• Aucun résultat trouvé

Search for neutral Higgs bosons of the minimal supersymmetric standard model in e<sup>+</sup>e<sup>−</sup> interactions at √s=192–202 GeV

N/A
N/A
Protected

Academic year: 2022

Partager "Search for neutral Higgs bosons of the minimal supersymmetric standard model in e<sup>+</sup>e<sup>−</sup> interactions at √s=192–202 GeV"

Copied!
14
0
0

Texte intégral

(1)

Article

Reference

Search for neutral Higgs bosons of the minimal supersymmetric standard model in e

+

e

interactions at √s=192–202 GeV

L3 Collaboration

ACHARD, Pablo (Collab.), et al.

Abstract

A search for the lightest neutral CP-even and the neutral CP-odd Higgs bosons of the Minimal Supersymmetric Standard Model is performed using 233.2 pb−1 of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies 192–202 GeV. No signal is observed and lower mass limits are given as a function of tanβ for two scalar top mixing hypotheses. For tanβ greater than 0.8, they are mh>83.4 GeV and mA>83.8 GeV at 95%

confidence level.

L3 Collaboration, ACHARD, Pablo (Collab.), et al . Search for neutral Higgs bosons of the minimal supersymmetric standard model in e

+

e

interactions at √s=192–202 GeV. Physics Letters. B , 2001, vol. 503, no. 1-2, p. 21-33

DOI : 10.1016/S0370-2693(01)00192-7

Available at:

http://archive-ouverte.unige.ch/unige:44040

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Physics Letters B 503 (2001) 21–33

www.elsevier.nl/locate/npe

Search for neutral Higgs bosons of the minimal supersymmetric standard model in e + e interactions at √

s = 192–202 GeV

L3 Collaboration

M. Acciarri

y

, P. Achard

s

, O. Adriani

p

, M. Aguilar-Benitez

x

, J. Alcaraz

x

,

G. Alemanni

u

, J. Allaby

q

, A. Aloisio

aa

, M.G. Alviggi

aa

, G. Ambrosi

s

, H. Anderhub

au

, V.P. Andreev

f,ai

, T. Angelescu

l

, F. Anselmo

i

, A. Arefiev

z

, T. Azemoon

c

, T. Aziz

j

,

P. Bagnaia

ah

, A. Bajo

x

, L. Baksay

ap

, A. Balandras

d

, S.V. Baldew

b

, S. Banerjee

j

, Sw. Banerjee

d

, A. Barczyk

au,as

, R. Barillère

q

, P. Bartalini

u

, M. Basile

i

, N. Batalova

ar

,

R. Battiston

ae

, A. Bay

u

, F. Becattini

p

, U. Becker

n

, F. Behner

au

, L. Bellucci

p

, R. Berbeco

c

, J. Berdugo

x

, P. Berges

n

, B. Bertucci

ae

, B.L. Betev

au

, S. Bhattacharya

j

,

M. Biasini

ae

, A. Biland

au

, J.J. Blaising

d

, S.C. Blyth

af

, G.J. Bobbink

b

, A. Böhm

a

, L. Boldizsar

m

, B. Borgia

ah

, D. Bourilkov

au

, M. Bourquin

s

, S. Braccini

s

, J.G. Branson

am

, F. Brochu

d

, A. Buffini

p

, A. Buijs

aq

, J.D. Burger

n

, W.J. Burger

ae

, X.D. Cai

n

, M. Capell

n

, G. Cara Romeo

i

, G. Carlino

aa

, A.M. Cartacci

p

, J. Casaus

x

, G. Castellini

p

, F. Cavallari

ah

, N. Cavallo

aj

, C. Cecchi

ae

, M. Cerrada

x

, F. Cesaroni

v

, M. Chamizo

s

, Y.H. Chang

aw

, U.K. Chaturvedi

r

, M. Chemarin

w

, A. Chen

aw

, G. Chen

g

,

G.M. Chen

g

, H.F. Chen

t

, H.S. Chen

g

, G. Chiefari

aa

, L. Cifarelli

al

, F. Cindolo

i

, C. Civinini

p

, I. Clare

n

, R. Clare

ak

, G. Coignet

d

, N. Colino

x

, S. Costantini

e

,

F. Cotorobai

l

, B. de la Cruz

x

, A. Csilling

m

, S. Cucciarelli

ae

, T.S. Dai

n

, J.A. van Dalen

ac

, R. D’Alessandro

p

, R. de Asmundis

aa

, P. Déglon

s

, A. Degré

d

,

K. Deiters

as

, D. della Volpe

aa

, E. Delmeire

s

, P. Denes

ag

, F. De Notaristefani

ah

, A. De Salvo

au

, M. Diemoz

ah

, M. Dierckxsens

b

, D. van Dierendonck

b

, C. Dionisi

ah

,

M. Dittmar

au

, A. Dominguez

am

, A. Doria

aa

, M.T. Dova

r,1

, D. Duchesneau

d

, D. Dufournaud

d

, P. Duinker

b

, H. El Mamouni

w

, A. Engler

af

, F.J. Eppling

n

, F.C. Erné

b

,

A. Ewers

a

, P. Extermann

s

, M. Fabre

as

, M.A. Falagan

x

, S. Falciano

ah,q

, A. Favara

q

, J. Fay

w

, O. Fedin

ai

, M. Felcini

au

, T. Ferguson

af

, H. Fesefeldt

a

, E. Fiandrini

ae

, J.H. Field

s

, F. Filthaut

q

, P.H. Fisher

n

, I. Fisk

am

, G. Forconi

n

, K. Freudenreich

au

, C. Furetta

y

, Yu. Galaktionov

z,n

, S.N. Ganguli

j

, P. Garcia-Abia

e

, M. Gataullin

ad

, S.S. Gau

k

, S. Gentile

ah,q

, N. Gheordanescu

l

, S. Giagu

ah

, Z.F. Gong

t

, G. Grenier

w

, O. Grimm

au

, M.W. Gruenewald

h

, M. Guida

al

, R. van Gulik

b

, V.K. Gupta

ag

, A. Gurtu

j

,

L.J. Gutay

ar

, D. Haas

e

, A. Hasan

ab

, D. Hatzifotiadou

i

, T. Hebbeker

h

, A. Hervé

q

, P. Hidas

m

, J. Hirschfelder

af

, H. Hofer

au

, G. Holzner

au

, H. Hoorani

af

, S.R. Hou

aw

,

0370-2693/01/$ – see front matter 2001 Published by Elsevier Science B.V.

PII: S 0 3 7 0 - 2 6 9 3 ( 0 1 ) 0 0 1 9 2 - 7

(3)

Y. Hu

ac

, I. Iashvili

at

, B.N. Jin

g

, L.W. Jones

c

, P. de Jong

b

, I. Josa-Mutuberría

x

, R.A. Khan

r

, D. Käfer

a

, M. Kaur

r,2

, M.N. Kienzle-Focacci

s

, D. Kim

ah

, J.K. Kim

ao

,

J. Kirkby

q

, D. Kiss

m

, W. Kittel

ac

, A. Klimentov

n,z

, A.C. König

ac

, M. Kopal

ar

, A. Kopp

at

, V. Koutsenko

n,z

, M. Kräber

au

, R.W. Kraemer

af

, W. Krenz

a

, A. Krüger

at

,

A. Kunin

n,z

, P. Ladron de Guevara

x

, I. Laktineh

w

, G. Landi

p

, M. Lebeau

q

, A. Lebedev

n

, P. Lebrun

w

, P. Lecomte

au

, P. Lecoq

q

, P. Le Coultre

au

, H.J. Lee

h

, J.M. Le Goff

q

, R. Leiste

at

, P. Levtchenko

ai

, C. Li

t

, S. Likhoded

at

, C.H. Lin

aw

, W.T. Lin

aw

, F.L. Linde

b

, L. Lista

aa

, Z.A. Liu

g

, W. Lohmann

at

, E. Longo

ah

, Y.S. Lu

g

,

K. Lübelsmeyer

a

, C. Luci

q,ah

, D. Luckey

n

, L. Lugnier

w

, L. Luminari

ah

, W. Lustermann

au

, W.G. Ma

t

, M. Maity

j

, L. Malgeri

q

, A. Malinin

q

, C. Maña

x

, D. Mangeol

ac

, J. Mans

ag

, G. Marian

o

, J.P. Martin

w

, F. Marzano

ah

, K. Mazumdar

j

, R.R. McNeil

f

, S. Mele

q

, L. Merola

aa

, M. Meschini

p

, W.J. Metzger

ac

, M. von der Mey

a

,

A. Mihul

l

, H. Milcent

q

, G. Mirabelli

ah

, J. Mnich

a

, G.B. Mohanty

j

, T. Moulik

j

, G.S. Muanza

w

, A.J.M. Muijs

b

, B. Musicar

am

, M. Musy

ah

, M. Napolitano

aa

,

F. Nessi-Tedaldi

au

, H. Newman

ad

, T. Niessen

a

, A. Nisati

ah

, H. Nowak

at

, R. Ofierzynski

au

, G. Organtini

ah

, A. Oulianov

z

, C. Palomares

x

, D. Pandoulas

a

, S. Paoletti

ah,q

, P. Paolucci

aa

, R. Paramatti

ah

, H.K. Park

af

, I.H. Park

ao

, G. Passaleva

q

, S. Patricelli

aa

, T. Paul

k

, M. Pauluzzi

ae

, C. Paus

q

, F. Pauss

au

, M. Pedace

ah

, S. Pensotti

y

,

D. Perret-Gallix

d

, B. Petersen

ac

, D. Piccolo

aa

, F. Pierella

i

, M. Pieri

p

, P.A. Piroué

ag

, E. Pistolesi

y

, V. Plyaskin

z

, M. Pohl

s

, V. Pojidaev

z,p

, H. Postema

n

, J. Pothier

q

, D.O. Prokofiev

ar

, D. Prokofiev

ai

, J. Quartieri

al

, G. Rahal-Callot

au,q

, M.A. Rahaman

j

,

P. Raics

o

, N. Raja

j

, R. Ramelli

au

, P.G. Rancoita

y

, R. Ranieri

p

, A. Raspereza

at

, G. Raven

am

, P. Razis

ab

, D. Ren

au

, M. Rescigno

ah

, S. Reucroft

k

, S. Riemann

at

, K. Riles

c

, J. Rodin

ap

, B.P. Roe

c

, L. Romero

x

, A. Rosca

h

, S. Rosier-Lees

d

, S. Roth

a

, C. Rosenbleck

a

, B. Roux

ac

, J.A. Rubio

q

, G. Ruggiero

p

, H. Rykaczewski

au

, S. Saremi

f

,

S. Sarkar

ah

, J. Salicio

q

, E. Sanchez

q

, M.P. Sanders

ac

, C. Schäfer

q

, V. Schegelsky

ai

, S. Schmidt-Kaerst

a

, D. Schmitz

a

, H. Schopper

av

, D.J. Schotanus

ac

, G. Schwering

a

, C. Sciacca

aa

, A. Seganti

i

, L. Servoli

ae

, S. Shevchenko

ad

, N. Shivarov

an

, V. Shoutko

z

,

E. Shumilov

z

, A. Shvorob

ad

, T. Siedenburg

a

, D. Son

ao

, B. Smith

af

, P. Spillantini

p

, M. Steuer

n

, D.P. Stickland

ag

, A. Stone

f

, B. Stoyanov

an

, A. Straessner

a

, K. Sudhakar

j

,

G. Sultanov

r

, L.Z. Sun

t

, S. Sushkov

h

, H. Suter

au

, J.D. Swain

r

, Z. Szillasi

ap,3

, T. Sztaricskai

ap,3

, X.W. Tang

g

, L. Tauscher

e

, L. Taylor

k

, B. Tellili

w

, D. Teyssier

w

, C. Timmermans

ac

, Samuel C.C. Ting

n

, S.M. Ting

n

, S.C. Tonwar

j

, J. Tóth

m

, C. Tully

q

,

K.L. Tung

g

, Y. Uchida

n

, J. Ulbricht

au

, E. Valente

ah

, G. Vesztergombi

m

, I. Vetlitsky

z

, D. Vicinanza

al

, G. Viertel

au

, S. Villa

k

, M. Vivargent

d

, S. Vlachos

e

, I. Vodopianov

ai

, H. Vogel

af

, H. Vogt

at

, I. Vorobiev

af

, A.A. Vorobyov

ai

, A. Vorvolakos

ab

, M. Wadhwa

e

,

W. Wallraff

a

, M. Wang

n

, X.L. Wang

t

, Z.M. Wang

t

, A. Weber

a

, M. Weber

a

,

P. Wienemann

a

, H. Wilkens

ac

, S.X. Wu

n

, S. Wynhoff

q

, L. Xia

ad

, Z.Z. Xu

t

,

(4)

J. Yamamoto

c

, B.Z. Yang

t

, C.G. Yang

g

, H.J. Yang

g

, M. Yang

g

, J.B. Ye

t

, S.C. Yeh

ax

, An. Zalite

ai

, Yu. Zalite

ai

, Z.P. Zhang

t

, G.Y. Zhu

g

, R.Y. Zhu

ad

, A. Zichichi

i,q,r

,

G. Zilizi

ap,3

, B. Zimmermann

au

, M. Zöller

a

aI. Physikalisches Institut, RWTH, D-52056 Aachen, Germany III. Physikalisches Institut, RWTH, D-52056 Aachen, Germany4

bNational Institute for High Energy Physics, NIKHEF, and University of Amsterdam, NL-1009 DB Amsterdam, The Netherlands cUniversity of Michigan, Ann Arbor, MI 48109, USA

dLaboratoire d’Annecy-le-Vieux de Physique des Particules, LAPP, IN2P3-CNRS, BP 110, F-74941 Annecy-le-Vieux Cedex, France eInstitute of Physics, University of Basel, CH-4056 Basel, Switzerland

fLouisiana State University, Baton Rouge, LA 70803, USA gInstitute of High Energy Physics, IHEP, 100039 Beijing, PR China5

hHumboldt University, D-10099 Berlin, Germany4

iUniversity of Bologna and INFN-Sezione di Bologna, I-40126 Bologna, Italy jTata Institute of Fundamental Research, Bombay 400 005, India

kNortheastern University, Boston, MA 02115, USA

lInstitute of Atomic Physics and University of Bucharest, R-76900 Bucharest, Romania

mCentral Research Institute for Physics of the Hungarian Academy of Sciences, H-1525 Budapest 114, Hungary6 nMassachusetts Institute of Technology, Cambridge, MA 02139, USA

oKLTE-ATOMKI, H-4010 Debrecen, Hungary3

pINFN Sezione di Firenze and University of Florence, I-50125 Florence, Italy qEuropean Laboratory for Particle Physics, CERN, CH-1211 Geneva 23, Switzerland

rWorld Laboratory, FBLJA Project, CH-1211 Geneva 23, Switzerland sUniversity of Geneva, CH-1211 Geneva 4, Switzerland

tChinese University of Science and Technology, USTC, Hefei, Anhui 230 029, PR China5 uUniversity of Lausanne, CH-1015 Lausanne, Switzerland

vINFN-Sezione di Lecce and Università Degli Studi di Lecce, I-73100 Lecce, Italy

wInstitut de Physique Nucléaire de Lyon, IN2P3-CNRS, Université Claude Bernard, F-69622 Villeurbanne, France xCentro de Investigaciones Energéticas, Medioambientales y Tecnologícas, CIEMAT, E-28040 Madrid, Spain7

yINFN-Sezione di Milano, I-20133 Milan, Italy

zInstitute of Theoretical and Experimental Physics, ITEP, Moscow, Russia aaINFN-Sezione di Napoli and University of Naples, I-80125 Naples, Italy abDepartment of Natural Sciences, University of Cyprus, Nicosia, Cyprus acUniversity of Nijmegen and NIKHEF, NL-6525 ED Nijmegen, The Netherlands

adCalifornia Institute of Technology, Pasadena, CA 91125, USA

aeINFN-Sezione di Perugia and Università Degli Studi di Perugia, I-06100 Perugia, Italy afCarnegie Mellon University, Pittsburgh, PA 15213, USA

agPrinceton University, Princeton, NJ 08544, USA

ahINFN-Sezione di Roma and University of Rome, “La Sapienza”, I-00185 Rome, Italy aiNuclear Physics Institute, St. Petersburg, Russia

ajINFN-Sezione di Napoli and University of Potenza, I-85100 Potenza, Italy akUniversity of Californa, Riverside, CA 92521, USA

alUniversity and INFN, Salerno, I-84100 Salerno, Italy am University of California, San Diego, CA 92093, USA

anBulgarian Academy of Sciences, Central Lab. of Mechatronics and Instrumentation, BU-1113 Sofia, Bulgaria aoLaboratory of High Energy Physics, Kyungpook National University, 702-701 Taegu, South Korea

apUniversity of Alabama, Tuscaloosa, AL 35486, USA aqUtrecht University and NIKHEF, NL-3584 CB Utrecht, The Netherlands

arPurdue University, West Lafayette, IN 47907, USA asPaul Scherrer Institut, PSI, CH-5232 Villigen, Switzerland

atDESY, D-15738 Zeuthen, Germany

auEidgenössische Technische Hochschule, ETH Zürich, CH-8093 Zürich, Switzerland avUniversity of Hamburg, D-22761 Hamburg, Germany

awNational Central University, Chung-Li, Taiwan, ROC axDepartment of Physics, National Tsing Hua University, Taiwan, ROC

(5)

Received 27 November 2000; accepted 26 January 2001 Editor: K. Winter

Abstract

A search for the lightest neutral CP-even and the neutral CP-odd Higgs bosons of the Minimal Supersymmetric Standard Model is performed using 233.2 pb1of integrated luminosity collected with the L3 detector at LEP at centre-of-mass energies 192–202 GeV. No signal is observed and lower mass limits are given as a function of tanβfor two scalar top mixing hypotheses.

For tanβgreater than 0.8, they aremh>83.4 GeV andmA>83.8 GeV at 95% confidence level.2001 Published by Elsevier Science B.V.

1. Introduction

The Minimal Supersymmetric Standard Model (MSSM) [1] requires two Higgs doublets. This gives rise to five Higgs bosons: a charged scalar pair, two neutral CP-even, the lightest of which is called h, and a neutral CP-odd, A. The two most important produc- tion mechanisms in e+ecollisions are:

(1) e+e→Z→hZ,

(2) e+e→Z→hA.

The cross section of the process (1) is smaller than that for the similar production of the Higgs boson in the Standard Model. This process is dominant at low values of tanβ (tanβ5), where tanβ is the ratio of the two Higgs vacuum expectation values. The pair- production of Higgs bosons (2) takes over at high values of tanβ.

Previous searches for the h and A bosons were re- ported by L3 [2] and other experiments [3]. In this paper, we present the results of the search for the h

1 Also supported by CONICET and Universidad Nacional de La Plata, CC 67, 1900 La Plata, Argentina.

2 Also supported by Panjab University, Chandigarh-160014, India.

3 Also supported by the Hungarian OTKA fund under contract numbers T22238 and T026178.

4 Supported by the German Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie.

5 Supported by the National Natural Science Foundation of China.

6 Supported by the Hungarian OTKA fund under contract numbers T019181, F023259 and T024011.

7 Supported also by the Comisión Interministerial de Ciencia y Tecnología.

and A bosons using the data collected with the L3 detector [4] at centre-of-mass energies√

s=191.6–

201.7 GeV, corresponding to 233.2 pb1 of total in- tegrated luminosity. The sensitivity to the production of MSSM neutral Higgs bosons is improved by com- bining the results of these analyses with our previous searches.

2. Data and Monte Carlo samples

In 1999 the L3 detector collected data at LEP at average centre-of-mass energies √

s =191.6 GeV, 195.5 GeV, 199.5 GeV and 201.7 GeV, corresponding to the integrated luminosities 29.7 pb1, 83.7 pb1, 82.8 pb1and 37.0 pb1respectively.

The cross sections of processes (1) and (2) and the decay branching ratios of h and A are calculated using the HZHA generator [5]. For efficiency studies, Monte Carlo samples of Higgs events are generated using PYTHIA [6] and HZHA. 2000 Monte Carlo events are generated for each mass hypothesis. For hA samples the masses,mhandmA, of the h and A bosons range from 50 to 95 GeV in steps of 5 GeV. For hZ samples mhis chosen in steps of 5 GeV from 50 to 95 GeV and in steps of 1 GeV from 95 to 110 GeV. For the back- ground studies, the following Monte Carlo programs are used: PYTHIA (e+e→qq(γ ), e¯ +e→ZZ and e+e→Ze+e), KORALW [7] (e+e→W+W), KORALZ [8] (e+eτ+τ). Hadron production in two-photon interactions is simulated with PYTHIA and PHOJET [9]. EXCALIBUR [10] is used for other four fermion final states. The number of simulated background events for the most important background channels is more than 100 times the corresponding number of expected events.

(6)

The L3 detector response is simulated using the GEANT program [11], which models the effects of energy loss, multiple scattering and showering in the detector. The GHEISHA program [12] is used to simulate hadronic interactions in the detector. Time dependent inefficiencies are also taken into account.

3. Event selection

For the hA production, the following decay modes are considered: hA → bbb¯ b, hA¯ → bbτ¯ +τ and hA→τ+τb¯b. In the case of hZ, four event topolo- gies covering approximately 98% of possible final states, are considered: qqq¯ q, q¯ qν¯ ν¯, qql¯+l(l=e, µ, τ ) andτ+τqq. The searches in channels with hadronic¯ decays of the h boson are optimised for the dominant h→bb decay channel. The analyses q¯ qν¯ ν¯and qql¯+l (l=e, µ) are the same as devised for the Standard Model Higgs search [13].

A common selection is applied to both the hA and hZ searches. In the four-jet channel, it mainly reduces the two-photon interaction background while keeping the signal efficiency high, then a neural network is used to build a discriminating variable. In the tau channel, first a selection is devised, then an optimal variable based on a likelihood approach is defined.

3.1. hAbbb¯ b and hZ¯ →bbq¯ q selection¯

The signature of both the hA→bbb¯ b and hZ¯ → bbq¯ q final states is four hadronic jets and the presence¯ of b-hadrons. The dominant backgrounds come from qq(γ )¯ production and hadronic decays of W and Z pairs.

High multiplicity events are selected and their visi- ble energy,Evis, is required to be greater than 0.6√

s and less that 1.4√

s. Events with perpendicular imbal- ance greater than 0.35Evisor with a lepton whose en-

Table 1

Number of events observed and expected in the four-jet channels, after the selection and after cuts on the discriminating variables, NNhAand NNhZ. The hA signal efficiencies are quoted formA=mh=85 GeV. The hZ signal efficiencies correspond tomh=100 GeV ats=192–

196 GeV andmh=105 GeV ats=200–202 GeV

192 GeV 196 GeV

Cut Selection NNhA>0.9 NNhZ>0.5 Selection NNhA>0.9 NNhZ>0.5

Data 430 2 4 1186 3 33

MC 433.6 1.0 9.5 1197.5 3.2 26.0

qq¯ 201.2 0.4 3.0 531.3 1.2 7.1

W+W 217.9 0.2 4.2 622.3 0.7 11.9

ZZ 14.5 0.4 2.3 43.9 1.3 7.0

εhA 95.0% 42.0% 65.9% 95.0% 42.0% 65.9%

εhZ 93.7% 12.6% 52.7% 93.7% 12.6% 52.7%

200 GeV 202 GeV

Cut Selection NNhA>0.9 NNhZ>0.5 Selection NNhA>0.9 NNhZ>0.5

Data 1198 2 9 506 1 6

MC 1118.4 2.0 9.1 507.8 1.0 4.8

qq¯ 478.3 0.7 2.5 215.0 0.3 1.5

W+W 595.4 0.3 3.3 271.8 0.2 1.7

ZZ 44.7 1.0 3.3 21.0 0.5 1.6

εhA 94.1% 37.9% 37.9% 95.9% 38.3% 40.4%

εhZ 91.0% 5.7% 40.9% 92.3% 5.0% 36.3%

(7)

ergy exceeds 65 GeV are rejected to suppress semilep- tonic W pair decays. Initial state radiation events are further suppressed by requiringPmisL /(mvismZ) <

0.4, where PmisL is the longitudinal component of the missing momentum,mvis is the visible mass and mZ the Z boson mass. The remaining events are then forced into four jets using the DURHAM algo- rithm [14] and a kinematic fit requiring energy and momentum conservation (4C) is performed. The num- ber of expected and observed events in the data, to- gether with the signal efficiencies for the selection cuts are listed in Table 1.

After the selection, discriminating variables are combined into a feed forward neural network [15], with one hidden layer and three output nodes. The inputs include the probability that the jets contain b-quarks [16], hereafter termed BTag, event shape variables and mass information. The information on the event shape includes the event sphericity, the value of the DURHAM jet resolution parameter for which the event is resolved from three to four jets, the longitudinal component of the missing momentum and the event thrust. The mass information is summarised in aχ2variable defined as:

Fig. 1. Distributions of (a)BTag, (b) logarithm of theχ2variable, (c) cosine of the polar angleΘof the Higgs boson and (d) sphericity after the four-jet selection. The points represent the data at

s=192–202 GeV, the open histograms are the expected Standard Model backgrounds, and the hatched histograms are the expected hAbb¯b signal scaled by a factor 50, formh=mA=85 GeV at tanβ=30.

(8)

χ2(mX, mh)=

Σijmin(mX+mh)2

wΣ

+ (3)

minij − |mXmh|2 w,

wheremX is eithermZormA. The pairing used gives the minimum value for the difference squared(∆ij

|mXmh|)2between the measured and expected dijet mass differences; Σijmin is the corresponding sum of the dijet masses. The weights,wΣandw, are derived from the mass resolutions, and their ratio is 3/5. In this way, the shape of the neural network output is made almost independent of the mass hypothesis. The polar angle of the Higgs boson, Θ, is also used as input for the hA analysis. It gives additional separation

between the hA signal and W+Wbackground, due to the different spins of the W and the Higgs bosons. The distributions of the discriminating input variables are shown in Fig. 1.

The Neural Network has three output variables which correspond to the signal,OHiggs, the qq(γ )¯ final state, Oqq, and the W+W final state hypotheses, OWW. The discriminating variable is then obtained from the combination NN =OHiggs×(1Oqq)× (1OWW). Two different neural networks are used for the hA and hZ analyses, and the events are classified as hA or hZ according to the largest value of the discriminating variable. The neural network for the

Fig. 2. Distributions of the discriminating variable in the four jet channel for (a) hAbb¯b and (b) hZbqq. The points show the data¯ collected ats=192–202 GeV, the open histograms are the expected Standard Model backgrounds and the hatched histograms are the expected signals scaled by a factor 10. The discriminating variables are constructed assuming equal mass hypothesismh=mA=85 GeV at tanβ=30 in (a) andmh=100 GeV at tanβ=1 in (b).

(9)

Fig. 3. Distributions of (a) the sum of the reconstructed dijet masses in the hAbb¯b channel after the cut NN>0.9, (b) the sum of the dijet and the ditau masses in the hA+τchannel after a cut on theBTag. The points represent the data collected at

s=192–202 GeV, the open histogram is the expected Standard Model background and the hatched histogram is the expected signal formh=mA=85 GeV at tanβ=30.

hZ is optimised for mh=100 GeV at √

s=192–

196 GeV andmh=105 GeV at√

s=200–202 GeV.

For the hA search, the neural network is optimised for mh=mA=85 GeV. Examples of the discriminating variable distributions of the two analyses are shown in Fig. 2. Good agreement is observed between the data and the expected background. An independent analysis based on a likelihood approach [17] validates the present results.

The highest signal sensitivity region corresponds to large values of NN. For illustrative purposes, in Table 1 we report the number of the observed and expected events selected after the cuts NN>0.9 for

the hA analysis, and NN>0.5 for the hZ analysis.

The mass distributions for the hA search after the cut NN>0.9 is shown in Fig. 3(a).

3.2. hAbbτ¯ +τ, hZb¯bτ+τand hZτ+τ qq selections¯

The signatures of hA→bbτ¯ +τ,8hZ→bbτ¯ +τ or hZ→τ+τqq events are a pair of taus accompa-¯ nied by two hadronic jets. For each of the channels

8 Both the decay modes (hb, Aτ+τ) and (hτ+τ, Ab) are considered.

(10)

Table 2

Number of events observed and expected in the tau selection. Efficiencies for the hA signal are quoted formA=mh=85 GeV. For the hZ signal, they are quoted formh=100 GeV at

s=192–196 GeV and formh=105 GeV at

s=200–202 GeV

192 GeV 196 GeV 200 GeV 202 GeV

hA hZ hA hZ hA hZ hA hZ

Data 2 2 6 7 5 7 3 3

MC 2.6 3.0 7.3 8.4 7.2 7.6 3.2 3.4

e+eqq¯ 0.3 0.5 0.8 1.4 0.9 0.8 0.4 0.3

e+eW+W 1.8 1.8 5.0 5.0 4.6 4.7 2.0 2.1

e+eZZ 0.5 0.6 1.4 1.7 1.6 1.8 0.7 0.8

e+eZe+e 0.0 0.1 0.1 0.2 0.1 0.3 0.0 0.1

ε(hA+τ) 36% 36% 36% 36% 33% 34% 33% 34%

ε(hZ+τ) 21% 29% 21% 29% 17% 29% 17% 29%

ε(hZτ+τqq)¯ 20% 31% 20% 31% 20% 29% 20% 29%

hA and hZ an analysis is optimised based either on the tau identification or on the event topology by re- quiring four jets with two of them being narrow and of low multiplicity. The main background results from W-pair decays containing taus.

The hZ analysis is similar to the one described in detail in Ref. [18]. The hA selection is optimised for lower Higgs masses by omitting the cuts on the opening angles of the jets and tau pairs and on the invariant mass of the tau pair,mτ τ. The invariant mass of the hadronic jets,mqq, must be between 5 GeV and 125 GeV. The ratio of the sum of the energies of the tau decay products over the sum of the energies of the jets is required to be less than one and the value of the missing momentum vector in the rest frame of the Higgs must be less than 40 GeV. Finally, the cosine of the polar angle of the Higgs boson, |cosΘ|, has to be less than 0.8. The number of events observed, the number expected from background processes, and the signal efficiency for the two selections are listed in Table 2.

For each event class j (ZZ, W+W, qq, Ze¯ +e, hA, hZ), a probability function, fji, is constructed, wherei denotes the variables considered. These are theBTagfor each hadronic jet,mqqandmτ τ. They are presented in Fig. 4. The probability,pji, of an event to belong to classj, based on the value of the variablei,

is then defined as

(4) pij= fji

kfki.

Finally, the probabilities for the individual variables are combined by calculating the likelihood that the event belongs to the either signal class:

(5) FhA=

ipihA

k

ipik and FhZ=

ipihZ

k

ipki.

Events retained by both the hA and the hZ selec- tions, are classified according to highest value of the likelihood, as hA or hZ candidates. An example of the distribution of the discriminating variable for the hA search is shown in Fig. 5. Good agreement between the observed data and the expected background is found.

The mass distribution for the hA search after an addi- tional cut on theBTagis shown in Fig. 3(b).

4. Results and interpretation

A good agreement between data and expected background, both in the total number of events and in the shape of the distributions, is observed in all the channels analysed. The mass distributions of the events in the highest sensitivity region are not compatible with a signal for any mass hypothesis.

(11)

Fig. 4. The distributions for the hA+τ search of (a) the BTag for the most energetic hadronic jet and (b) the least energetic hadronic jet, (c) the reconstructed mass for the hadronic system, and (d) the reconstructed mass for the leptonic system. The points are the

s=192–202 GeV data, the open histograms the expected Standard Model background and the hatched histograms the expected hA+τsignal formh=mA=85 GeV at tanβ=30.

Therefore, no evidence of the production of the h and A bosons is found.

The results of the search for the hA and the hZ pro- duction are interpreted in the framework of the con- strained MSSM (CMSSM) assuming unification of the scalar fermion masses, unification of the gaugino masses and unification of the trilinear scalar couplings at the GUT scale. This choice has little impact on the phenomenology of the Higgs bosons but reduces sig-

nificantly the number of free parameters. The remain- ing free parameters are tanβ,mA, the gaugino mass parameter,M2, the universal scalar fermion mass,m0, the common scalar quark trilinear coupling,A, and the Higgs mixing parameter,µ.

Two benchmark scenarios [19] are considered. In the first one, termed “maximal mixing”, the CMSSM parameters are chosen such that mh acquires its maximal value for any given value ofmA and tanβ.

(12)

Fig. 5. Distribution of the discriminating variable of the hA+τselection in the hypothesismh=mA=85 GeV at tanβ=30. The points are the data collected at

s=192–202 GeV, the open histogram is the expected Standard Model background and the hatched histogram is the expected signal for the hA search multiplied by a factor 10.

The second scenario corresponds to vanishing mixing in the scalar top sector and is referred to as “minimal mixing”.

The CMSSM parameters are chosen as follows:

m0=1 TeV, µ= −200 GeV, M2=200 GeV. The mass of the top quark is fixed to 175 GeV. The maximal mixing scenario is realised at Xt =Aµcotβ=√

6 TeV, whereXt is the parameter which controls the mixing in the scalar top sector. The minimal mixing corresponds to Xt =0. Keeping these values fixed, a scan over the two remaining independent parameters, tanβ andmA, is performed in each mixing scheme in the ranges: 0.5tanβ30 and 10 GeVmA1 TeV.

To set exclusion limits on the CMSSM parameters, the confidence level, CL, that the expected signal is absent in the data, is calculated [20] for each point (tanβ, mA) of the scan. The full distributions of the discriminating variables, NN and F, are used in this calculation.

Systematic and statistical uncertainties on the sig- nal and background are evaluated using the same pro- cedure as in the Standard Model Higgs search [13].

The main sources of systematic uncertainties are de- tector resolution, selection procedures, theoretical un- certainties and Monte Carlo statistics. The overall sys- tematic uncertainties are estimated to be 4% on the predictions for the expected signal and 10% for the

background events. Bins of the final variables with a signal-over-background ratio in the Monte Carlo of less than 0.05 are not considered in the calculation of the CL. This cut is chosen to minimise the ef- fect of systematic uncertainties on the average CL as calculated from a large set of Monte Carlo experi- ments.

The results of the MSSM Higgs search at lower

s [2] are combined with those presented in this paper. Fig. 6 shows the region of the(tanβ, mh)plane and(tanβ, mA)plane excluded by L3 for the maximal mixing and minimal mixing scenarios. The regions not allowed by theory and those excluded from an analysis of Z-peak data [21] are also presented.

For the CMSSM parameters considered and assum- ing tanβ greater than 0.8, this results in lower mass limits at the 95% CL of:

mh>83.4 GeV, mA>83.8 GeV,

which compare to the median expected limits in the absence of a signal of mh >85.6 GeV and mA >

85.7 GeV.

The exclusion plots for the minimal mixing scenario present a small unexcluded area in the low tanβregion at low values of mA where the decay h→ AA is allowed but is not investigated among the signatures described above.

(13)

Fig. 6. Exclusion plots in the(tanβ, mh)and(tanβ, mA)planes at the 95% CL for the minimal and maximal mixing scenarios. The hatched area represents the exclusion and the crossed area is not allowed by the theory. The horizontal hatched area corresponds tomA<10 GeV and was previously excluded at LEP [21].

For 0.8<tanβ <1.8 values ofmAup to 1 TeV are ruled out for any mixing scenario allowing to exclude this tanβ region in the CMSSM, for the top mass 175 GeV.

Acknowledgements

We acknowledge the efforts of the engineers and technicians who have participated in the construction

and maintenance of L3 and express our gratitude to the CERN accelerator divisions for the superb performance of LEP.

References

[1] H.P. Nilles, Phys. Rep. 110 (1984) 1;

H.E. Haber, G.L. Kane, Phys. Rep. 117 (1985) 75;

R. Barbieri, Riv. Nuovo Cimento 11 (4) (1988) 1.

(14)

[2] L3 Collaboration, M. Acciarri et al., Phys. Lett. B 471 (1999) 321.

[3] OPAL Collaboration, G. Abbiendi et al., Eur. Phys. C 12 (2000) 567;

ALEPH Collaboration, R. Barate et al., Preprint CERN- EP/2000-131, 2000;

DELPHI Collaboration, P. Abreu et al., Preprint CERN- EP/2000-038, 2000.

[4] L3 Collaboration, B. Adeva et al., Nucl. Instrum. Methods A 289 (1990) 35;

J.A. Bakken et al., Nucl. Instrum. Methods A 275 (1989) 81;

O. Adriani et al., Nucl. Instrum. Methods A 302 (1991) 53;

B. Adeva et al., Nucl. Instrum. Methods A 323 (1992) 109;

K. Deiters et al., Nucl. Instrum. Methods A 323 (1992) 162;

M. Chemarin et al., Nucl. Instrum. Methods A 349 (1994) 345;

M. Acciarri et al., Nucl. Instrum. Methods A 351 (1994) 300;

G. Basti et al., Nucl. Instrum. Methods A 374 (1996) 293;

A. Adam et al., Nucl. Instrum. Methods A 383 (1996) 342.

[5] P. Janot, The HZHA Generator, in: G. Altarelli, T. Sjös- trand, F. Zwirner (Eds.), Physics at LEP2, Vol. 2, CERN, 1996, p. 309, Version 3, released in December 1999, http:

//alephwww.cern.ch/janot/Generators.html.

[6] PYTHIA version 5.722 is used;

T. Sjöstrand, Preprint CERN-TH/93-7112, 1993, revised 1995;

T. Sjöstrand, Comp. Phys. Commun. 82 (1994) 74.

[7] KORALW version 1.33 is used;

M. Skrzypek et al., Comp. Phys. Commun. 94 (1996) 216;

M. Skrzypek et al., Phys. Lett. B 372 (1996) 289.

[8] KORALZ version 4.03 is used;

S. Jadach, B.F.L. Ward, Z. W¸as, Comp. Phys. Commun. 79 (1994) 503.

[9] PHOJET version 1.05 is used;

R. Engel, Z. Phys. C 66 (1995) 203;

R. Engel, J. Ranft, S. Roesler, Phys. Rev. D 52 (1995) 1459.

[10] F.A. Berends, R. Pittau, R. Kleiss, Comp. Phys. Commun. 85 (1995) 437.

[11] GEANT version 3.15 is used;

R. Brun et al., Preprint CERN DD/EE/84-1, 1984, revised 1987.

[12] H. Fesefeldt, Report RWTH Aachen PITHA 85/02, 1985.

[13] L3 Collaboration, M. Acciarri et al., Preprint CERN-EP/2000- 146, 2000.

[14] S. Bethke et al., Nucl. Phys. B 370 (1992) 310.

[15] L. Lönnblad, C. Peterson, T. Rognvaldsson, Nucl. Phys. B 349 (1991) 675;

C. Peterson et al., Comp. Phys. Commun. 81 (1994) 185.

[16] L3 Collaboration, M. Acciarri et al., Phys. Lett. B 411 (1997) 373.

[17] L3 Collaboration, M. Acciarri et al., Phys. Lett. B 436 (1998) 389.

[18] L3 Collaboration, M. Acciarri et al., Phys. Lett. B 461 (1999) 376.

[19] M. Carena et al., hep-ph/9912223.

[20] A. Read, Modified frequentist analysis of search results (the CLs method), in: F. James, L. Lyons, Y. Perrin (Eds.), Workshop on Confidence Limits, CERN, 2000, p. 81.

[21] OPAL Collaboration, G. Alexander et al., Z. Phys. C 73 (1997) 189.

Références

Documents relatifs

Interpreting this excess as a statistical fluctuation in the background, lower limits on the charged Higgs mass as a function of the Br(H ± → τ ν) are de- rived [18,19] at the 95%

A search for a Higgs boson decaying into invisible particles is performed using the data collected at LEP by the L3 experiment at centre-of-mass energies of 183 GeV and 189 GeV.

The signature for the qq gg final state is a pair of isolated photons accompanied by two jets. To select these events, we first apply a hadronic preselection requiring high

The four highest-E T jets in an event are then ordered in E T and a search sample is obtained for each of a set of Higgs boson masses by requiring the three highest-E T jets to

Unstable heavy lepton signatures are characterised by hadronic jets, isolated leptons, and missing energy and transverse momentum.. An electron is identified as a cluster in

Topologies with multileptons plus possible jets and missing energy result from neutralino, chargino and scalar lepton indirect decays, as presented in Table 2. Bayesian upper limits

The Standard Model Higgs boson is searched for in 233.2 pb−1 of data collected by the L3 detector at centre of mass energies from 192 GeV to 202 GeV.. These data are consistent with

The left-hand edge of the curves indicates the lower mass limit derived from pair production searches whereas the rise of the curves in the high excited lepton mass region reflects