• Aucun résultat trouvé

The theorem on unitary equivalence of Fock representations

N/A
N/A
Protected

Academic year: 2022

Partager "The theorem on unitary equivalence of Fock representations"

Copied!
6
0
0

Texte intégral

(1)

A NNALES DE L ’I. H. P., SECTION A

J. M ANUCEAU

A. V ERBEURE

The theorem on unitary equivalence of Fock representations

Annales de l’I. H. P., section A, tome 16, n

o

2 (1972), p. 87-91

<http://www.numdam.org/item?id=AIHPA_1972__16_2_87_0>

© Gauthier-Villars, 1972, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.

org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

p. 87

The theorem

on

Unitary Equivalence

of Fock Representations

J. MANUCEAU

A. VERBEURE

Faculte des Sciences Saint-Charles, 13-Marseille 3e (France)

Instituut voor Theoretische Fysica, Universiteit Leuven (Belgium).

Vol. XVI, 2, 1971 Physique théorique.

ABSTRACT. - We prove that two Fock states WJ and WK

(not

necessa-

rily

gauge

invariant)

on the

CAR-algebra

are

unitarily equivalent

if

and

only if

J 2014

K I

is a Hilbert-Schmidt

operator.

We calculate

explicitly

the norm

diff erence ( ~

w J -

fl.

Let

(H, s)

be a

separable

Euclidean space and J and K

complex

struc-

tures on

(H, s),

i. e.

Consider the

operators

and let P =

U P ), Q

=

V Q I

be their

polar decompositions, Q ), P

and U commute with J and

K ; consequently

the dimension of Ker P is even or

infinite; Q

is a normal

operator,

therefore V can be chosen such that V+ =-

V,

V2 -= 1. The same notations as in

[1]

are

used : c1 = c1

(H, s)

is the

CAR-algebra

and 03C9J is any pure

quasi-free

state on c1; J satisfies : J+ = -

J,

J2 =- 1.

THEOREM 1. - Let the

operator

P be

diagonalizable [i.

e.

Ǥ;);gN

orthonormal basis of H such that P

d~

=

~~1,

R

(reals)],

then lhere

exists a

family of subspaces of

H invariant under J and K such

(i)

H =

C Hn ;

ANN. INST. POINCARE, A-XVI-2 7

(3)

88 J. MANUCEAU AND A. VERBEURE

(ii)

dim Ho and dim H i is even or

infinite,

dim

Hn

= 4

for

n ~

2;

(iii)

P

==~. i.n

pn, where

Pn H

=

Hn ; "’;"0

=

2, ~, ~ 1

= 2 and - 2

~tR

2

n

for

n ~ 2.

Proof.

- Let F = Ker

Q ;

F and F ~

(orthogonal complement

of F

for

s)

are invariant for J and K.

(a) Suppose

Fl

= § 0 ) ;

then JK

== ~ ~

is

unitary

and

Hermitian,

there exists a

decomposition

F =

Ho

+

Hi

such that P = - Po +

Pi,

where Po and Pi are the

orthogonal projection operators

on

Ho respectively Hi,

which are invariant under J and K and therefore dim Ho and dim

Hi

is even or infinite.

(b) Suppose

F

= 0 ~,

let Hx be

subspaces

of H such that

PHx

=

~x H~.

Because

[P, J]- == [P, K]-

=

0,

the

subspaces H:x

are invariant for J and K. Remark that P2

+ Q+ Q

=

4, Q+ Q = Q 12; therefore Q

has

the same proper

subspaces Hx as P ). Let Q Hx

=

Hx,

then

À~ + [J-~

= 4 for all a. Take any

~t,

E

H).

and consider the

subspaces generated by

the real

orthogonal set

V

~).,

J

~),

J V

u~, }.

It is

clear that

H~

is a real

subspace

invariant under J and K of dimension four.

In

general

H = F + F1 the results of

(a)

and

(b)

prove the theorem.

Q. E. D.

LEMMA. - Let xj and 7TK be the Fock

representations

associated with J

respectively

K.

If

03C0J and 1!K are

unitarily equivalent

then

[J, K]+

has - 2 as the

only

accumulation

point of

its

spectrum.

Proof. - Let

be any infinite orthonormal set of Hand

then

Using

Schwartz’s

inequality,

we have

proving

(4)

EQUIVALENCE

i.

(Ln)

tends

strongly

to one for n

tending

to

infinity.

Because 1rJ

and 7rK are

unitarily equivalent

Trp

(Ln)

tends

strongly

to one on 3eK

and therefore

weakly.

Further the

expression

must tend to one for all orthonormal sets which is

possible

if P

has no accumulation

points

in its

spectrum

different from - 2.

Q. E. D.

THEOREM 2.

- If

cjj and WK are pure

quasi- free states,

then 1rJ and 7rK

are

unitarily equivalent i ff ~

I J -

K (

is a Hilbert-Schmidt

operator.

Proof. - By

Theorem

1,

where dim

Hn

= 4 for n ~ 2.

By

the

lemma,

dim

Hi

oo. Let

j ~1,

...,

cÐr;

J

~1,

...,

}

be an orthonormal basis of

Hi

and

In each Hn

(n

~

2)

we choose the

following

orthonormal basis

(tfn, J 03C8n, JV rfn), where 03C8n

is any normalized vector of

Hn

and let

where

If uo is the unit of tl

(Ho, s),

then for all n 0 and all x~03B1

(Hn, s),

x x~

In order that U =

0 (un)

is an

unitary operator

on XJ =

0 ~Jn

n-0 n-o

(Jn

is the restriction of J to

Hn)

it is necessary and sufficient that

(5)

90 J. MANUCEAU AND A. VERBEURE

does not vanish. But

Otherwise

(J 2014 K)+ (J 2014 K)

= 2 +

P,

therefore 03C0J and 7rK are

unitarily equivalent if I

is a Hilbert-Schmidt

operator.

Conversely,

suppose that

J - K I

is not a Hilbert-Schmidt

operator,

hence j j 2 4 -

0. Let

En,1n = ® Hi;

the restrictions of 03C9J

~==2

and WK to cx

(En, m, s)

remain pure states

unitarily equivalent

because

~n

if

=== II

uz, then

Hence

by

Lemma 2.4 of

[2]

Denote

by 03B1 (En, s)C

the commutant of c1

(En, s)

in

By

lemma 2.3

of

[2],

Since L’t

(E*, s)

is the inductive limit of eX

(En,m, s)

when m - oo, we

have

By

lemma 2.1 of

[2]

and 1rK are not

unitarily equivalent.

Q. E. D.

COROLLARY. - The

representations

7!J and 7rK are

unitarily equivalent

X/j)

OJj -

GJK ’ 2,

and

(6)

Proof.

Lemma 2 .1 of

[2]

proves that if 03C0J is not

unitarily equivalent

with 7rK,

then [)

aj

fl

= 2. Otherwise if rj and 7rK are

equivalent,

it follows from the calculations done in Theorem

2,

that

[1] E. BALSLEV, J. MANUCEAU and A. VERBEURE, Commun. math. Phys., 8, 1968, p. 315.

[2] R. T. POWERS and E. SØRTMER, Commun. math. Phys., vol. 16, 1970, p. 1.

(Manuscrit reçu le 6 juillet 1971.)

Références

Documents relatifs

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention