• Aucun résultat trouvé

Interval Analysis for Kidnapping Problem using Range Sensors

N/A
N/A
Protected

Academic year: 2022

Partager "Interval Analysis for Kidnapping Problem using Range Sensors"

Copied!
55
0
0

Texte intégral

(1)

The Global Localization Context The Proposed Method The Simulator

Interval Analysis for Global Localization Problem using Range Sensors

R´ emy GUYONNEAU, S´ ebastien LAGRANGE, Laurent HARDOUIN and Philippe LUCIDARME.

Laboratoire d’Ing´ enierie des Syst` emes Automatis´ es (LISA), University of Angers,

France.

June 10, 2011

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 1

(2)

The Global Localization Context The Proposed Method The Simulator

Introduction

F Robot localization is an important issue of mobile robotics.

F Robotics challenge CAROTTE 1

F Simultaneous Localization And Mapping (SLAM) and Global Localization problems.

F In this presentation a set membership approach will be considered to deal with the global localization problem.

1

CArtographie par ROboT d’un TErritoire (Robot Land Mapping) organized by the french ANR (National Research Agency).

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 2

(3)

The Global Localization Context The Proposed Method The Simulator

Outline

1 The Global Localization Context

2 The Proposed Method The Static localization

The Global Localization Algorithm

3 The Simulator

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 3

(4)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Global Localization Context

1 The Global Localization Context

2 The Proposed Method The Static localization

The Global Localization Algorithm

3 The Simulator

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 4

(5)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Robot

The considered robot

We consider a mobile wheeled robot with a LIDAR a sensor. Its pose is defined by p =

 x y θ

, with (x, y) its localization and θ

its orientation.

a

Light Detection And Ranging

The measurements

The sensor provides a set of n measurements:

D =

d 0 = (d 0

x

, d 0

y

) .. . d n = (d n

x

, d n

y

)

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 5

(6)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Robot

Robot Obstacle

Figure 1: The robot’s pose.

Robot Obstacle

Figure 2: A measurement d

i

.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 6

(7)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Environment

The map

The known environment E ∈ R 2 is discretized with a resolution δ x , δ y and this lead to a grid G composed of n × m cells (i, j ). At each cell (i , j ) is associated g i ,j ∈ {0, 1}:

g i ,j =

( 1 if there is an obstacle in the cell (i , j ), 0 else.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 7

(8)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Objective

Hypotheses

, → Bounded error context, , → Outliers can be

considered,

Figure 3: Measurements from the sensor.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 8

(9)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Objective

Figure 2: We have a grid map.

Hypotheses

, → Bounded error context, , → Outliers can be

considered,

Figure 3: Measurements from the sensor.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 8

(10)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Objective

Figure 2: We have a grid map.

Hypotheses

, → Bounded error context, , → Outliers can be

considered,

Figure 3: Measurements from the sensor.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 8

(11)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Objective

Figure 2: We have a grid map.

Hypotheses

, → Bounded error context, , → Outliers are considered,

Figure 4: Initial domain.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 9

(12)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Objective

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 10

(13)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Objective

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 10

(14)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Objective

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 10

(15)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Objective

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 10

(16)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Objective

The robot is localized

All the measurements fit with the map.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 11

(17)

The Global Localization Context The Proposed Method The Simulator

The Robot The Environment The Objective

The Objective

The robot is localized Except for one outlier.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 11

(18)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Proposed Method

1 The Global Localization Context

2 The Proposed Method The Static localization

The Global Localization Algorithm

3 The Simulator

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 12

(19)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

The Context Let [p] =

 [x]

[y]

[θ]

 be an initial domain that encloses the robot’s

pose p =

 x y θ

 and D =

 d 0

.. . d n

 a set of n measurements.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 13

(20)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

The Robot-Measurement Distance

||d i || 2 = (x − w i

x

) 2 + (y − w i

y

) 2 .

Robot Obstacle

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 14

(21)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

The Measurement-Measurement Distance

||d i − d j || 2 = (w i

x

− w j

x

) 2 + (w i

y

− w j

y

) 2 .

Robot Obstacle

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 15

(22)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

The Measurements Coordinates

The coordinates (w i

x

, w i

y

) of an obstacle in the map are defined by:

w i

x

w i

y

=

cos(θ) sin(θ)

−sin(θ) cos(θ)

d i

x

d i

y

+

x y

Robot Obstacle

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 16

(23)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 17

(24)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 17

(25)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 17

(26)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

The map constraint.

We define c G the constraint which says that the

measurement has to be consistent with the map.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 17

(27)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 17

(28)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

The map contractor.

We define C G the contractor of the constraint c G .

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 17

(29)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 17

(30)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

The map constraint.

We define c G the constraint which says that the measurement has to be consistent with the map.

The map contractor.

We define C G the contractor of the constraint c G .

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 18

(31)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Static localization

Considered Constraint Satisfaction Problem V = {x, y, θ,

d i = (d i

x

, d i

y

) T , w i

x

, w i

y

with i = 1, · · · , n}, D = {

[x ] = [−∞, +∞], [y ] = [−∞, +∞], [θ] = [0, 2π], [w

ix

] = [−∞, +∞], [w

iy

] = [−∞, +∞],

[d

ix

] =obtained from the sensor, [d

iy

] =obtained from the sensor}.

C =

 

 

 

 

 

 

c w

ix

: d i

x

cos(θ) + d i

y

sin(θ) + x c w

iy

: −d i

x

sin(θ) + d i

y

cos(θ) + y c d

i

: ||d i || 2 = (x − w i

x

) 2 + (y − w i

y

) 2

c d

i,j

: ||d i − d j || 2 = (w i

x

− w j

x

) 2 + (w i

y

− w j

y

) 2 c G : to be consistent with the map (using C G )

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 19

(32)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

1 The Global Localization Context

2 The Proposed Method The Static localization

The Global Localization Algorithm

3 The Simulator

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 20

(33)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

Assumption

We assume u = (u r , u l ) the knowledge of the moving of the robot, with u r the speed of the right wheel and u l the speed of the left wheel.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 21

(34)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

Prediction Equation

f (p k , u k ) = p k +1 =

 x k+1

y k+1 θ k+1

 =

x k + u

kr

+u 2

kl

cos(θ k ) y k + u

kr

+u 2

kl

sin(θ k )

θ k + u

kr

−u 2

kl

 .

Retro-propagation Equation

f −1 (p k+1 , u k ) = p k =

x k+1 − u

kr

+u 2

kl

cos(θ k+1 − u

kr

−u 2

kl

) y k+1u

kr

+u 2

kl

sin(θ k+1u

kr

−u 2

kl

)

θ k+1u

kr

−u 2

kl

 .

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 22

(35)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

Three Constraints

To be consistent with a data set and the map: The static localization.

Retro-propagation : p k−1 = f −1 (p k , u k−1 ), Prediction : p k+1 = f (p k , u k ),

with p k−1 ∈ P k−1 , p k ∈ P k , p k+1 ∈ P k+1 , u k−1 ∈ [u k−1 ] and u k ∈ [u k ].

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 23

(36)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 24

(37)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 24

(38)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 24

(39)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 24

(40)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 24

(41)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 24

(42)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 24

(43)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 24

(44)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 24

(45)

The Global Localization Context The Proposed Method The Simulator

The Static localization The Global Localization Algorithm

The Global Localization Algorithm

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 24

(46)

The Global Localization Context The Proposed Method The Simulator

Demonstration

The Simulator

1 The Global Localization Context

2 The Proposed Method The Static localization

The Global Localization Algorithm

3 The Simulator

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 25

(47)

The Global Localization Context The Proposed Method The Simulator

Demonstration

Demonstration

Simulation parameters

I A 1000 × 1000 cells occupancy grid map (10 × 10 meters).

I Each measurement has a bounded error of 10 centimetres and a max range d max = 3 meters.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 26

(48)

The Global Localization Context The Proposed Method The Simulator

Demonstration

Demonstration

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 27

(49)

The Global Localization Context The Proposed Method The Simulator

Conclusion

F In this presentation we have seen that interval analysis could be used to solve the global localization problem.

F This method uses a discrete map so the time processing depends of the size of the grid.

F The simulation results are promising and this method can be efficient in a real context.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 28

(50)

The Global Localization Context The Proposed Method The Simulator

Conclusion

Future work

F Experimental tests after the CAROTTE challenge.

F The using of topological maps.

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 29

(51)

The Global Localization Context The Proposed Method The Simulator

Conclusion

Future work

F Experimental tests after the CAROTTE challenge.

F The using of topological maps.

1 2

3

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 30

(52)

The Global Localization Context The Proposed Method The Simulator

Conclusion

Future work

F Experimental tests after the CAROTTE challenge.

F The using of topological maps.

1 2

3

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 30

(53)

The Global Localization Context The Proposed Method The Simulator

Conclusion

Future work

F Experimental tests after the CAROTTE challenge.

F The using of topological maps.

1 2

3

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 30

(54)

The Global Localization Context The Proposed Method The Simulator

Conclusion

Future work

F Experimental tests after the CAROTTE challenge.

F The using of topological maps.

1 2

3

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 30

(55)

The Global Localization Context The Proposed Method The Simulator

Questions

? ?

R. Guyonneau, S. Lagrange, L. Hardouin, P. Lucidarme Interval Analysis for Global Localization Problem using Range Sensors 31

Références

Documents relatifs

The approach computes a domain that should contain the actual robot pose, assuming bounded image measurement errors and landmark position uncertainty.. It relies on interval

A stable behavior of the vehicle induces a rollover index LT R between −0.8 and 0.8, a wheel sideslip angle which does not exceed 6 ◦ or does not go under −6 ◦ , and a

Taking as a starting point the bounded error state estimation method proposed in [22], we present a data filtering and fusion method that uses Dempster-Shafer mass functions to

Position estimation is done in two steps (Figure 3). n) estimates its pose domain by using image measurements and distance to the base station (measurements that depends on robot R

Interval Analysis, Acoustic Localization, Underwater Localization, GPS, USBL, LBL, Time Constraint Satisfaction Problem, TCSP, Constraint Satisfaction, CSP, Contractor, Sequential

Indeed, one can separate the so-called primary residuals corresponding to a set of independent equations (directly those describing the process constraints if all the state

In this paper a set membership approach, named Interval Analysis Localization (IAL) algo- rithm, will be considered for the global localization problem and compared to a Monte

Robust autonomous robot localization using interval analysis... Robust Autonomous