• Aucun résultat trouvé

What is the typical energy of an acoustic phonon of 50GHz ? Deduce the typical time of interaction between an electron and that acoustic phonon

N/A
N/A
Protected

Academic year: 2022

Partager " What is the typical energy of an acoustic phonon of 50GHz ? Deduce the typical time of interaction between an electron and that acoustic phonon"

Copied!
3
0
0

Texte intégral

(1)

   

 

   

MASTER  of  PHYSICS     Examination  

Lecture  :  Ultrafast  phenomena  and  optoacoustics  (P.  Ruello)    

Part  1  :  WITHOUT  DOCUMENT    

Heisenberg  relation  :      

 1-­‐  Localization  time  :    

We  consider  the  two  electronic  structures  depictured  below.  The  grey  area  corresponds   to  occupied  levels.  Give  an  order  of  the  localization  time  of  an  electron  in  the  vicinity  of  a   cation  for  both  electronic  structure  for  the  band  of  10eV  and  0.5ev  width.  

 

2-­‐  Interaction  time  between  electrons      

What  is  the  typical  energy  of  the  Coulomb  interaction  between  two  electrons    ?  What  is   then  the  typical  interaction  time      

 

3-­‐  Interaction  time  between  an  electron  and  a  phonon      

What   is   the   typical   energy   of   an   optical   phonon   of   3THz   ?   Deduce   the   typical   time   of   interaction  between  an  electron  and  that  optical  phonon.  

 

!"#$%

&#'()*+%,-%

,../0)#1%

(*2*#(%

34%%

#'#56+%

"78#$%

34%%

#'#56+%

(2)

 

What  is  the  typical  energy  of  an  acoustic  phonon  of  50GHz  ?  Deduce  the  typical  time  of   interaction  between  an  electron  and  that  acoustic  phonon.  

 

Which   process   among   electron-­‐acoustic   phonon   and   electron–optical   phonon   is   the   fastest  process  ?    

 

4  Femtosecond  Pump-­‐probe  setup    

The   objective   of   the   question   is   to   describe   the   principle   of   the   optical   pump-­‐probe   method.  

Explain  the  different  elements  shown  below  (fill  the  boxes  for  examples).  

   

   

Part  2  WITH  DOCUMENT    

Electronic  pressure  and  optoacoustics    

1-­‐  We  consider  a  free  electron  gas  at  3D  (N  electrons  in  a  volume  V)  according  to  the   Sommerfeld  model.  The  metal  will  be  considered  as  isotropic.  The  lattice  is  cubic  with  a   lattice  parameter  a=0.2nm.  Each  atom  provides  2  conduction  electrons.  The  molar  mass   is  80g/mol.  The  longitudinal  acoustic  sound  velocity  is  5000m/s.  

 

-­‐ give  the  energy  of  the  free  electron  

-­‐ what  is  the  concentration  of  conduction  electrons  in  this  metal  ?     -­‐ give  the  wave  function  form  of  a  free  electron    

-­‐ considering  the  Born  Von  Karman  boundary  limits,  give  the  density  of  state  g(k)  

!L

!!

!

!!

!

!!

!

!!

!

!!

!

!!

!

!!

!

!!

!

(3)

-­‐ Detail  the  calculation  leading  to  g(E)    :     g(E)= V

2!2 (2m*

!2 )3/2 E   -­‐ calculate  EF.  

 

3-­‐   Considering   the   definition   of   the   pressure   P=-­‐(dE/dV)N,   calculate   it   for   a   quantum   free  electron  gas  (T=0K).  Give  an  estimate  of  this  pressure.  

 (question  4  to  7  are  independent  to  previous  questions)    

 A  femtosecond  laser  excites  a  metal  giving  rise  to  a  rapid  increase  of  the  electron  gas   pressure   (following   model   of   question   3   that   we   assume   to   be   valid).   The   pump   light   penetrates  beneath  surface  over  a  distance  L=10nm  according  to  the  profile  P=P0exp(-­‐

z/L).    

     

   

 4-­‐  What  is  the  typical  acoustic  frequency  which  is  generated  by  the  femtosecond  laser  ?      

5-­‐   The   maximum   electronic   pressure   on   the   surface   is   P0=1GPa.   Considering   Newton   Law,  what  is  the  force  F  imposed  to  the  atoms    ?  Give  the  numerical  value  of  F  for  z=0.  

 

6-­‐   Considering   this   metal   has   a   longitudinal   sound   velocity   of   5000   m/s.   Deduce   the   elastic   constant   C   characterizing   the   elastic   interatomic   force.     Deduce   the   lattice   parameter  change  Δx  induced  by  the  electronic  pressure  for  atoms  on  the  surface  (z=0).  

Deduce  Δx/a.    

 

7-­‐  If  we  consider  the  photoelastic  effect  with  Δn=P×(Δx/a),  where  P  is  the  photoelastic   coefficient   with   P=   1   here,   what   will   be   the   order   of   the   change   of   optical   reflectivity   induced   by   this   photo-­‐induced   acoustic   wave   ?   Can   we   detect   directly   this   optical   reflectivity  change  by  a  photodiode  ?    

     

!"#!$

%$ &$

'()*+$

Références

Documents relatifs

In order to calculate the Eq.(3) without using ground-state approximation, a self-consistent set of equations is derived for a central optimized potential, this effective

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

This surprising result has been explained by Engelsberg and Simpson /3/ who showed that the in- fluence of the electron-phonon interaction on the dHvA effect is rather subtle

High symmetry points in the Brillouin zone allow for an unambiguous identification of the contributions of specific deformabilities to the phonon self-energy in the correspon-

This indicates that the large increase, under pressure, of the interaction of electrons with the Ba2 + symmetric stretching mode along z is expected, and

This occurs because, in an electron gas obeying degenerate statistics, phonon emission with simultaneous conservation of energy and momentum between initial and final

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

- Most of the experiments to be describ- ed in this paper were performed using two junctions of equal area, evaporated one on top of the other on a sapphire substrate, but