pre isely, weshow that determining the dire ted star

arbori ityofadigraphwithout-and indegreeat most

2

isNP- omplete.

Next,westudythemoregeneral(andmorerealisti )probleminwhi hthe enteris onne tedtothe

onodesof

V

with

n

opti albers. Moroverea hnodemaysentseveralmulti asts. Wemodelitasalabelled digraphproblem: We onsideradigraph

D

onvertexset

V

. Forea hmulti ast

(v, S

i

(v))

weaddtheset of ar s

A

i

(v) = {vw, w ∈ S

i

(v)}

withlabel

i

. Thelabelof anar

a

is denoted by

l(a)

. Thusfor every ouple

(u, v)

ofverti esandlabel

i

thereisatmostonear

uv

labelledby

i

. Ifea hvertexsendsatmost

m

multi asts,thereareatmost

m

labelsonthear s. Su hadigraphissaidtobe

m

-labelled. Onewants tondan

n

-berwavelength assignmentof

D

,that isamapping

Φ : A(D) → Λ × {1, . . . , n} × {1, . . . n}

inwhi heveryar

uv

isasso iatedatriple

(λ(uv), f

+

(uv), f

(uv))

(8)

(i)

(λ(uv), f

(uv)) 6= (λ(vw), f

+

(vw))

; (ii)

(λ(uv), f

(uv)) 6= (λ(u

v), f

(u

w))

; (iii) if

l(vw) 6= l(vw

)

then

(λ(vw), f

+

(vw)) 6= (λ(vw

), f

+

(vw

))

.

λ(uv)

orrespondstothewavelengthof

uv

,and

f

+

(uv)

and

f

(uv)

theberusedin

u

and

v

respe tively. Hen e the ondition(i) orrespondsto thefa t that anar entering

v

and anar leaving

v

haveeither dierentwavelengthsordierentbers;the ondition(ii) orrespondsto thefa tthattwoar sentering

v

haveeitherdierentwavelengthsordierentbers;the ondition(iii) orrespondstothefa tthattwo ar s leaving

v

withdierentlabels haveeither dierentwavelengths ordierentbers. Theproblem is thentondtheminimum ardinality

λ

n

(D)

of

Λ

su hthatthereexistsan

n

-berwavelengthassignment of

D

.

The ru ialthingin an

n

-berwavelengthassignmentisthefun tion

λ

whi hassigns olours (wave-lengths)to thear s. Itmustbean

n

-ber olouring, thatisafun tion

φ : A(D) → Λ

,su hthatat ea h vertex

v

, for ea h olour

λ ∈ Λ

,

in(v, λ) + out(v, λ) ≤ n

with

in(v, λ)

the number of ar s oloured

λ

entering

v

and

out(v, λ)

thenumberoflabels

l

su hthatthere existsanar leaving

v

oloured

λ

. On e we havean

n

-ber olouring, one an easily nd asuitablewavelength assignment. Foreveryvertex

v

and every olour

λ

, this isdone byassigning adierentber toea h ar of olour

λ

entering

v

and to ea h set of ar s of olour

λ

leaving

v

and of the samelabel. Hen e

λ

n

(D)

is theminimum numberof olourssu hthat thereexistsan

n

-ber olouring.

Weare parti ularly intested in

λ

n

(m, k) = max{λ

n

(D) | D

is

m

-labelledand

(D) ≤ k}

that is

themaximumnumberofwavelengthsthatmaybene essaryifthereare

n

-bersandea hnodesendsat most

m

andre eivesatmost

k

multi asts. Inparti ular,

λ

1

(1, k) = max{dst(D) | ∆

(D) ≤ k}

. Soour

abovementionnedresultsshowthat

2k ≤ λ

1

(1, k) ≤ 2k + 1

. BrandtandGonzalezshowedthatfor

n ≥ 2

we have

λ

n

(1, k) ≤

l

k

n−1

m

. In Se tion 6, we study the ase when

n ≥ 2

and

m ≥ 2

. Weshowthat if

m ≥ n

then

 m

n

 k

n



+

k

n



≤ λ

n

(m, k) ≤

 m

n

 k

n



+

k

n



+ C

m

2

log k

n

forsome onstant

C

.

Wealsoshowthatif

m < n

then

 m

n

 k

n



+

k

n



≤ λ

n

(m, k) ≤



k

n − m



.

The lower bound generalizes Brandt and Gonzalez [4℄ results whi h established this inequality in the

parti ular aseswhen

k ≤ 2

,

m ≤ 2

and

k = m

. Thedigraphs used to showthis lower bound are all a y li . Weshowthatif

m ≥ n

thenthis lowerbound istightfora y li digraphs. Moreovertheabove mentionned digraphshave largeoutdegree. Generalizingthe resultof Guiduli [6℄, we show that for an

m

-labelleddigraph

D

withbothin- andoutdegreebounded by

k

thenfew oloursareneeded:

λ

n

(D) ≤

k

n

+ C

m

2

log k

n

forsome onstant

C

.

2 Dire ted star arbori ity of digraphs with bounded indegree

Our goal in this se tion is to approa h Conje ture 1. It is easy to see that aforest has dire ted star

arbori ity

2

. Hen e, an ideato prove Conje ture 1 would be to showthat everydigraph has an ar -partition into

forests. However this statement is false. Indeed A. Frank [5℄ (see also [10℄, p.908)

hara terized digraphs having an ar -partition into

k

forests. Let

D = (V, A)

. For any

U ⊂ V

, the digraphindu edbytheverti esof

U

isdenoted

D[U ]

.

(9)

Theorem5(A. Frank) Adigraph

D = (V, A)

hasanar -partitioninto

k

forestsifandonlyif

(D) ≤

k

andforevery

U ⊂ V

,thedigraph

D[U ]

,has atmost

k(|U | − 1)

ar s.

However,Theorem5impliesthateverydigraph

D

hasanar -partitioninto

+1

forests. Indeedforany

U ⊂ V

,

(D[U ]) ≤ min{∆

, |U | − 1}

,so

D[U ]

hasatmost

min{∆

, |U | − 1} × |U | ≤ (∆

+ 1)(|U | − 1)

ar s. Hen e,everydigraphhasdire ted stararbori ityatmost

2∆

+ 2

.

Corollary 6 Everydigraph

D

satises

dst(D) ≤ 2∆

+ 2

.

Wenowlessenthisupperbound byone.

Theorem7 Every digraph

D

satises

dst(D) ≤ 2∆

+ 1

.

Theideato proveTheorem 7isto showthat everydigraphhas anar -partitioninto

forestsand a

galaxy

G

. Todoso,weproveastrongerresult(Lemma8)byindu tion.

A sink isavertexwithoutdegree

0

. A sour eis avertex withindegree

0

. Amultidigraphis

k

-ni e if

≤ k

and if thetailsof parallel ar s, ifany, aresour es. A

k

-de omposition ofa digraph

D

is an ar -partitioninto

k

forestsandagalaxy

G

su hthateverysour eof

D

isisolatedin

G

. Let

u

beavertex of

D

. A

k

-de ompositionof

D

is

u

-suitableifnoar of

G

hashead

u

.

Lemma8 Let

u

beavertexof a

k

-ni e multidigraph

D

. Then

D

has a

u

-suitable

k

-de omposition. Proof. Wepro eedbyindu tion on

n + k

. Wenowdis ussthe onne tivityof

D

:

ˆ If

D

isnot onne ted,weapplyindu tiononevery omponent.

ˆ If

D

isstrongly onne ted,everyvertexhasindegreeat leastone. Rememberalsothatthereis no parallel ar s. Let

v

be anoutneighbourof

u

. There existsaspanning arbores en e

T

withroot

v

whi h ontainsallthear swithtail

v

. Let

D

bethedigraphobtainedfrom

D

byremovingthear s of

T

and

v

. Observethat

D

is

(k − 1)

-ni e. Byindu tion,ithasa

u

-suitable

(k − 1)

-de omposition

(F

1

, . . . , F

k−1

, G)

. Note that

F

i

,

T

and

G

ontain all the ar s of

D

ex ept those with head

v

. By onstru tion,

G

= G ∪ uv

is a galaxysin eno ar of

G

hashead

u

. Let

u

1

, . . . , u

l−1

be the inneighboursof

v

distin t from

u

, where

l ≤ k

. Let

F

i

= F

i

∪ u

i

v

,for all

1 ≤ i ≤ l − 1

. Thenea h

F

i

isaforest,so

(F

1

, . . . , F

k−1

, T, G

)

isa

u

-suitable

k

-de ompositionof

D

.

ˆ If

D

is onne tedbutnotstrongly onne ted,we onsiderastrongly onne tedterminal omponent

D

1

. Set

D

2

= D \ D

1

. Let

u

1

and

u

2

betwoverti esof

D

1

and

D

2

,respe tively,su hthat

u

isone ofthem.

If

D

2

hasaunique vertex

v

(thus

u

2

= v

), sin e

D

is onne ted and

D

1

is strong, there exists a spanning arbores en e

T

of

D

withroot

v

. Now

D

= D \ A(T )

isa

(k − 1)

-ni emultidigraph, so byindu tionithasa

u

-suitable

(k − 1)

-de omposition. Adding

T

tothisde omposition,weobtain a

u

-suitable

k

-de omposition.

If

D

2

hasmorethanonevertex,byindu tion,itadmitsa

u

2

-suitable

k

-de omposition

(F

2

1

, . . . , F

k

2

, G

2

)

. Moreoverthe digraph

D

1

obtainedby ontra ting

D

2

to a singlevertex

v

is

k

-ni e and so has a

u

1

-suitable

k

-de omposition

(F

1

1

, . . . , F

k

1

, G

1

)

. Moreover, sin e

v

is asour e, it is isolated in

G

1

.

Hen e

G = G

1

∪ G

2

isagalaxy. Wenowlet

F

i

betheunionof

F

1

i

and

F

2

i

by repla ingthear s of

F

1

i

with tail

v

by the orrespondingar sin

D

. Then

(F

1

, . . . , F

k

, G)

is a

k

-de ompositionof

D

whi hissuitableforboth

u

1

and

u

2

.

(10)

2.1 A y li digraphs

It is nothard to show that

dst(D) ≤ 2∆

when

D

is a y li . But we will provethis resultin amore onstrained way. A y li

n

-intervalof

{1, 2, . . . , p}

is a set of

n

onse utive numbersmodulo

p

. Now forthedire tedstar olouring,wewillinsistthatforeveryvertex

v

,the(distin t) oloursusedto olour the ar s with head

v

are hosen in a y li

k

-interval of

{1, 2, . . . , 2k}

. Thus, the number of possible setsof oloursused to olourtheenteringar sof avertexdrasti allyfalls from

2k

k



when everyset isa

prioripossible,to

2k

. Notethathaving onse utives oloursonthear senteringavertex orrespondsto having onse utiveswavelengthsonthelinkbetweenthe orrespondingnodeandthe entralone. Thisis

veryimportantforgroomingissues. Formoredetailsaboutgrooming,werefertothetwo omprehensive

surveys[7,8℄.

Weneedforthisthefollowingresultonset ofdistin trepresentatives.

Lemma9 Let

I

1

, . . . , I

k

be

k

nonne essary distin t y li

k

-intervalsof

{1, 2, . . . , 2k}

. Then

I

1

, . . . , I

k

admitaset ofdistin t representatives forming a y li

k

-interval.

Proof. We onsider

I

1

, . . . , I

k

asasetof

p

distin t y li

k

-intervals

I

1

, . . . , I

p

withrespe tivemultipli ity

m

1

, . . . , m

p

su hthat

P

p

i=1

m

i

= k

. Su hasystemwill bedenotedby

((I

1

, m

1

), . . . , (I

p

, m

p

))

. Weshall provethe existen eof a y li

k

-interval

J

, su h that

J

anbepartitionedinto

p

subsets

J

i

,

1 ≤ i ≤ p

, su hthat

|J

i

| = m

i

and

J

i

⊂ I

i

. This provesthe lemma(byasso iatingdistin telementsof

J

i

to ea h opyof

I

i

).

Wepro eedbyindu tion on

p

. Theresultholdstriviallyfor

p = 1

. Wehavetwo ases: ˆ There exists

i

and

j

su hthat

|I

j

\ I

i

| = |I

i

\ I

j

| ≤ max(m

i

, m

j

)

.

Supposewithoutlossofgeneralitythat

i < j

and

m

i

≥ m

j

. Weapplytheindu tionhypothesisto

((I

1

, m

1

), · · · , (I

i

, m

i

+ m

j

), · · · , (I

j−1

, m

j−1

), (I

j+1

, m

j+1

), · · · , (I

p

, m

p

))

, in order to nda y li interval

J

, su h that

J

admits apartition intosubsets

J

r

, su h that for any

r 6= i, j

,

J

r

⊂ I

r

is asubset ofsize

m

r

, and

J

i

⊂ I

i

isof size

m

i

+ m

j

. Wenowpartition

J

i

into twosets

J

i

and

J

j

withrespe tivesize

m

i

and

m

j

,insu h awaythat

(I

i

\ I

j

) ∩ J

i

⊆ J

i

. Remarkthatthisispossible exa tlybe auseofourassumption

|I

j

\ I

i

| = |I

i

\ I

j

| ≤ m

i

. Sin e

J

i

⊂ I

i

and

J

j

⊂ I

j

,thisrened partition of

J

isthedesiredone.

ˆ Forany

i, j

wehave

|I

j

\ I

i

| = |I

i

\ I

j

| ≥ max(m

i

, m

j

) + 1

.

Ea h

I

i

interse ts exa tly

2m

i

− 1

other y li

k

-intervalson lessthan

m

i

elements. Sin e there are

2k

y li

k

-intervalsintotaland

P

p

i=1

(2m

i

− 1) = 2k − p < 2k

,we on ludetheexisten eofa y li

k

-interval

J

whi hinterse tsea h

I

i

inanintervalofsizeatleast

m

i

.

Let usprovethat one an partition

J

in thedesired way. ByHall'smat hing theorem, itsu es to provethatforeverysubset

I

of

{1, . . . , p}

,

|

S

i∈I

I

i

∩ J| ≥

P

i∈I

m

i

.

Suppose for a ontradi tion that asubset

I

of

{1, . . . , p}

violatesthis inequality. Su h a subset will be alled ontra ting. Without lossof generality, we assumethat

I

is a ontra tingset with minimum ardinality and that

I = {1, . . . , q}

. Remark that by the hoi e of

J

, we have

q ≥ 2

.

The set

K :=

S

i∈I

I

i

∩ J

onsists of one or two intervals of

J

, ea h ontaining one extremity of

J

. By the minimality of

I

,

K

must be a single interval (if not, one would take

I

(resp.

I

), all the elements of

I

whi h ontains the rst (resp. these ond) extremity of

J

. Then one of

I

1

or

I

2

would be ontra ting). Thus, one of the two extremities of

J

is in every

I

i

,

i ∈ I

. Without loss of generality, we may assume that

(I

1

∩ J) ⊂ (I

2

∩ J) ⊂ · · · ⊂ (I

q

∩ J)

. Now, for every

2 ≤ i ≤ q

,

|I

i

\ I

i−1

| = |(I

i

∩ J) \ (I

i−1

∩ J)| ≥ max(m

i

, m

i−1

) + 1 ≥ m

i

+ 1

. But

|

S

i∈I

I

i

∩ J| = |(I

1

∩ J)| +

P

q

i=2

|(I

i

∩ J) \ (I

i−1

∩ J)|

. So

|

S

i∈I

I

i

∩ J| ≥

P

q

i=1

m

i

+ q − 1

,whi h isa ontradi tion.

(11)



Theorem10 Let

D

be an a y li digraph with maximum indegree

k

.

D

admits a dire ted star

2k

- olouring su h that for every vertex, the olours assigned to its entering ar s are in luded in a y li

k

-intervalof

{1, 2, . . . , 2k}

.

Proof. Byindu tiononthenumberofverti es,theresultbeingtrivialif

D

hasonevertex. Supposenow that

D

hasatleasttwoverti es. Then

D

hasasink

x

. Bytheindu tionhypothesis,

D \ x

hasadire ted star

2k

- olouring

c

su hthat foreveryvertex,the oloursassignedtoitsenteringar sarein ludedin a y li

k

-interval. Let

v

1

, v

2

, . . . , v

l

betheinneighboursof

x

in

D

,where

l ≤ k

be ause

(D) ≤ k

. For

ea h

1 ≤ i ≤ l

,let

I

i

bea y li

k

-intervalwhi h ontainsallthe oloursofthear swithhead

v

i

. Weset

I

i

= {1, . . . , 2k} \ I

i

. Clearly,

I

i

isa y li

k

-intervaland thear

v

i

x

anbe olouredbyanyelementof

I

i

. ByLemma9,

I

1

, . . . , I

l

haveaset ofdistin trepresentativesin ludedin a y li

n

-interval

J

. Hen e assigning

J

to

x

,and olouringthear

v

i

x

bytherepresentativeof

I

i

givesadire ted star

2k

- olouring

of

D

.



Theorem 10 is tight : Brandt [3℄ showed that for every

k

, there is an a y li digraph su h that

(D

k

) = k

and

dst(D

k

) = 2k

. His onstru tion is the spe ial ase of the onstru tion given in Proposition21for

n = m = 1

.

3 Sub ubi digraphs

Re allthat asub ubi digraphis agraphwith degreeatmostthree. Inthisse tion, werstshowthat

thedire tedstararbori ityofasub ubi digraphisatmost

3

,soprovingConje ture3when

∆ = 3

. We then giveaveryshort proofof aresultofPinlou and Sopena assertingthat thea ir uiti dire ted star

arbori ityofasub ubi digraphisatmost

4

.

3.1 Dire ted star arbori ity of sub ubi digraphs

Theaimofthissubse tionistoprovethefollowingtheorem:

Theorem11 Everysub ubi digraphhas dire tedstararbori ityatmost

3

.

Todo,weneedtoestablishsomelemmastoenableustoextendsomepartialdire tedstar olouringinto

dire tedstar olouringofthewholedigraph. Theselemmasneedthefollowingdenition. Let

D = (V, A)

be adigraph and

S

a subset of

V ∪ A

. Suppose that ea h element

x

of

S

is assigned a list

L(x)

. A olouring

c

of

S

isan

L

- olouringif

c(x) ∈ L(x)

forevery

x ∈ S

.

Lemma12 Let

C

bea ir uitinwhi h everyvertex

v

re eives alist

L(v)

of two olours among

{1, 2, 3}

andea h ar

a

re eives the list

L(a) = {1, 2, 3}

. Then thereisno

L

- olouring

c

of the ar sand verti es su hthat

c(x) 6= c(xy)

,

c(y) 6= c(xy)

, and

c(xy) 6= c(yz)

, for all ar s

xy

and

yz

if andonly if

C

isodd andallthe verti eshave thesame list.

Proof. Assume rst that every vertex is assigned thesame list, say

{1, 2}

. If

C

is odd, it is simple mattertoseethatwe annotndthederired olouring. Indeed,ifallverti eshavethesame olour,then

weshouldhaveanar olouringof

C

withtwo olourswhi hisimpossible. Iftwoadja enteverti es,say

x

and

y

, havedifefrent olours

1

and

2

, then

xy

shouldhave olour

3

,

yz

(

z

theotherneighbhourof

y

) should have olour

1

andso

z

should have olourIf

C

is even, we olourtheverti esby

1

andthear s alternatelyby

2

and

3

.

(12)

Nowassume that

C = x

1

x

2

. . . x

k

x

1

and

x

1

and

x

2

are assigned dierentlists. Say

L(x

1

) = {1, 2}

and

L(x

2

) = {2, 3}

. We olour thear

x

1

x

2

by

3

, thevertex

x

2

by

2

and thear

x

2

x

3

by

1

. Thenwe olour

x

3

,

x

3

x

4

,...,

x

k

. It remainsto olour

x

k

x

1

and

x

1

. Two asesmayhappen: Ifwe an olour

x

k

x

1

by1or2,wedoitand olour

x

1

by

2

or

1

respe tively. Otherwisethesetof oloursassignedto

x

k

and

x

k−1

x

k

is

{1, 2}

. Hen e,we olour

x

k

x

1

with

3

,

x

1

by

1

,andre olour

x

1

x

2

by

2

and

x

2

by

3

.



Lemma13 Let

D

beasub ubi digraphwith novertexofoutdegreetwoandindegreeone. Assumethat every ar

a

has alist of olours

L(a) ⊂ {1, 2, 3}

su hthat:

ˆ If the headof

a

isasink

s

(

a

is alledaleaving ar ),

|L(a)| ≥ d

(s)

.

ˆ If

a

isnot aleavingar andthe tailof

a

isasour e(

a

is alledanentering ar ),

|L(a)| ≥ 2

. ˆ In other ases

|L(a)| = 3

.

ˆ If a vertexis the head of at least two entering ar s the union of their lists of olours ontains at

leastthree olours.

ˆ If allthe verti es ofan odd ir uitarethe tailsofentering ar s, the unionofthe listsof olours of

these entering ar s ontainsatleastthree olours.

Then

D

hasadire tedstar

L

- olouring.

Proof. We olourthegraphindu tively. Consideraterminalstrong omponent

C

of

D

. Sin e

D

has novertexwithindegreeoneandoutdegree two,

C

indu eseitherasingletonora ir uit.

1) Assumethat

C

isasingleton

v

whi histheheadofauniquear

a = uv

. If

u

hasindegree0, olour

a

with a olourof its list. If

u

hasindegree 1,and thus totaldegree2, olour

a

bythe olourof its list and removethis olour from the list of the ar with head

u

. If

u

is the headof

e

and

f

, observethat

L(e)

and

L(f )

haveatleasttwo oloursandtheirunionhaveatleastthree olours. To on lude, olour

a

witha olourinitslist,removethis olourfrom

L(e)

and

L(f )

,remove

a

,split

u

intotwoverti es,onewith head

e

, and theother with head

f

. Now, hoosein their respe tive listsdierent oloursforthear s

e

and

f

toform thenewlist

L(e)

and

L(f )

.

2) Assumethat

C

isasingleton

v

whi histheheadofseveralar s,in luding

a = uv

. Inthis ase,we redu e

L(a)

toasingle olour,removethis olourfromtheotherar swithhead

v

andsplit

v

into

v

1

whi hbe omestheheadof

a

,and

v

2

whi h be omestheheadof theotherar s.

3) Assume that

C

isa ir uit. Everyar entering

C

hasalistofat leasttwo olours. We anapply Lemma 12to on lude.



Proof of Theorem 11. Assume for ontradi tion that the digraph

D

has star arbori ity more than threeandisminimumwithrespe ttothenumberofar sforthisproperty. Observethat

D

hasnosour e, otherwisewesimplydeleteitwithitsin identar s,applyindu tionandextendthe olouringsin ear s

leavingfromasour e anbe olouredarbitrarily. Let

D

1

bethesubdigraphof

D

indu edbytheverti es ofindegreeat most

1

. Wedenote by

D

2

thedigraphindu edbytheotherverti es,andby

[D

i

, D

j

]

the setofar swithtailin

D

i

andheadin

D

j

. We laimthat

D

1

ontainsnoeven ir uit. Ifnot,wesimply removethe ar s of this even ir uit, apply indu tion and extend the olouring to thear s of the even

(13)

A riti al set of verti esof

D

2

is either avertexof

D

2

with indegreeat least twoin

D

1

, oran odd ir uitof

D

2

havingallitsinneighboursin

D

1

. Observethat riti alsetsaredisjoint. Forevery riti al set

S

,wesele ttwoar sentering

S

from

D

1

, alledsele tedar sof

S

.

Let

D

bedigraphindu edbythear set

A

= A(D

1

) ∪ [D

2

, D

1

]

. Nowwedenea oni t graph on thear sof

D

inthefollowingway:

ˆ Twoar s

xy

,

yv

of

D

arein oni t, allednormal oni t at

y

. ˆ Twoar s

xy

,

uv

of

D

are also in oni t ifthere exists twosele tedar s ofthesame set

S

with tails

y

and

v

. These oni tsare alledsele ted oni tsat

y

and

v

.

Letusanalysethe stru tureofthe oni tgraph. Observerstthat anar isin oni t withthree

ar s: onenormal oni tatitstailandatmosttwo(normalorsele ted)atitshead.

We laim thatthere isno

K

4

inthe oni t graph. Suppose thereis one,thenthereis

4

ar s whi h are pairwise in oni t. Sin e ea h ar has degree

3

, it has a normal oni t at its tail, the digraphs indu ed by these four ar s ontains a ir uit. It annot be a ir uit of even length (

2

or

4

) so it has length

3

. Itfollowsthat thefour ar s

a, b, c, d

areasin Figure1below. Let

D

bethedigraphobtained

from

D

by removingthe ar s

a, b, c, d

and theirfour in ident verti es. Byminimality of

D

,

D

admits

adire ted star

3

- olouringwhi h anbe extended to

D

asdepi ted belowdepending ifthetwoleaving ar sare olouredthesameordierently. Thisprovesthe laim.

2

1

3

3

1

1

2

2

3

1

2

1

3

3

1

2

1

2

3

2

a

b

c

d

a

b

c

d

Figure1: A

K

4

inthe oni t graphandthetwowaysofextendingthe olouring.

Brook'sTheoremassertsthateverysub ubi graphwithout

K

4

is3- olourable.Sothe oni tgraph admits a

3

- olouring

c

. This givesa olouring of thear s of

D

. Let

D

′′

bethe digraph and

L

be the list-assignmentonthear sof

D

′′

obtainedasfollow:

ˆ Removethear sof

D

1

from

D

,

ˆ Assigntoea har of

[D

2

, D

1

]

thesingletonlist ontainingthe olourithasin

D

,

ˆ Forea har

uv

of

[D

1

, D

2

]

,thereisauniquear

tu

in

A(D

)

, soassignthelist

L(uv) = {1, 2, 3} \

c(tu)

.

ˆ Assignthelist

{1, 2, 3}

totheotherar s.

ˆ Ifthereareverti eswithindegreeoneandoutdegreetwo(theywerein

D

1

),splitea hoftheminto onesour eofdegreetwoandasinkofdegreeone.

Note that there is atrivial one-to-one orresponden e between

A(D

′′

)

and

A(D) \ A(D

)

. By the

denitionof oni tgraphand

D

′′

,one aneasily he kthat

D

′′

and

L

satisesthe onditionofLemma13.

Hen e

D

′′

admits adire ted star

L

- olouring whi h union with

c

isadire ted star

3

- olouringof

D

, a

(14)

3.2 A ir uiti dire ted star arbori ity

A dire ted star olouring is a ir uiti ifthere is no bi oloured ir uits, i.e. ir uits for whi h only two

oloursappearsonitsar s. Thea ir uiti dire tedstararbori ityofadigraph

D

adigraphistheminimum number

k

of olourssu hthatthereexistsana ir uiti dire tedstar

k

- olouringof

D

. Inthissubse tion, wegiveashortalternativeproofofthefollowingtheoremdue toPinlouandSopena.

Theorem14 (Pinlouand Sopena[9℄) Every sub ubi orientedgraph has a ir uiti dire ted star

ar-bori ity atmost

4

.

Inordertoprovethistheorem,weneedthefollowinglemma.

Lemma15 Let

D

beana y li sub ubi digraph. Let

L

bealist-assignmentonthe ar sof

D

su hthat for everyar

uv

,

|L(uv)| ≥ d(v)

. Then

D

admits adire tedstar

L

- olouring.

Proof. Weprovetheresultbyindu tion onthenumberof ar sof

D

,the resultholdingtriviallyif

D

hasnoar s.

Sin e

D

is a y li ,it hasanar

xy

with

y

asink. Let

a

bea olourin

L(xy)

. Foranyar

e

distin t from

xy

, set

L

(e) = L(e) \ {a}

if

e

in ident to

xy

(andthus hashead in

{x, y}

sin e

y

is asink), and

L

(e) = L(e)

otherwise. Thenin

D

= D − xy

,wehave

|L

(uv)| ≥ d(v)

. Hen e,byindu tion hypothesis,

D

admits a dire ted star

L

- olouring that an be extended in a dire ted star

L

- olouring of

D

by

olouring

xy

with

a

.



Proof ofTheorem14.

Let

V

1

betheset ofverti esof outdegree at most

1

and

V

2

= V \ V

1

. Then everyvertex of

V

2

has outdegreeatleast

2

andsoindegreeatmost

1

.

Let

M

bethesetof ar swithtailin

V

1

and headin

V

2

. Colourallthear sof

M

with

4

. Moreover for every ir uit

C

in

D[V

1

]

and

D[V

2

]

hoosean ar

e(C)

and olourit by

4

. Note that, by denition of

V

1

and

V

2

,thear

e(C)

isnotin identto anyar of

M

and

C

istheunique i r uit ontaining

e(C)

. Letusdenote

M

4

thesetofar s oloured

4

. Then

M

4

isamat hingand

D − M

4

isa y li .

Weshallnowndadire tedstar olouringof

D −M

4

with

{1, 2, 3}

that reatesanybi oloured ir uit. Ifsu ha ir uitexists,

4

would beoneof its olourbe ause

D − M

4

is a y li andallitsar s oloured

4

wouldbein

M

be ausethear sof

M

4

\ M

is in aunique ir uitwhi hhas auniquear oloured

4

. Hen e wejust haveto be areful when olouring ar sin thedigraph indu edbythe endverti esof the

ar sof

M

.

Letus denotethear sof

M

by

x

i

y

i

,

1 ≤ i ≤ p

and set

X = {x

i

, 1 ≤ i ≤ p}

and

Y = {y

i

, 1 ≤ i ≤ p}

. Then

x

i

∈ V

1

and

y

i

∈ V

2

. Let

E

bethesetof ar swithtailin

Y

andheadin

X

. Let

H

bethegraph withvertexset

E

su hthat anar

y

i

x

j

isadja entto anar

y

k

x

l

if (a) either

k = l

,

(b) or

j = k

and

i > j

and

l > j

.

Sin eavertexof

X

hasindegreeatmost

2

andavertexof

Y

hasoutdegreeat most

2

,

H

hasmaximum degree

3

. Moreover

H

ontainsno

K

4

be ausetwoar sof

E

with sametail

y

k

arenotadja ent in

H

. Hen e,by Brooks Theorem,

H

has avertex- olouringin

{1, 2, 3}

whi h is orrespondsto a olouring

c

ofthear sof

E

. Sin e(a) issatised

c

isadire ted star olouring. Moreoverthis olouring reates no bi oloured ir uits: indeeda ir uit ontainsasubpath

y

i

x

j

y

j

x

l

with

i > j

and

k > j

,whosethreear s are oloureddierentlyby(b).

Let

D

= D − (M

4

∪ E

)

. Forany ar

uv

in

D

, let

L(uv) = {1, 2, 3} \ {c(wv) | wv ∈ E

}

. The

set

L(uv)

isthesetof oloursin

{1, 2, 3}

thatmaybeassignedto

uv

without reatingany oni twith thealready olouredar s.

D

isa y li and

|L(uv)| ≥ d(v)

, so by Lemma15, it admitsadire ted star

(15)

Remark16 Note that in the a ir uiti dire ted star

4

- olouring provided in the proof of Theorem14 thear s oloured

4

formamat hing.

4 Dire ted star arbori ity of digraphs with maximum in and

out-degree two

The goal of this se tion is to prove that every digraph with outdegree and indegree at most two has

dire tedstararbori ityatmostfour.

Theorem17 Let

D

beadigraph withmaximumin andoutdegreeatmosttwo. Then

dst(D) ≤ 4

. Thus, onje ture4holdsfor

k = 2

andhen eforalleven

k

. However,the lassofdigraphswith inand outdegree at mosttwois ertainly notaneasy lasswith respe t to dire ted stararbori ity,as wewill

showinSe tion 5.

Inorder to proveTheorem 17, it su es to show that

D

ontains agalaxy

G

whi h spans all the verti es of degree four. Then

D

= D − A(G)

has maximum degree at most

3

. So, by Theorem 11,

dst(D

) ≤ 3

,so

dst(D) ≤ 4

. Hen e Theorem17isdire tlyimplied bythefollowinglemma:

Lemma18 Let

D

be adigraph with maximum indegreeand outdegree two. Then

D

ontains agalaxy whi h spansthe set ofverti eswith degreefour.

Inordertoprovethislemma,weneedsomepreliminaries:

Let

V

beaset. Anordered digraphon

V

isapair

(≤, D)

where: ˆ

isapartial orderon

V

.

ˆ

D

isadigraphwith vertexset

V

.

ˆ

D

ontainstheHassediagramof

(i.e. when

x ≤ y ≤ z

implies

x = y

or

y = z

,then

xz

is anar of

D

).

ˆ If

xy

isanar of

D

,theverti es

x, y

are

- omparable.

Thear s

xy

of

D

thusbelongtotwodierenttypes: theforward ar swhen

x ≤ y

,andtheba kward ar swhen

y ≤ x

.

Lemma19 Let

(≤, D)

be anordereddigraphon

V

. Assumethateveryvertex isthetail ofatmostone ba kwardar andatmosttwoforwardar sandthatthe indegreeof everyvertexof

D

isatleast2,ex ept possibly one vertex

x

with indegree 1. Then

D

ontains twoar s

ca

and

bd

su h that

a ≤ b ≤ c

,

b ≤ d

and

c 6≤ d

,allfour verti esbeing distin tex ept possibly

a = b

.

Proof. Letus onsider a ounterexamplewithminimum

|V |

.

An interval is asubset

I

of

V

whi h has a minimum

m

and a maximum

M

su h that

I = {z :

m ≤ z ≤ M }

. An interval

I

is goodifeveryar withtailin

I

andheadoutside

I

hastail

M

andevery ba kwardar in

I

hastail

M

.

Let

I

bean intervalof

D

. Thedigraph

D/I

obtainedfrom

D

by ontra ting

I

isthe digraphwith vertexset

(V \ I) ∪ {v

I

}

su hthat

xy

isanar ifandonlyeither

v

I

∈ {x, y}

/

and

xy ∈ A(D)

, or

x = v

I

andthere exists

x

I

∈ I

su h that

x

I

y ∈ A(D)

,or

y = v

I

andthere exists

y

I

∈ I

su hthat

xy

I

∈ A(D)

. Similarly, thepartial order

/I

obtainedfrom

by ontra ting

I

is thepartial orderon

(V \ I) ∪ {v

I

}

su h that

x ≤

/I

y

ifand only if either

v

I

∈ {x, y}

/

and

x ≤ y

, or

x = v

I

and there exists

x

I

∈ I

su h

(16)

that

x

I

≤ y

, or

y = v

I

and there exists

y

I

∈ I

su h that

x ≤ y

I

. It follows from the denitions that

(≤

/I

, D/I)

isanordereddigraph. Notethat if

x ≤

/I

v

I

then

x ≤ M

with

M

themaximumof

I

.

The ru ial point is that if

I

a good intervalof

D

for whi h the on lusion ofLemma 19holds for

(≤

/I

, D/I)

, thenitholds for

(≤, D)

. Indeed, supposethere exists twoar s

ca

and

bd

of

D/I

su h that

a ≤

/I

b ≤

/I

c

,

b ≤

/I

d

and

c 6≤

/I

d

. Notethatsin e

I

isgood

v

I

6= c

. Let

M

bethemaximumof

I

. If

v

I

∈ {a, b, c, d}

/

,then

ca

and

bd

givesthe on lusionfor

D

.

If

v

I

= a

then

cM

isanar . Letusshowthat

M ≤ b

. Indeedlet

x

beamaximalvertexin

I

su hthat

x ≤ b

and

y

aminimalvertexsu hthat

x ≤ y ≤ b

. Sin etheHassediagram of

isin ludedin

D

then

xy

isanar so

x = M

sin e

I

isgood. Thus

cM

and

bd

arethedesiredar s.

If

v

I

= b

then

M d

isanar and

a ≤ M

,so

ca

and

M d

arethedesiredar s. If

v

I

= d

thenthereexists

d

I

∈ I

su h that

bd

I

,so

ca

and

bd

I

arethedesiredar s.

Hen e to get a ontradi tion, it issu ient to nd agoodinterval

I

su h that

(≤

/I

, D/I)

satises thehypothesesofLemma19.

Observethat thereareat leasttwoba kwardar s. Indeed,iftherearetwominimalelementsfor

, thereareatleastthreeba kwardar sheadingtothesepoints(sin eoneofthem anbe

x

). Andifthere isauniqueminimum

m

,byletting

m

minimal in

V \ m

,at leasttwoar sareheadingto

m, m

.

Let

M

beavertexwhi h isthetailofaba kwardar andwhi his minimalfor

forthisproperty. Sin etwoar s annothavethesametail,

M

isnotthemaximumof

(ifany). Let

M m

betheba kward ar withtail

M

.

We laimthattheinterval

J

withminimum

m

andmaximum

M

isgood. Indeed,bythedenitionof

M

, noba kwardar hasitstailin

J \ {M }

. Moreover,anyforwardar

bd

withitstailin

J \ {M }

and itsheadoutside

J

wouldgiveour on lusion(with

a = m

and

c = M

),a ontradi tion.

Now onsider agood interval

I

with maximum

M

whi h is maximalwith respe t to in lusion. We laim that if

x ∈ I

, then there is at least onear entering

I

, and if

x /

∈ I

, there are at least twoar s entering

I

withdierenttails.

Call

m

1

theminimumof

I

and

m

2

anyminimalelementof

I \ m

1

. Firstassumethat

x

isin

I

. There areatleastthreear swithheads

m

1

or

m

2

. Oneofthemis

m

1

m

2

,oneofthem anbewithtail

M

,but thereisstill oneleftwithtailnotin

I

. Nowassumethat

x

isnotin

I

. There areatleasttwoar swith heads

m

1

or

m

2

andtailsnotin

I

. Ifthetailsaredierent,wearedone. Ifthetailsarethesame,say

v

, observethat

vm

1

and

vm

2

are bothba kwardof bothforward(otherwise

v

wouldbein

I

). Sin eboth annotbeba kward

vm

1

and

vm

2

areforward. Hen e theintervalwithminimum

v

andmaximum

M

isagoodinterval, ontradi tingthemaximalityof

I

. Thisprovesthe laim.

This laimimpliesthat

(≤

/I

, D/I)

satisesthehypothesesofLemma19,yieldinga ontradi tion.



Proofof Theorem18. Let

G

beagalaxyof

D

whi hspansamaximumnumberofverti esofdegree four. Suppose for ontradi tionthat somevertex

x

withdegreefourisnotspanned.

Analternating pathisanorientedpathendingat

x

,startingbyanar of

G

,andalternatingwithar s of

G

andar sof

A(D) \ A(G)

. Wedenoteby

A

thesetofar sof

G

whi hbelongtoanalternatingpath. Claim1 Every ar of

A

isa omponent of

G

.

Proof. Indeed, if

uv

belongs to

A

, it startssome alternatingpath

P

. Thus, if

u

hasoutdegree more thanonein

G

, thedigraphwithset ofar s

A(G)△A(P )

isagalaxyand spans

V (G) ∪ x

.



Claim2 Thereisno ir uitsalternatingar sof

A

andar sof

A(D) \ A

.

Proof. Assume that there is su h a ir uit

C

. Considera shortestalternating path

P

startingwith somear of

A

in

C

. Nowthedigraphwithar s

A(G)△(A(P ) ∪ A(C))

isagalaxywhi hspans

V (G) ∪ x

,

(17)

Wenowendow

A ∪ x

withapartialorderstru turebyletting

a ≤ b

ifthereexistsanalternatingpath startingat

a

and endingat

b

. The fa t that this relationis apartial order relies onClaim 2. Observe that

x

isthemaximumofthis order.

Wealso onstru tadigraph

D

onvertexset

A ∪ x

andallar s

uv → st

su hthat

us

or

vs

is anar of

D

(and

uv → x

su hthat

ux

or

vx

isanar of

D

).

Claim3 Thepair

(D, ≤)

isanordereddigraph. Moreoveranar of

A

isthetailofatmostoneba kward ar andtwoforwardar sand

x

isthe tailof atmosttwoba kwardar s.

Proof. The fa t that the Hasse diagram of

is ontainedin

D

follows from thefa t that if

uv ≤ st

belongsto theHasse diagramof

, there isanalternatingpath startingby

uvst

, in parti ular,thear

vs

belongsto

D

, andthus

uv → st

in

D

.

Suppose that

uv → st

and then

vs

or

us

is an ar of

D

. If

vs

is an ar , then be ause there is no alternating ir uit,

st

follows

uv

onsomealternatingpathso

uv ≤ st

. Inthis ase,

uv → st

isforward. If

us

is an ar of

D

, we laim that

st ≤ uv

. Indeed, if an alternating path

P

starting at

st

does not ontain

uv

, thegalaxywith ar s

(A(G)△A(P )) ∪ {us}

spans

V (G) ∪ x

ontradi tingthemaximalityof

G

. Inthis ase,

uv → st

isba kward.

Itfollowsthatanar

uv

of

A

isthetailofatmostoneba kwardar sin ethisar and

uv

arethetwo ar sleaving

u

in

D

andthetailofatmosttwoforwardar ssin e

v

hasoutdegreeatmost

2

. Furthermore, sin e

x

hasoutdegreeatmosttwo,itfollowsthat

x

isthetailofat mosttwoba kwardar s.



Claim4 The indegreeof every vertexof

D

istwo.

Proof. Let

uv

be avertex of

D

whi h startsan alternatingpath

P

. If

u

hasindegree lessthan two, and thus does notbelong to the setof verti esof degreefour, thegalaxywith ar s

A(G)△A(P )

spans moreverti esofdegreefour than

G

,a ontradi tion. Let

s

and

t

bethetwoinneighboursof

u

in

D

. An element of

A ∪ x

ontains

s

otherwise thegalaxywith ar s

(A(G)△A(P )) ∪ {su}

spans

V (G) ∪ x

and ontradi tsthemaximalityof

G

. Similarlyanelementof

A ∪ x

ontains

t

.

Observethatthesameelementof

A ∪ x

annot ontainboth

s

and

t

(eitherthear

st

orthear

ts

),

otherwisethear s

su

and

tu

wouldbebothba kwardorforward,whi hisimpossible.



At this stage, in order to apply Lemma 19, we just need to insure that theba kwardoutdegree of

everyvertexisat mostone. Sin etheonlyelementof

D

whi histhetailoftwoba kwardar sis

x

,we simplydeleteanyofthesetwoba kwardar s. Theindegreeofavertexof

D

de reasesbyonebutweare stillfullling thehypothesisofLemma19.

Hen ea ordingto thislemma,

D

ontainstwoar s

ca

and

bd

su h that

a ≤ b ≤ c

,

b ≤ d

and

c 6≤ d

. Keepinmindthat

a, b, c, d

areelementsof

A ∪ x

. Inparti ular,thereisanalternatingpath

P

ontaining

a, b, d

(in thisorder)whi h doesnot ontain

c

. Setting

a = a

1

a

2

and

c = c

1

c

2

, notethat theba kward ar

ca

orrespondsto thear

c

1

a

1

in

D

. Werea ha ontradi tion by onsidering thegalaxywithar s

(A(G)△A(P )) ∪ {c

1

a

1

}

whi hspans

V (D

) ∪ x

.



5 Complexity

Thedigraphswithdire tedstararbori ity

1

arethegalaxies. Soone anpolynomiallyde ideif

dst(D) =

1

. De iding whether

dst(D) = 2

or notis alsoeasy sin ewejust haveto he k that the oni t graph (withvertexsetthear sof

D

,twodistin tar s

xy, uv

beingin oni twhen

y = u

or

y = v

)isbipartite. Howeverforlargervalue,asexpe ted,itisNP- ompletetode ideifadigraphhasdire tedstararbori ity

(18)

Theorem20 Thefollowing problemis NP- omplete:

INSTANCE:Adigraph

D

with

+

(D) ≤ 2

and

(D) ≤ 2

.

QUESTION:Is

dst(D)

atmost

3

?

Proof. The proof is a redu tion to

3

-edge- olouring of

3

-regular graphs. To see this, onsider a

3

-regulargraph

G

. Itadmitsanorientation

D

su hthateveryvertexhasin andoutdegreeatleast1. Let

D

be the digraph obtainedfrom

D

by repla ingeveryvertexwith indegree

1

and outdegree

2

by the subgraph

H

depi tedinFigure2whi hhasalsooneenteringar (namely

a

)andtwoleavingar s(

b

and

c

). It iseasyto he kthat inanydire ted star

3

- olouringof

H

, thethreear s

a

,

b

and

c

getdierent

a

1

b

c

2

1

3

3

2

2

3

1

2

3

1

Figure2: Thegraph

H

andoneofitsdire tedstar

3

- olouring

olours. Moreoverifthesethreear sarepre olouredwiththreedierent olours,we anextendthistoa

dire tedstar

3

- olouringof

H

. Su ha olouringwith

a

oloured

1

,

b

oloured

2

and

c

oloured

3

isgiven in Figure 2. Furthermore,a vertex with indegree

2

and outdegree

1

must haveits three in identar s oloureddierentlyinadire tedstar

3

- olouring. So

dst(D

) = 3

ifandonlyif

G

is

3

-edge olourable.



6 Multiple bers

In this se tion we onsider the problem with

n ≥ 2

bers. More pre isely, we give some bounds on

λ

n

(m, k)

. Werstgivealowerboundon

λ

n

(m, k)

.

Proposition 21

λ

n

(m, k) ≥

 m

n

 k

n



+

k

n



Proof. Considerthefollowing

m

-labelleddigraph

G

n,m,k

withvertexset

X ∪ Y ∪ Z

su hthat :

ˆ

|X| = k

,

|Y | = 2

(m+1)k

2

and

|Z| = m

|Y |

k



.

ˆ Forany

x ∈ X

and

y ∈ Y

thereisanar

xy

(ofwhateverlabel).

ˆ Foreveryset

S

of

k

verti esof

Y

andinteger

1 ≤ i ≤ m

,thereisavertex

z

i

S

in

Z

whi hisdominated byalltheverti esof

S

viaar slabelled

i

.

Suppose there exists an

n

-ber olouring of

G

n,m,k

with

c <



m

n



k

n

 +

k

n



olours. For

y ∈ Y

and

1 ≤ i ≤ m

,let

C

i

(y)

bethesetof oloursassignedtothear slabelled

i

leaving

y

. For

0 ≤ j ≤ n

,let

P

j

the setof oloursusedon

j

ar sentering

y

(andne essarilywithtwodierentsbers). Then

P

n

(19)

as

k

ar senter

y

. Moreover

(P

0

, P

1

, . . . , P

n

)

isa partitionof the set of olours so

P

n

j=0

|P

j

| = c

. Now ea h olourof

P

j

mayappearin atmost

n − j

ofthe

C

i

(y)

,so

m

X

i=1

|C

i

(y)| ≤

n

X

j=0

(n − j)|P

j

| = n

n

X

j=0

|P

j

| −

n

X

j=0

j|P

j

| = cn − k.

Be ause

|Y | = 2

(m+1)k

2

,thereisaset

S

of

k

verti es

y

of

Y

havingthesame

m

-uple

(C

1

(y), . . . , C

m

(y)) =

(C

1

, . . . , C

m

)

. Without loss of generality, we may assume

|C

1

| = min{|C

i

| | 1 ≤ i ≤ m}

. Hen e

|C

1

| ≤

cn−k

m

. But the vertex

z

1

S

has indegree

k

so

|C

1

| ≥ k/n

. Sin e

|C

1

|

is an integer, we have



cn−k

m



≥ |C

1

| ≥ ⌈k/n⌉

. So

c ≥

m

n



k

n

 +

k

n

. Sin e

c

is an integer, we get

c ≥



m

n



k

n

 +

k

n



, a ontradi tion.



Notethat thegraph

G

n,m,k

isa y li . Thefollowinglemmashowsthat,if

m ≥ n

,one annotexpe t better lowerbounds by onsidering a y li digraphs. Indeed

G

n,m,k

is the

m

-labelled a y li digraph withindegreeatmost

k

forwhi h an

n

-ber olouringrequiresthemore olours.

Lemma22 Let

D

beana y li

m

-labelleddigraphwith

≤ k

. If

m ≥ n

then

λ

n

(D) ≤



m

n



k

n

 +

k

n



.

Proof. Sin e

D

is a y li ,itsvertexset admitsanordering

(v

1

, v

2

, . . . , v

p

)

su hthat if

v

j

v

j

isanar then

j < j

.

Byindu tion on

q

, we shall nd an

n

-ber olouring of

D[{v

1

, . . . , v

q

}]

together with sets

C

i

(v

r

)

,

1 ≤ i ≤ m

and

1 ≤ r ≤ q

,of

⌈k/n⌉

olourssu hthat,inthefuture,assigninga olourin

C

i

(v

r

)

toanar labelled

i

leaving

v

r

willfullllthe onditionof

n

-ber olouringat

v

r

.

Startingthepro essiseasy. We maytakeas

C

i

(v

1

)

any

⌈k/n⌉

-setssu hthat a olourappearsin at most

n

ofthem.

Suppose now that we have an

n

-ber olouring of

D[{v

1

, . . . , v

q−1

}]

and that, for

1 ≤ i ≤ m

and

1 ≤ r ≤ q − 1

,theset

C

i

(v

r

)

is determined. Letus olourthear s entering

v

q

. Ea h ofthese ar s

v

r

v

q

maybeassignedoneofthe

⌈k/n⌉

oloursof

C

l(v

r

v

q

)

(v

r

)

. Sin ea olourmaybeassignedto

n

ar s(using dierentbers)entering

v

q

, one an assigna olourandbertoea h su h ar . Itremainsto determine the

C

i

(v

q

)

,

1 ≤ i ≤ m

.

For

0 ≤ j ≤ n

, let

P

j

bethesetof oloursassignedto

j

ar sentering

v

q

. Let

N =

P

n

i=0

(n − j)|P

j

|

and

(c

1

, c

2

, . . . , c

N

)

beasequen eof olourssu hthatea h olourof

P

j

appearsexa tly

n − j

timesand onse utively. For

1 ≤ i ≤ m

, set

C

i

(v

q

) = {c

a

| a ≡ i mod m}

. As

n ≤ m

, a olour appearsat most on einea h

C

i

(v

q

)

. Moreover,

N = n



m

n



k

n

 +

k

n

 − k ≥ m 

k

n



. Sofor

1 ≤ i ≤ m

,

|C

i

(v

q

)| ≥



k

n



.



Lemma22givesatightupperbound on

λ

n

(D)

fora y li digraphs. Weshallproveanupperbound for general digraphs. To do so, we srt give an upper bound on

λ

n

(D)

for

m

-labelled digraphs with boundedin-andoutdegreInthis ase,oone anderivefromthefollowingtheoremofGuidulithatfew

oloursareneeded. Notethat thegraphs

G

n,m,k

requireslots of oloursbut haveverylargeoutdegree.

Theorem23 (Guiduli [6℄) If

, ∆

+

≤ k

then

dst(D) ≤ k + 20 log k + 84

. Moreover

D

admits a dire ted star olouring with

k + 20 log k + 84

olours su h that for ea h vertex

v

there are at most

10 log k + 42

olours assignedtoitsleavingar s.

The proof of Guiduli's Theorem an be modied to obtain the following statement for

m

-labelled digraphs.

Theorem24 Let

f (n, m, k) =

 k + (10m

2

+ 5) log k + 80m

2

+ m + 21

n



and

D

bean

m

-labelleddigraph with

, ∆

+

≤ k

. Then

λ

n

(D) ≤ f (n, m, k)

. Moreover

D

admitsa

n

-ber olouringwith

f (n, m, k)

su h thatfor ea h vertex

v

andea hlabel

l

,thereare atmost

g(m, k) = ⌈(10m + 5) log k + 40m + 21⌉

olours assignedtothe ar slabelled

l

leaving

v

.

Figure

Figure 1: A K 4 in the onit graph and the two ways of extending the olouring.
Figure 2: The graph H and one of its direted star 3 -olouring

Références

Documents relatifs

- Découper les pointillés de la page 1 - Utiliser une attache parisienne comme

Le prêt peut être sollicité pour l’achat d’une caravane, lorsqu’il s’agit de la résidence de la famille et sous réserve d’un droit à une allocation logement..

The proposed methodology o f risk-based SPC fault diagnosis and itsintegrationwith safety instrum ented systemsis implemented using 02 development cnvironmcmTotcst

Testsurlapente Intervalledeconfiancepourlapente Testsurl’ordonnéeàl’origine Intervalledeconfiancepourl’ordonnéeàl’origine

Il faut également saluer l'effort des entreprises françaises qui améliorent en permanence leur savoir-faire, leurs outils et procédés de travail, comme on en voit de nombreux

administration générale et organisation des activités des sections Fanfare 5 , Théâtre, Cinéma, Fêtes nautiques, Jeux Intervilles, Préparation militaire, Sport :

zone de sélection proprement dite de leur race). On peut apprécier objectivement l’intérêt d’une sélection de ce type, d’après la valeur estimée de la part de

Les taureaux charolais et piémontais en croisement industriel avec des vaches locales donnent donc des carcasses de meilleure valeur bouchère (poids et qualité) que