• Aucun résultat trouvé

Perturbation analysis of an M/M/1 queue in a diffusion random environment

N/A
N/A
Protected

Academic year: 2021

Partager "Perturbation analysis of an M/M/1 queue in a diffusion random environment"

Copied!
34
0
0

Texte intégral

(1)Perturbation analysis of an M/M/1 queue in a diffusion random environment Christine Fricker, Fabrice Guillemin, Philippe Robert. To cite this version: Christine Fricker, Fabrice Guillemin, Philippe Robert. Perturbation analysis of an M/M/1 queue in a diffusion random environment. [Research Report] RR-5422, INRIA. 2005, pp.30. �inria-00070584�. HAL Id: inria-00070584 https://hal.inria.fr/inria-00070584 Submitted on 19 May 2006. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2) INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE. Perturbation analysis of an M/M/1 queue in a diffusion random environment Christine Fricker — Fabrice Guillemin — Philippe Robert. N° 5422 Deembre 2004. N 0249-6399. ISRN INRIA/RR--5422--FR+ENG. Thème COM. apport de recherche.

(3)

(4)  

(5)  

(6)   M/M/1  

(7)  ! #"$%

(8)  & "

(9) (' *)+,'-. /*0132547682:9&;=<>1325?A@B;C1 D <FEHG&1I25?J;=K=L25M5M:;CNO259 DFP 025M52:Q&QR;TS UHGV;J1I6 WXZYI[*\.]^`_badcfehgjikYI[*\3glmJ[*[.nZoZpql7rsoJitg uRvkmswx\izy{rs| y{r}|~|BmJvji{h\€v\IltXZ\IvltXZ\‚oHƒ&„A f†s†‡a‰ˆŠ\\7[(‹~vk\ †}ŒJŒ} (a sŒ.|~r}ŽJ\Ig ∗. †. ‡.  ‘I’7“A”Z•s’s–˜— o M/M/1 ™ nZ\7n~\›šXZmJgk\›gk\7vœs\7v vtrAi\›h\7|H\7oBZgmJoikXZ\ gjir}ik\›msž{r}opŸoBh\7|H\7o~Z\7oCi ^Švo~gjik\IpŸoh ¢¡{X~£Ÿ\IoC‹H\Ilt¤›Zp¦¥§n~gkpŸmJo

(10) |~vkmhl\3gkg¨pqg{gjikn~hp©\I

(11) p©o

(12) ikXZpqg|~rs|B\Iv‹Ce [*\3r}o~gmsž&r*v\7ŽJnZ£©rsvV|H\7vkikn~vj  ‹BrAikp©mso,r}oBr}£©efgkpqg7ªRcf|H\Il7p¦«Hl7r}£©£©es¬hpŸž (X(t)) h\7oZmsik\3gikXZ\ [+mhhnZ£qrAipŸo~Ž›^Švo~gjik\IpŸoh ¢¡{X~£Ÿ\IoC‹H\Ilt¤ |Zvkmhl7\Igg7¬ iXZ\7o ikXZ\€gk\7vœs\7vVvr}ik\`rAi¨ikp©[*\ pqg ¬ZšXZ\Ivk\ pqggjmJ[+\zŽsp©œs\Iož­nZo~likp©mso®ª — ž¯ik\Iv¨\3gxitr}‹Z£©pqgjXZp©oZŽ iXZ\+°Zms¤f¤J\7vk 5uF£qr}oBlt¤

(13) \ ™ n~rAipŸmJo‡tltX~r}φ(X(t)) vtrslik\Ivkp©±7p©oZŽiXZ\`wxφmsp©oJi hpqgxivkp©‹ZnhipŸmJo%msžFikX~\.mhl7l7nZ|~r}ikp©mso‡|~vkmhl\3gkg msžBiXZ\ M/M/1 ™ n~\7nZ\{rso~.ikXZ\zgjir}ik\{msžBiXZ\{[+mhhnZ£qrAipŸoZŽ.^Švo~gjik\IpŸoh ¢¡{X~£Ÿ\IoC‹H\Ilt¤.|Zvmfl7\Igg7¬sšV\{gkXZmAš ¬ n~o~h\7vRikXZ\ŠrsggjnZ[+|hipŸmJo+ikX~r}iFikX~\Šgk\7vœs\7v>vtrAi\p©gRšV\3r}¤f£©e(|H\7vkiknZv‹B\3+‹fe(iXZ\ŠhpŸ¥§n~gjp©mso|~vkmhl\3gkgI¬}iX~rAi iXZ\*|ZvkmJ‹Z£©\7[²l7rso=‹B\+gkms£©œs\I,œfpqr r |B\IvjinZvk‹BrAikp©mso%r}o~rs£Ÿehgkp©gzm}žVrgj\I£¦ž¯ ¢rs8wxmJpŸoCi`ms|H\7vtrAikmJvŠh\7«~oZ\3=p©o rsorJh\ n~r}ik\T³{p©£©‹B\Ivji gk|~rsl7\sªµ´¶\iXZ\7oµ|H\7vkž­msv[·rh\itr}p©£Ÿ\3µr}o~rs£Ÿehgkp©g*šXZ\Io¸iXZ\T|H\7vkiknZv‹~rAipŸmJo ž­n~o~lipŸmJ™o›p©gV£©pŸoZ\3r}v3¬JoBr}[+\7£©e+m}ž¹ikX~\{ž­msv[ φ(x) = 1 − εx ª´¶\Šl7ms[+|Znhi\Šp©o›|~rsvjip©l7nZ£qr}v>iXZ\`Zp¦¥§\7v\7oCi i\7v[g.msž{ikX~\

(14) \7ºh|~r}o~gkp©msoOmsž{ikX~\,gkms£©nhipŸmJoOp©o¸|HmAšV\Iv*gk\7vp©\Ig.m}ž ε rso~»š¨\,h\i\7v[*p©oZ\

(15) ikX~\

(16) vtrsZpŸn~g msžl7msofœs\IvkŽJ\7o~l7\.msžViXZ\ gkms£©nhikp©msoªWXZ\v\IgknZ£Ÿigrsvk\*«~o~rs£Ÿ£©e%rs|Z|Z£©pŸ\3¶ikm=gjikn~Ze‡m}žiXZ\pŸoCi\7ŽsvtrAipŸmJo msž>\7£qrsgjikpql(r}oBTgxivk\3r}[+pŸo~Ž¼~mAš{g{p©oTi\7£©\IlmJ[+[(nZoZpql7r}ikp©msoToZ\7ixšVmJvk¤

(17) r}o~,š¨\.gkXZmAš½ikXBrAi`r}i{ikX~\«~vtgxi mJvZ\7v¨ikXZ\ v\IZn~l\3gk\7vœfp©l7\`vtrAi\`rs|Z|Zvm8ºhpŸ[rAipŸmJo pqgœAr}£©p©¹ª ¾T¿CÀ§ÁÂ(à “AÄ‘s– n~\7nZ\J¬Bcf\7£Ÿž¯  — 8wxmsp©oCi`^Š|B\Ivr}ikmsvtgI¬Cu&\IvjinZvk‹BrAikp©mso — o~rs£Ÿehgkp©gI¬hu&mAšV\Ivzcf\7vp©\Ig ÅFºf|Br}o~gkpŸmJo®¬Zy\3hM/M/1 n~l\3Tcf\7v™ œfp©l7\€yzrAik\. ì ÏRƧÔ8ÆÏxÇ3í5ÈAÑAÉ:ÐxÊÌî7ËÎß8ÍÈAÏxÉÉ5ÐtÐtÑ8Ñ8ËxÒ Ï ÓBÔJǧծÖ×}ÏjÉ­ØÐtÉ:ÏFÙÊ Ø5ԊڭÛծگܶծÖIËxÝ7Þ8ÏxÑ8ËxÖÞ8É­ØkßCÕì ÜÓ à3É:ÖtáâÏxË¢ØkßsãÖä{ÐtÊÌÑ3Ï&Ò8Ï>åHÖæÌÞ3ËjÏjÐtÞCß}çtè3éjêë È®Ô8ÇAÊÌïíhÞ8Ù¹ÊÌÖæÌæÌÉ:ÏxÍ>äÔ8ÊÌÑ{Ðtí~ÊÌí®×}ÏxÙÏxÊѨØ:Ô`àAÐtÈAÉ­É:Ø:ÐtÊõÐtÑ8æÌËxæ ÏFîVðhí:Þ8Ïjà8æÌÏxà}ËxÖÖÉ­ä€Ø5ÏxßAÒ¨ã×Ê îFñ3ÊÌØ5í:Ô3ÊÌÖÏ®Ñ`ƹÕÕò>ö ãVÉâÏjßAí:óÏjóÐtëÉ:ôËÎÔ¨ô ËjÖÐtÑÑ8Ø:Ñ8É5ÐtÊÌÖË¢ÑCØBß8Ñ ÈAÉ5éjÐtôÑ8ëËxãVÏ éjôóóÙÊ Ø:ÔVÈAÉ:ÐtÑ8ËxϹðhÏxæÌÏjËxÖä ® ð ÐtÑ8ҊØ:Ô8ÏFÕÛÕhðTà8ÉâÖtá:ÏxË¢Ø÷€ÏxØ:ÉâÖàsÖæÌÊÌí ∗. † ‡. ◦. Unité de recherche INRIA Rocquencourt.

(18) 

(19) " "

(20) ¶ 

(21) !"j

(22) 

(23)  M/M/1 "

(24) &   , 

(25)  "

(26) $¶

(27)  ‘ – ^Šo in~hp©\Š£©\Š|~vkmhl\3gkgkn~gVhn›oZmJ[(‹Zv\Šh\`l£©pŸ\IoCig¨ n~oZ\z«B£Ÿ\€ rAiji\7oCik\ £©ehgj\*h\.|Hh\7msvkoCikiVn~£©vj\   itr}nhº‡Z\*gk\7vœfp©l7\(\Igji`ž­mso~likp©mso%  nZo¶|Zvmhl\Iggkn~gŠ Ì^Švo~gjik\7p©oh ¢¡{XZ£©\7of‹H\Ilt¤§ª¡{o~\*rso~r}M/M/1 ‹BrAikp©mso

(28) \IgjizlmJo~hnZpŸik\€|HmsnZv{l7\ [+mfZY7£©\sª ‚à ’3‘ Á •  ‘– °pŸ£©\ M/M/1 ª>^Š| 7vtrAi\7nZv{rsnhikms ÎrJ8wxmsp©oCiIª.

(29)  

(30) 

(31) 

(32) 

(33) . M/M/1. ! !. . . &"

(34) %$R ´¶\€gxin~he›p©o›iXZp©g|Br}|H\7vr}o M/M/1 ™ nZ\InZ\`šXZmJgk\`gk\7vœs\IvRvtrAi\ŠpqgVikp©[*\€œAr}vefpŸo~Ž~ª´%\€gj|H\Il7p¦«Hl7r}£©£©e rJgkgknZ[+\€ikXBrAi{iXZ\.gk\7vœs\Ivvr}ik\h\I|B\Io~Zg{n~|BmJo‡r+vrso~hmJ[ |Zvmhl\Igg (X(t)) gjm+iX~rAizikXZ\*gj\IvkœJ\7vvtrAik\ r}i>ikp©[+\ pqg ž­mJvRgjmJ[+\Vž­n~o~lipŸmJo ª&WXZ\{gjikn~he*m}žHikX~p©g>[+mhh\I£Zp©gF[*msikp©œArAik\3*‹Ce(ikXZ\ž­mJ£Ÿ£©mAš  p©oZŽ›|~vkmJ‹Zt£Ÿ\I[φ(X(t)) v\7£qrAi\Iikm‹~r}oBhšp©hikX‡gkX~r}φvp©oZŽpŸo,i\7£©\Il7ms[+[(nZo~p©lIrAikp©msoTo~\ixš¨msv¤fgIª{]Vmso~gkp©Z\7vŠr›£Ÿp©oZ¤ lIr}vvkefp©oZŽ*\7£qrsgjikpql`ikvtr &›l lmJvkv\Igk|BmJo~hp©oZŽ.ikm›£©msoZŽ*«~£©\ ivrso~gxž­\Ivg¨imsŽJ\ikX~\7všpŸikX=rgk[+rs£Ÿ£|ZvkmJ|BmJvjipŸmJo msživr &ls¬hšXZpqltX,ZmC\3goZm}izrJZr}|Zi¨im*ikXZ\ £©\7œJ\7£®msžlmJoZŽs\3gxipŸmJo msžiXZ\ oZ\ixš¨msv¤§¬fvk\7ž­\7vvk\3›im+rJgnZoh  v\Igk|Hmso~gkpŸœJ\ikvtr &›l}ªF^ŠoiXZ\zmJoZ\zX~rso~¹¬C£ŸmJoZŽ ¼~mAš{gVr}v\{n~gkn~r}£©£©e*l7msoCikvms£©£Ÿ\3+‹fe*Wz]Vu&¬fšXZpqltX rsZrs|hig iXZ\{ivrso~gk[*pqggjp©msovtrAi\{m}ž®£©msoZŽ¼~mAš{gRrJl7lmJvZpŸoZŽikm iXZ\Š£©\7œJ\7£Bm}žlmJoZŽs\3gxipŸmJom}ž¹iXZ\zoZ\7ixšVmJvk¤§(ª 'Ξ®šV\ l7mso~gkpqh\7vŠikXZ\+‹Hm}ikik£©\7oZ\3lt¤=£Ÿp©oZ¤§¬¹iXZ\7or

(35) vk\3rsgkmso~rs‹Z£Ÿ\.rsggjnZ[+|hipŸmJo%l7mso~gkp©gjig`msžVn~gkpŸo~Ž iXZ\+|Zvkmhl7\IggjmJv gkX~rsvkp©oZŽ,hp©glp©|Z£©pŸo~\.ž­mJv€[*mhh\I£Ÿp©oZŽ,XZmAš ‹~r}o~Zšp©fiX%pqg gkX~r}v\I%r}[+msoZŽ

(36) £©msoZŽ

(37) «~£©\*ikvtr}o~gjž­\7vtg7ª*_Tmsv\  mAœJ\7v3¬J£©mso~Ž(¼~mAš{grsvk\€rsggjn~[*\3im+rsvkvp©œs\ŠrJl7l7msvthpŸo~Žikmr.u&mspqgkgkmso|Zvkmhl7\Igg7ª>¡{oBh\7viXZ\Igk\`l7£©rJgkgkpql7r}£ [+mhh\I£Ÿp©oZŽTrsggjn~[*|Zikp©mso~gI¬®š¨\.iXfn~g X~r8œJ\*rso M/G/1 |Zvmhl\3gkgkmsv gkX~r}vpŸo~Ž ™ nZ\InZ*\ )âgk\7\*ž­msv p©o~gjir}oBl\ _‡rsggjmJnZ£Ÿp €r}o~,ymJ‹B\Ivjit,g +.-80† /21ª ^ŠoTiXZ\*m}ikX~\7vzXBr}o~¹¬§nZo~vk\3gj|Hmso~gkp©œs\ ivr &l(p©gŠn~gkn~r}£©£©e

(38) hn~\(imgkXZmsvki{«~£©\ivrso~gxž­\IvgI¬HšXZp©ltX%r}v\ imfm¸gk[+rs£Ÿ£zikmµrsltXZp©\7œJ\=gjmJ[+\‡‹~rso~hšpqfikX½gjX~rsvkp©oZŽ˜špŸikXZp©oiXZ\¶oZ\ixš¨msv¤§3 ª 'Îi

(39) pqgXZmAšV\Iœs\Iv›šVmJvjiX o~m}ikp©oZŽ%ikX~r}i*špŸikX¸ikX~\

(40) \I[+\7vŽs\7oBl\ msžz[(n~£¦ipŸ[+\IZp©r¶r}|Z|~£Ÿpql7r}ikp©mso~g*p©o»ikX~4\ '¢oCi\7voZ\i3¬FnZoZv\Igk|BmJo~gkpŸœJ\ ivr &›l.[r8e=rs£©gkm,‹B\ŽJ\7oZ\Ivr}ik\I‡‹fe‡gxivk\3r}[+p©oZŽ

(41) rs|Z|Z£©p©lIrAipŸmJo~g7ªWXZpqg`ixef|B\msžRivr &l*pqg l7rsvkvpŸ\3=‹fe iXZ\`nZo~lmJoCikvms£©£Ÿ\3›¡zˆŠu¸|~vkmsikmhlmJ£:¬CšXZpqltX pqgVo~m}ir}‹Z£©\zim.rJZr}|hi¨ikm*oZ\7ixšVmJvk¤+lmJo~hpŸikp©mso~gIª — gVžâr}vrsg v\Igk|Hmso~gkpŸœJ\€¼~mAš{g{rsvk\l7mso~l7\7voZ\I¹¬B\7œJ\7veJiXZp©oZŽX~r}|~|B\Io~gzrJg{pŸž>ikXZ\ ivrso~gk[*pqggjp©msoTl7rs|~rsl7p¦ixe

(42) gj\I\7oT‹fe v\Igk|Hmso~gkpŸœJ\Š£©mso~Ž.¼BmAš{gVš¨\7v\€vk\3hn~l7\InZ|

(43) ikm*ikXZ\rsŽsŽJvk\IŽJrAi\I‹~p¦i{vtrAi\`msž&gkXZmJvji¼~mAš{gIª 5 nZ\InZ\7p©oZŽµgjehgjik\I[+g

(44) špŸikX ikp©[+\%œAr}vefpŸo~Žgk\7vœs\Iv vtrAik\¶X~r8œJ\‡‹H\7\7o gjikn~hp©\I pŸo ikX~\¶£©pŸik\7vtrAinZv\ p©o [rsoCe hpŸ¥§\7v\7oCi,gkpŸikn~r}ikp©mso~gI6 ª '¢8 o 7:9<;Z\7±7  5 n~\7p wjrOr}oB>  =¨m8ºh[+> r +.-0?/ά{ikX~\rsnhikX~msvtg lmJo~gkp©h\Iv

(45) r n™ Z\InZ\7p©oZŽ(gkehgxi\7[ šXZ\Ivk\{|~vkp©msvp¦ixe*pqgRŽJpŸœJ\7o+ikm.gjmJ[*\z¼~mAš{gRZvkp©œs\Io‹Ce+_=rsvk¤JmAœ._TmhhnZ£qrAi\Iu&mJp©ggjmJo uRvkmhl\3gkgk\Ig)â_=_=uFu@1`špŸikX=«BoZp¦i\*gjir}ik\+gj|Brsl\3gzrso~TiXZ\.£©mAš |ZvpŸmJvkpŸixe¼~mAš{gŠgkX~rsvk\(ikXZ\*vk\I[r}p©oZpŸo~Ž gk\7vœs\Iv¨lIr}|~rJlpŸixe›rslIlmsvthp©oZŽim*ikXZ\€|Zvmhl\IggkmsvgjX~rsvkp©oZŽ+hpqgkl7pŸ|Z£©p©oZ\sAª =¨e›rsggknZ[+pŸoZŽ.ikXBrAizr}vvpŸœAr}£qg¨r}v\ u&mJp©ggjmJo˜r}o~˜gk\7vœfp©l7\+ikp©[*\3g.rsvk\\7ºh|BmJoZ\7oCikpqr}£©£©e¶hpqgjikvpŸ‹ZnZik\I®¬iXZ\rsnhikX~msvtggjmJ£ŸœJ\+ikXZ\gjehgjik\7[ œfp©r r[rAivkpŸº=r}o~rs£Ÿehgkp©gIªcfpŸ[+p©£©rsv€[*mhh\I£©g`X~r8œJ\(‹H\7\Io‡p©oCœJ\Igjikp©ŽJr}ik\I=pŸBo 79<;~\7±  5 nZ\Ip wjCr +.-I ZD¬ -30„ />‹fe=gjikp©£Ÿ£ nBgjp©oZŽiXZ\ ™ n~rJgjpŸ Î‹ZpŸvkikX=rso~=h\3rAiX=|Zvmfl7\IggzrJgkgkmhlpqrAik\3

(46) šp¦iX=ikX~\.gkefgjik\I[²r}o~=r [rAikvpŸº,rso~r}£©ehgjpqg7ª WX~\pŸoCik\IŽsvtrAipŸmJo*msžH\I£©rJgxip©lrso~gjikv\Ir}[+p©oZŽ`¼~mAš{g>X~rJg>‹H\7\7o›gjiknBhpŸ\3+‹fe*ˆŠ\7£qlmJpŸŽJoZ\ED

(47) F+G0/άJšX~\7v\ gjikmhltX~rJgxip©l¨‹HmsnZoBZgž­msv&iXZ\[+\Ir}o+ofnZ[.‹B\Iv>m}ž¹rslipŸœJ\¨¼~mAš{g&X~r8œs\¨‹H\7\7o+\3gxitr}‹Z£©p©gkXZ\3¹ª_=msv\¨v\Il7\7oCik£©es¬ |~vkp©msvp¦ixe ™ nZ\7nZ\IpŸo~Ž‡gjehgjik\I[+g(šp¦iX˜žârsgji.hefo~rs[+p©lIg7¬&šXZpqltX»l7rso˜‹B\

(48) h\IglvpŸ‹H\I‹fe¶[+\Ir}oBgm}ž ™ n~rJgjp ‹~pŸvkikX

(49) r}o~

(50) h\Ir}ikX|Zvkmhl7\Iggj\3g7¬CX~r8œs\`‹H\7\7o,gjikn~hp©\Iœfp©r*r.|B\IvjinZvk‹BrAikp©mso

(51) r}o~rs£Ÿehgkp©gVm}žr._=rsvk¤JmAœ*ltXBr}p©o ‹fe — £¦i[r}Ho I

(52) @+ † /5ª '¢o(ikXZpqg|~r}|H\7v3¬8šV\¨rsggjnZ[+\RikX~r}iiXZ\V|~vkmhl\3gkg[+mfZnZ£©r}ikp©oZŽŠikXZ\¨gj\IvkœJ\7vvtrAi\RpqgrŠhpŸ¥Hn~gkp©mso(|~vkmhl\3gkg rso~

(53) [+msv\`|~vk\3lpqgj\I£Ÿe rso‡^Švko~gjik\IpŸoZ Î¡zXZ£Ÿ\Iof‹B\3ltC¤ )5^`J¡ 1|Zvmfl7\Igg7ªFWX~p©g{rJgkgknZ[+|hipŸmJo

(54) pqg[+m}ipŸœAr}ik\I

(55) ‹fe iXZ\€ž­ms£©£©mAšpŸoZŽ.žârsligIª -sª — o˜^`¡‚|Zvmhl\3gkgzvk\3rsgkmso~rs‹Z£Ÿevk\I|Zv\Igk\7oCig{ikXZ\+r}ŽJŽsv\7ŽJr}ik\3‹~p¦i€vr}ik\.m}ž>ikX~\*gknZ|H\7v|BmCgjpŸikp©mso=msž r£©rsvkŽJ\,oCn~[(‹H\7v›msž gkXZmJvji+¼~mAš{gI> ª '¢o |~rsvjip©l7nZ£qr}v3¬RšXZ\IoµikXZmCgj\,¼~mAš{g+XBr8œs\T\ºh|HmsoZ\IoCikpqr}£©£Ÿe hpqgxivkp©‹Znhi\I hnZvtrAipŸmJo®¬FiXZ\7o \7ºZrsliXZ\3r8œfe˜ikvtr &›l

(56) vk\3gjn~£¦itggjXZmAš ikX~r}iikXZ\=rsŽsŽJvk\IŽJrAi\I˜‹~p¦i ". #. ÕÕ ÑK~ê Lóó.

(57) .     22. 2

(58) 

(59) : . |Zvms|H\7v£Ÿevk\3gklIr}£©\IµlmJofœs\7vŽs\3g+pŸoZp©gjikvpŸ‹~nhikp©mso imOr}o ^`¡²|Zvmfl7\Igg7¬gk\7\ '¢ŽJ£Ÿ\IX~r}vkiC+ -IŒ/Šž­msv \ºZr}[+|Z£©\sª †hª — o¶^`¡ |Zvkmhl7\IggX~rsgzmsoZ£©eixšVm›|Br}vtr}[+\i\7vtg )­o~rs[*\I£ŸeikX~\([+\Irso=r}o~

(60) iXZ\(œAr}vpqr}o~l7\01¬BšXZpqltX l7rso‹H\€\7[+|Zp©vkpql7rs£Ÿ£©ep©Z\7oCikpŸ«~\Ip©o|Zvtrslikpql7rs£§gkpŸikn~r}ikp©mso~gIª>°ZnZvkikXZ\Ivk[+mJvk\J¬JiXZ\€pŸ[+|~rJlim}žikXZ\3gj\ |~r}vtr}[+\7ik\7vtg&mso+iXZ\{|H\7vkž­msv[r}o~l7\m}ž§ikXZ\Šgjehgjik\7[ šp©£Ÿ£B‹B\{[.n~ltX\IrJgjp©\7vFikmnZoBh\7vtgxitr}o~®¬sšXZ\Io lmJ[*|Br}v\I%šp¦iX‡iXZ\›l7rJgj\+m}ž_=_TuFu \IofœCp©vmsoZ[+\7oCi€šXZ\7v\*ikXZ\3gj\+œAr}vpqr}‹Z£©\Ig€r}v\gjmJ[+\7šX~r}i XZpqZh\7o,p©o

(61) ikXZ\ ofnZ[+\7vmsnBg|~r}vtr}[+\i\7vtgRmsžiXZ\_=_TuRu \7ofœfpŸvmsoZ[+\IoJi3ª '¢o r«~vtgxigxi\7|®¬fš¨\{\Igjirs‹Z£ŸpqgkXikXZ\`°ZmJ¤C¤J\7vk 5uR£©rso~lt¤(\ nBrAikp©msoBgFm}ž¹iXZ\Šgkehgxi\7[ r}oBšV\`gjX~mAš¸iX~rAi iXZ\Igk\\ ™ nBrAikp©msoBgzl7rsoT‹B\*gj\I\7o=rJgzr}oT\IpŸŽJ\7ofœAr}£©nZ\|Zvms‹~£Ÿ™ \I[ ž­mJvŠr›gk\7£Ÿž¯ ÎrJ8wxmsp©oCizms|H\7vtrAimsvzZ\«~oZ\3Tp©o gkms[+\(rJh\ n~r}ik\*³{p©£Ÿ‹H\7vki`gk|~rsl7\sª`WXZp©gŠ£qrsgjiŠ|Zvms|H\7vkixepqg`l£©mJgk\7£©ev\7£qrAi\I

(62) ikm ikXZ\.ikp©[+\ Îvk\Iœs\IvgkpŸ‹~pŸ£©p¦ixe |~vkmJ|B\IvjipŸ\3g€™ m}žRiXZ\ M/M/1 mhlIlnZ|~r}ikp©mso¶|Zvmfl7\Igg r}o~%m}ž¨ikX~\^Švko~gjik\IpŸoZ Î¡zXZ£Ÿ\Iof‹B\3lt¤=|Zvmfl7\Igg7ª´¶\ iXZ\7oµgkXZmAš ikXBrAi›šXZ\IoOiXZ\,pŸoCik\IvrJlipŸmJo¸‹H\ixš¨\7\Io»ikX~\%^`¡|~vkmhl\3gkg+rso~»iXZ\ M/M/1 ™ nZ\7nZ\,pqg š¨\Irs¤Or}oBZ\7|H\7o~Zg nZ|Hmso r˜gj[rs£Ÿ£{|Br}vtr}[+\i\7v ¬¨ikXZ\=|~vkmJ‹Z£Ÿ\I[ m}žl7ms[+|ZnhipŸoZŽiXZ\=ŽJ\7oZ\Ivr}ikp©oZŽ ž­n~o~lipŸmJo¸msž{ikXZ\,ofnZ[.‹B\Ivm}žŠl7n~gxims[+\7vtg*pŸo¸ikX~\ εM/M/1 ™ nZ\InZ\Tl7r}o¸‹B\Tgkms£©œs\3˜‹fe»[+\Ir}oBg.msžŠr v\7ŽJnZ£qr}v€|B\IvjinZv‹~rAipŸmJorso~r}£©ehgjpqgIª 'Îip©g|BmCgkgkpŸ‹~£Ÿ\+im=lms[+|Z£©\i\7£©e%l7ms[+|Znhi\ikXZ\lmf\ &›lp©\7oCitg€m}žikXZ\ \7ºh|~r}o~gkp©mso*pŸo|HmAšV\IvRgk\7vpŸ\3g>m}ž ε msž§ikXZ\zgkms£©nhipŸmJo®ª — £©gkm~¬sikXZ\zvrJhpŸnBg>m}ž®lmJofœs\7vŽs\Io~l\¨pqgRh\7ik\7v[+pŸo~\I¹ª =¨e+itr}¤fpŸo~Ž.p©oCikmrslIlmsn~oJiVikXZ\`«~vtgjimJvZ\7v¨msoZ£©es¬fiXZ\ r}‹HmAœs\Šrso~r}£©ehgjpqg¨gjXZmAš{gViX~rAi{r.vk\3hn~l\3 gk\7vœfp©l7\ vtrAi\€|B\Ivjitr}p©o~g7ª WXZpqg|Br}|H\7vpqg msvŽJrsoZp©±7\I%rsg€ž­mJ£Ÿ£©mAš{g '¢oOcf\Ilikp©mso˜Z¬ikXZ\°Zms¤f¤J\7vk 5uF£qr}oBlt¤T\ n~rAipŸmJo%pqg\3gxitr}‹h  £©pqgjXZ\3¹ª&WXZp©gR\ ™ n~r}ikp©msol7rso*‹H\{p©oCik\7v|Zv\i\I+rsgFrso\7p©Žs\IoCœArs£ŸnZ\|Zvms‹~£Ÿ\I[ ž­msvVrgj\I£¦ž¯ ¢™ rsAwxmsp©oJiFmJ|B\Ivr}ikmJv pqg¨Žsp©œs\Io›pŸo,cf\Ilikp©mso Zª>´ XZ\7o ikXZ\`p©oJi\7vtrslikp©mso›‹H\ixš¨\7\Io›ikX~\ M/M/1 ™ nZ\7n~\`rso~iXZ\ ^`¡ |Zvmhl\Igg pqgFš¨\Irs¤§¬}ikX~\{ž­msv[(n~£©r}ikp©mso›rsgVr |H\7vkiknZv‹~rAipŸmJo|Zvms‹Z£©\7[ p©gR|Zv\Igk\7oCik\3+pŸoch\IlipŸmJo „h¬CšXZ\7v\iXZ\ŠlIrsgk\ msžr*£©pŸoZ\3r}v|H\7vkiknZv‹~r}ikp©msož­nZo~lipŸmJo,p©g{l7ms[+|Z£©\i\7£©e gjmJ£ŸœJ\I¹ª 

(63) {' A >' 

(64)  €7 . . . "! #%$&'($)+*. ¶´ \+lmsoBgjpqh\7v€r gkp©oZŽs£©\.£©p©oZ¤,šp¦iX‡ivrso~gj[+pqgkgkp©mso=l7rs|~rsl7p¦ixe,\ ™ nBr}£ikm

(65) nZoZpŸixesª ´¶\*gknZ|Z|HmJgk\(iX~rAi`ixš¨m l7£©rJgkgk\Ig`msžl7n~gxims[+\7vtg r}v\+[(nZ£Ÿikp©|Z£©\ºh\I¶mJo%iXZpqg £Ÿp©oZ¤¶r}o~%ikXBrAi ikX~\+«~vgji(l£qrsgg€X~rJg€|Zvkp©msvpŸixe=mAœs\Iv iXZ\ gj\3lmJo~l7£©rJgkgIª>_Tmsv\`|Zvk\3lpqgj\I£ŸeJ¬fp¦žikXZ\Ivk\ rsvk\ N (t) l7n~gxims[+\7vtg¨m}žikXZ\€«~vtgjil7£©rJgkg¨p©o

(66) ikXZ\ gkefgjik\I[ r}i{ikp©[+\ t ¬HšV\(rJgkgknZ[+\€ikXBrAi{iXZ\.gk\7vœfp©l7\ vr}ik\€ž­msvzikXZ\.ln~gjikmJ[*\Ivg{m}ž&ikXZ\*gj\3lmJo~,l£qrsgg{pqg{\ ™ n~rs£¹ikm ž­msv€gkms[+\ ž­nZo~likp©mso šXZp©ltX‡p©g`h\Il7vk\3rsgkpŸo~Ž›r}o~=gkn~ltX,iX~rAi = 1 ªŠ_TmJvk\ImAœs\7v3¬hš¨\ φ(N (t)) rJgkgknZ[+\.ikX~r}i`iXZ\+ofnZ[(‹H\7v€m}žφ(x) l£qrsgg -*l7n~gxims[+\7vtg`p©g€gk n &›lp©\7oCik£©e=£qr}vŽs\*gjφ(0) mikX~r}i€ikXZ\+|Zvmhl\Igg |~vkmJ|B\Ivk£©e v\Igl7rs£Ÿ\3

(67) l7msofœs\IvkŽJ\Ig¨p©o‡hpqgxivkp©‹ZnhipŸmJo,ikm rso%^`¡ |Zvmfl7\Igg (X ) grAip©gjž­efpŸo~Ž+ikXZ\*gximfltXBNrsgj(t) ikpql Zp¦¥§\7v\7oCikpqr}£¹\ ™ n~rAipŸmJo ) -01 dX(t) = −α(X(t) − m)dt + σdB(t), šX~\7v\ (B(t)) pqgr*gjirso~Zrsv4 =¨vkmAšoZpqr}o[+m}ikp©mso,r}oB α rso~ σ rsvk\€|HmJgkp¦ipŸœJ\€l7mso~gjirsoCigIª WXZpqg gkpŸikn~r}ikp©msoixef|Zp©lIr}£©£Ÿe¸mhl7ln~vg+šXZ\Iol£qrsgg -=ln~gjikmJ[+\7vtg›r}vvkp©œs\,rslIlmJvhp©oZŽ¶ikm»ru&mJp©ggjmJo |~vkmhl\3gkg›šp¦iX vr}ik\ u ¬vk\ ™ n~pŸv\T\ºh|HmsoZ\IoJip©rs£Šgk\7vœfp©l7\,ikp©[*\3g›špŸikXn~oZp¦i

(68) [+\Ir}orso~µX~r8œJ\=r|B\3r}¤ ‹~p¦ivtrAik\

(69) šXZpqltX¸pqg+oZ\IŽs£©pŸŽJpŸ‹Z£©\

(70) šp¦iXv\Igk|H\Ili*ikm¶iXZ\,£Ÿp©oZ¤˜ivrso~gj[+pqgkgkp©mso¸lIr}|~rJlpŸixesª¸chpŸo~l7\Tl£qrsgg%t. Ú­ÛÕ®Ú¯Ü.

(71)  

(72) 

(73) 

(74) 

(75) . „. ! !. M/M/1. l7n~gjikms[+\Ivg`X~r8œJ\.|Zvp©msvp¦ixeTmAœJ\7v€l£qrsgg€†

(76) l7n~gxims[+\7vtg€r}o~¶lmJoCik\7oCipŸmJo=ž­msv€iXZmJgk\ln~gjikmJ[+\7vtg`lIr}o¶‹B\ ~o \7Žs£©\Ilik\3¹¬HikXZ\*|Zvmfl7\IggŠZ\IglvpŸ‹Zp©oZŽiXZ\*oCn~[(‹H\7v€m}žRl7£©rJgkg-.l7n~gxims[+\7vtgzikXZ\Io%lmJvkv\Igk|Hmso~Zg{ikmikXZ\ mhlIlnZ|~r}ikp©mso=|~vkmhl\3gkgzm}žVrso nZ\7n~\sª€´ XZ\7o i\7o~~gzim p©oh«~oZpŸixes¬®l7£©rJgkgkpql7r}£XZ\Ir8œfe

(77) ikvtr&›l v\IgknZ£Ÿig ):gj\I\,=¨mJvkmAœf¤smAœ4+ /®msM/M/∞ vI'¢ŽJ£Ÿ\IX~r}vki ™ +.-3Œ/ 1VikXZ\Io

(78) efp©\7£qu . N (t) − u √ ,t ≥ 0 u. . d. → (X(t), t ≥ 0),. š X~\7v\ŠiXZ\.^`¡½|Zvmfl7\Igg (X(t)) grAikpqgj«~\Ig¨Å ™ n~r}ikp©mso )-1¨šp¦iX α = −1 r}o~ σ = √2 ª ´ pŸikX

(79) ikX~\r}‹HmAœs\€rsggjnZ[+|hipŸmJo~gI¬fikXZ\ gk\7vœs\7vvtrAi\zž­mJv{l£qrsgg{†(l7n~gxims[+\7vtgpqgr(ž­n~o~lipŸmJo

(80) msž ¬ šX~p©ltXp©gh\IoZm}i\I›‹fe φ(X(t)) )­špŸikX φ(0) = 11ª>´%\`oZmAš rJgkgknZ[+\{iX~rAi{l£qrsgg†(l7n~gxims[+\7vtg¨r}X(t) vvkp©œs\ rJl7l7msvthpŸo~Ž+ikmr›umJp©ggkmsoT|Zvmhl\IggšpŸikX%pŸoCik\Io~gkp¦ixe λ r}o~Tv\ ™ nZp©v\ \ºh|BmJoZ\7oCip©rs£gk\7vœfp©l7\€ikp©[*\3gzšpŸikX [+\3r}o 1/µ Fª 'Ξ L(t) = l Z\7oZmsik\Ig¨iXZ\ ofnZ[(‹H\7vmsžl7£©rJgkg{†*lnBgxims[+\7vtg¨pŸo

(81) ikX~\gjehgjik\7[r}o~ X(t) = x r}iikp©[*\ t ¬ZikXZ\IoiXZ\€ikvtr}oBgjpŸikp©mso~gmsž (L(t)) rsvk\€ŽJpŸœJ\7o

(82) ‹Ce  špŸikX,vr}ik\ λ, l+1 špŸikX,vr}ik\ µφ(x). l→ l−1 WX~\

(83) |~vkmhl\3gkgZ\IglvpŸ‹Zp©oZŽ%ikXZ\TofnZ[.‹B\Ivm}ž l£qrsgg†%l7n~gjikms[+\Ivg+pqg*ikXfn~g+\ nBr}£ikmiXZ\Tmhl7l7nZ|~rAipŸmJo |~vkmhl\3gkgm}ž{r}o M/M/1 ™ nZ\InZ\s¬&šXZpqltX»gk\7vœs\7v vtrAi\ h\I|B\Io~Zgn~|BmJo»r=hpŸ™ ¥Hn~gkp©mso˜|Zvmhl\IggIª%'¢o˜iXZ\ ž­mJ£Ÿ£©mAšp©oZŽ~¬CikX~\€ž­nZo~lipŸmJo φ(x) šp©£Ÿ£‹B\ v\ž­\Ivkv\I ikmrsg|H\7vkikn~vk‹~r}ikp©msož­nZo~likp©mso®ª WXZvmsn~ŽsXZmJnhiikXZpqg›|Br}|H\7v3¬¨š¨\‡rJgkgknZ[+\,ikX~r}i›ikX~\‡hpŸ¥Hn~gkp©mso |Zvmhl\Igg p©g pŸogjir}ikp©mso~rsvke v\7ŽJpŸ[+\Jª 'Îig,gjir}ikp©mso~rsvkeµhpqgxivkp©‹ZnhipŸmJop©g

(84) r¸oZmsv[r}£ŠZp©gjikvpŸ‹~nhikp©msošpŸikX (X(t)) [+\Ir}o m rso~ œAr}vpqr}o~l7\ p¦itg{h\Io~gjpŸixež­nZoBlikp©mso,mJo R p©gikXZ\Ivk\7ž­msv\ŠŽJpŸœJ\7o

(85) ‹Ce σ /(2α)    1 r α ):† 1 α(x − m) exp − p(x) = . σ π σ \in~go~m}ik\`iX~rAiiXZ\gxitr}‹Zp©£©p¦ixe l7mso~Zp¦ipŸmJož­mJvikXZ\gkehgxi\7[ v\IrJZg 2. 2. 2.  λ. ρ =. µ. < E[φ(X(0))],. rso~šp©£Ÿ£H‹H\ŠrsggknZ[+\I+im(XZmJ£©*iXZvkmJnZŽsX~msnhiVikXZ\Š|~r}|H\7v3ª¡zo~h\IvRiXZp©grJgkgknZ[+|hikp©mso¬JpŸiVpqgVgjikvtr}p©ŽsXCikž­msvk  šr}vtikm

(86) gjXZmAš½iXZ\(\7ºfpqgjik\7oBl\(msžFr gjirAipŸmJo~r}ve |~vkmJ‹~r}‹Zp©£©p¦ixe

(87) hp©gjikvp©‹Znhikp©mso=ž­msvŠikXZ\*_=r}v¤smAœ›|~vkmhl\3gkg ªRch\7\_T\IeCo,r}oB

(88) Wš¨\7\IZpŸ\ + -I /®ž­msv\7ºhrs[+|Z£Ÿ\Jª (X(t), L(t))  . . $ *&. **+'. !

(89). 

(90). *. . $ '(. &.  # '#

(91) '($). *. ´ ~X \7o ¬hikX~\|Zvmfl7\Iggj\3g (X(t)) r}oB (L(t)) rsvk\ l£©\Irsvk£©e›p©o~h\I|B\Io~h\7oCizmJoZ\ m}ž&\IrJltX,m}ikX~\7v3ª nZp©£©pŸ‹Zvp©nZ[,¬¹ž­msv ¬§iXZ\+œ8rsvkpqr}‹~£Ÿ\ X~rJg€r ŽJ\7ms[+\7ikvp©l*hpqgxivkp©‹ZnhipŸmJo‡špŸikX |Br}vtr}[+\i\7v ρ r}o~

(92) ™ š¨\ lmsoBgj\ ™ n~\7oCik£©e›t ≥X~r8œJ0\ziXZ\ vk\I£©r}ikp©mso L(t)   ): 1 (1 − ρ) p(x) dx. E u 1 (X(t)) =. '¢o%ikX~p©g φ(x) lIrsgk\s≡¬®rA1i€\. L(t). ÕÕ ÑK~ê Lóó. [x,x+dx]. (1 − ρu).

(93) ?.     22. 2

(94) 

(95) : . — g›pŸi

(96) šp©£©£z‹H\%gk\7\7o pŸo ch\IlipŸmJoZ¬{šX~\7o φ pqg›oZmsi

(97) lmJo~gjir}oCi3¬p¦i

(98) p©g \ºfikv\7[+\7£©eµhp &›l7nZ£¦i

(99) ikmOŽs\i gkms[+\*\ºh|Z£©p©l7p¦i v\IgknZ£ŸigŠmso%ikXZ\+\ nZp©£©pŸ‹Zvp©nZ[bhpqgxivkp©‹ZnhipŸmJo%msž ª*°~msv`ikXZpqg€v\Irsgkmso¬BiXZpqgŠ|Br}|H\7v rJZhv\Iggj\3giXZ\*lIrsgk\(šXZ\Io=iXZ\ ™ ™ n~\7nZ\.p©g€r}£©[+mJgji`p©o~h\I|B\Io~h\IoJ(L(t)) i€špŸikX¶vk\3gj|H\IlizikmikX~\^`¡ |Zvmfl7\Igg7ª _=msv\=|Zv\Ilpqgk\7£©es¬pŸipqgrJgkgknZ[+\IiX~rAiikXZ\‡ž­nZo~lipŸmJo φ(x) pqg ŽJpŸœJ\7o ‹fe 1 − εx ž­msvgkms[+\‡gk[r}£©£ ªFWX~\`ŽJmJrs£HmsžiXZp©g{|~r}|H\7vpqgikmh\Ivkp©œs\€r}o

(100) \ºh|~rso~gjp©msom}žikXZ\ hpqgjikvpŸ‹ZnZikp©mso,m}žikXZ\gjir}ikp©mso~rsvke εZp©≥ gjikv0pŸ‹~nhikp©msom}ž (L(t)) špŸikX

(101) v\Igk|B\3li¨ikm ε Fª '¢o |Br}vkikpqlnZ£qr}v3¬siXZ\`ž­ms£©£ŸmAšp©oZŽ(ikXZ\Imsv\7[ šp©£Ÿ£§‹H\Š|ZvmAœs\3¹ª  ¿fà “ ¿   ε   !%

(102) 2 : <

(103)      <

(104) <   !  

(105) 2    .  , ! 

(106) 

(107)       . . .     (L(t)). .  ρ(1 − u) 1−ρ − mε + o(ε). E uL = 1 − ρu (1 − ρu)2. WXZ\Ivk\7ž­msv\s¬ ¬BšXZ\7v\ X~rsgikXZ\gjir}ikp©mso~rsvke Zp©gjikvpŸ‹~nhikp©mso,m}žikX~\ofnZ[(‹H\7v{msž ] ∼ E[u ] 7l n~gjikms[+\IvgŠpŸor}E[u o M/M/1 n™ Z\7n~\.šXZ\Io‡iXZL\gj\IvkœJ\7v`vr}ik\*p©g 1 − εm ª*WXZpqg`gkXZmAš{g€r|Zvkp©o~l7pŸ|Z£©\+m}ž v\IZn~l\3gk\7vœfp©l7\ŠvtrAi\€rs|Z|Zvm8ºhpŸ[rAipŸmJo®ª  $   

(108) €(     ~  4 WX~\RŽsmCr}£}msžhikXZpqggj\3likp©mso(p©gikm{\3gxitr}‹Z£©pqgjX iXZ\V°~ms¤f¤s\Ivj ÎuF£qr}o~lt¤Š\ n~r}ikp©mso€ž­msvikX~\R|Zvmhl\Igg p©o»iXZ\,gxitrAikp©msoBr}ve¶v\7ŽJpŸ[+\J¬>p:ª \sª©¬>ikX~\

(109) \IœsmJ£ŸnhipŸmJo»\ ™ n~r}ikp©mso˜ž­mJ™ v(iXZ\,|Zvms‹~rs‹ZpŸ£©pŸixeZ\7o~gkp¦(X(t), ixe¶ž­nZoBL(t)) likp©mso ­ ž J m v s r ~ o  ª F V =. e 7 l s m ~ o j g k i  v ~ n  l  i Ÿ p J m ® o A ¬ Ÿ p  i q p  g 3 \ s r k g Ÿ p © £. e t l Z X I \ t l J ¤ I \ €   i ~ X A r  i k i ~ X V \ Z |  v h m  l 3 \ k g g p(x, `) pqgr˜_=rsvk¤JxmAœ¶∈|~Rvkmhl\3gkg*`it∈r}¤fNp©oZŽœ8rs£Ÿn~\Ig+p©o R × N ªWX~\,ž­ms£©£ŸmAšp©oZŽvk\3gjn~£¦iŽsp©œs\3g+p¦itgp©(X(t), oh«~oZpŸik\3gjL(t)) p©[r}£ ŽJ\7oZ\Ivr}ikmJvIª ”  !    (X(t), L(t)) 

(110) C

(111)  !"     2 R×N # 2 2$ A 2 

(112) %  

(113)   V¿  » L(t). G. & . . Gf (x, `) =. . Lε. ε. . . . σ2 ∂ 2 f ∂f (x, `) − α(x − m) (x, `) 2 ∂x2 ∂x + λ[f (x, ` + 1) − f (x, `)] + µφ(x)f (x)1{`>0} [f (x, ` − 1) − f (x, `)],. )­ 1.  '       f (x, `)     R × N 2 R   #    (:    

(114)   # 2  )!  H !* A  

(115) 

(116)  ,+    + — lIlmJvhp©oZŽOikmÅ ™ n~rAipŸmJo ) -01¬zikXZ\p©oh«~oZpŸik\3gjp©[r}£€Žs\IoZ\7vtrAimsv msž.r}o ^ŠvkoBgxi\7p©oh Î¡zXZ£©\7oZ‹H\Ilt¤. |~vkmhl\3gkgrs|Z|Z£©pŸ\3 imgjmJ[*\`ixšpql\ hpŸ¥H\Ivk\IoCikpqr}‹Z£©\€ž­nZo~likp©mso g mso R pqgŽsp©œs\Io‹fe ∂g σ2 ∂ 2 g (x) − α(x − m) (x). 2 ∂x2 ∂x. WX~\*gk\Il7mso~‡|~r}vki`msžRÅ n~r}ikp©mso )â 1`lmJvkv\Igk|Hmso~Zg{ikm

(117) ikX~\.p©oh«~oZpŸik\3gjp©[r}£>ŽJ\7oZ\Ivr}ikmsvŠm}žVikXZ\*ofnZ[(‹H\7v sm žRln~gjikmJ[+\7vtgm}žRrl£qrsg™ gjpql7rs£ M/M/1 ™ nZ\InZ\(špŸikX%r}vvkp©œAr}£®vtrAi\ λ r}o~=gk\7vœfp©l7\vtrAik\ µφ(x) ¬¹šX~\7o iXZ\.^`¡½|Zvmfl7\Iggp©gp©oTgxitrAi\ x ª Ú­ÛÕ®Ú¯Ü.

(118)  

(119) 

(120) 

(121) 

(122) . ! !. M/M/1. G. \i P h\7oZmsik\`ikX~\gxitrAikp©msoBr}ve|ZvkmJ‹~r}‹~pŸ£©p¦ixe›Zp©gjikvpŸ‹~nhikp©mso,m}žikXZ\l7msnZ|~£Ÿ\ . iXZ\ |Zvms‹~rs‹Zp©£ŸpŸixe›h\7oBgjpŸixe›ž­nZoBlikp©mso. ¬. P (x, `) = P(X ≤ x, L = `), p(x, `). p©g. p(x, `) =. rso~ ikXZ\ ŽJ\7oZ\Ivr}ikp©oZŽ(ž­n~o~lipŸmJo

(123) pqgŽJpŸœJ\7o ‹fe. gu (x) =. ž­mJv. (X(t), L(t)). ∂P (x, `) ∂x. ∞ X. ):„ 1. p(x, `)u`. }r o~ ª Wu XZ∈\ (0,\ ™ n~1)rAipŸmJomsxž∈p©oCœARrsvkpqr}oCi[+\IrsgknZv\zž­mJvikXZ\_‡r}v¤smAœ+|Zvmfl7\Igg `=0. XZ. (L(t), X(t)). pqgŽsp©œs\Io‹fe. Gf (x, `)P (dx, `) = 0,. ž­mJvrzixšpql\hp¦¥§\7v\7oCip©rs‹Z£Ÿ\Vž­nZo~likp©mso šp¦iX(v\Igk|B\3liikmŠikXZ\V«~vtgxi&œAr}vp©rs‹Z£©\sª =¨eltXZmfmCgjp©oZŽzl7msofœs\IoZpŸ\IoCi i\Igjiž­nZo~likp©mso~gI¬Zmso~\`v\IrJhp©£ŸeŽJ\ig¨iXZf\°ZmJ¤f¤s\7vk ÎuF£©rso~lt¤\ ™ n~r}ikp©mso~gIª ”  à H¿ “ Á â

(124) ” •  ¿ ”h’  à ‘ %  <@     p(x, `) 

(125)    <E  .

(126)  V¿  » `≥0. R. . ∂p σ2 ∂ 2 p + α(x − m) + αp(x, `) + λ1{`>0} p(x, ` − 1) 2 2 ∂x ∂x  − λ + µφ(x)1{`>0} p(x, `) + µφ(x)1{`>0} p(x, ` + 1) = 0.. )? 1. — o=\IrJgje,lmJo~gj\ nZ\7o~l7\m}ž&iXZ\.rs‹BmAœJ\°Zms¤f¤J\7vk 5uF£qr}oBlt¤ \ ™ n~r}ikp©msoTpqgiXZ\ž­mJ£Ÿ£©mAšpŸo~Ž›\ ™ n~r}ikp©mso

(127) ž­msv iXZ\€ž­nZo~likp©mso g ª ™ “ à Rà ‘ â’  à    <    

(128) 2     g (x) ,   !

(129)  u. . %. u.  .     σ 2 ∂ 2 gu ∂gu 1 + α(x − m) + λ(u − 1) + α + µ − 1 φ(x) gu (x) 2 ∂x2 ∂x u   1 − 1 φ(x)g0 (x). =µ u. .  & €  

(130)  ¨$ 

(131) ½

(132) 

(133)     %.  . . '.

(134). '($). *. =¨e,h\«BoZp¦ipŸmJo®¬BikXZ\ ž­n~o~lipŸmJo. 7 %$ ·  

(135) . )G1. . p©gzixšp©l7\šV\3r}¤f£©ehpŸ¥H\Ivk\IoCikpqr}‹Z£©\špŸikXTv\Igk|B\3li{imikXZ\.œAr}vp©rs‹Z£Ÿ\ rx so~p©grso~r}£©eCikpqlzp©o,œ8rsvkpqr}‹~£Ÿ\ gu(x)pŸoikX~\ ms|H\7o

(136) nZoZpŸizhp©gk¤ rso~l7msoCikp©ofnZmsnBgVp©oikXZ\l7£ŸmCgj\3›nZoZpŸizhpqgj¤§ª ÕÕ ÑK~ê Lóó. u.

(137)     22. 2

(138) 

(139) : . ³z\7o~l7\s¬BikXZ\(ž­nZo~likp©mso lIr}oT‹B\*gj\I\7o=rJgzr}oT\I£Ÿ\I[+\7oCiŠmsžiXZ\i\7o~gkmsvŠ|ZvmfZn~li ¬ šX~\7v\ H (R) pqgikX~\ chgms‹H(x)ms£©\7œ gk|~rsl7\€m}žž­nZo~lipŸmJo~gšXZpqltX,rsh[+pŸizr*gk\Il7mso~msvth\Iv¨š¨H\Irs(R) ¤ h\I⊗vkp©œAS(U rAikp©œs)\ rso~ S(U ) pqgŠikXZ\+gk\i€m}žFž­nZoBlikp©msoBgŠšX~p©ltX‡rsvk\*r}o~rs£ŸeCip©l(pŸo‡ikXZ\*nZoZpŸihp©gk¤Tr}o~%lmJoJipŸofnZmJn~gŠpŸo‡ikXZ\ l7£ŸmCgj\3 n~oZp¦izZp©gk¤§ª °~vkmJ[·iXZ\‡|Zv\7œfp©msn~g gj\3likp©mso¬ViXZ\=ž­n~o~lipŸmJo g : (u, x) → g (x) Z\«~oZ\3 ‹fe¸Å ™ nBrAikp©ms3 o )5„ 1 grAip©gj«~\3gRiXZ\ v\7£qrAikp©mso šX~\7v\ Ω p©gikXZ\ mJ|B\Ivr}ikmsvh\7«~oZ\3rJg¨ž­ms£©£ŸmAΩg(u, š{g ž­msx)v{r.=ž­nZ0o~likp©mso f ∈ H (R) ⊗ S(U ) 2. u. 2. u. . Ωf (u, x) =. 2. σ2 ∂ 2 f ∂f + α(x − m) 2 2 ∂x ∂x       1 1 + λ(u − 1) + α + µ − 1 φ(x) f (u, x) − µ − 1 φ(x)f (0, x). u u. '¢o(ikXZ\Vž­ms£©£©mAšpŸoZŽB¬8šV\¨vk\7«~oZ\RikXZ\hmJ[+rspŸo(m}žBh\7«~oZpŸikp©mso.m}ž. Z\«~oZ\3

(140) pŸoTr}o,r}|~|ZvkmJ|Zvp©r}ik\€³{p©£Ÿ‹H\7vkizgj|Brsl\Jª =¨el7mso~gjikvn~likp©mso®¬CikX~\€ž­nZo~lipŸmJo g (x) pqgŽsp©œs\7o

(141) ‹fe. Ω. ) 1. gkmŠrJgikmzmJ‹hirspŸo*rzgk\7£Ÿž¯ ÎrJ8wxmsp©oCimJ|B\Ivr}ikmJv. u. r. 1 gu (x) = σ.   α(x − m)2 α E[uL | X = x] exp − π σ2. WX~\ž­nZo~likp©mso m}žFikX~\(œAr}vp©rs‹Z£©\ p©g`r}o~rs£ŸeCip©l p©o=iXZ\*ms|H\7o=nZo~p¦i hpqgj¤Tr}oBTp©g`lmJoCikp©oCn~msn~gŠpŸo iXZ\l£©mJgk\InZoZpŸgizh(x)pqgj¤§ª>_TmJvk\ImAœs\7v3¬JikXZ\€už­nZoBlikp©mso g (x) p©ggkn~ltX

(142) ikX~r}iž­msv{rs£Ÿ£ |u| ≤ 1 ¬ u. u. 1 σ. r. α π. Z. ∞. 2. gu (x) exp. WX~p©g{l7£Ÿ\3r}v£Ÿep©[+|Z£©pŸ\3gikXBrAiž­msv«~ºf\3 u šp¦iX h\7«~oZ\I

(143) ‹fe H H=. . −∞. . α(x − m)2 σ2. |u| ≤ 1. f : R → C : f exp. . . dx ≤ 1.. ¬hiXZ\€ž­nZo~likp©mso. α(x − m)2 2σ 2. . gu (x). p©gp©o

(144) ikXZ\³zpŸ£©‹H\7vkiŠgj|Brsl\ ) 1.  ∈ H 2 (R) ,. WX~p©g³zpŸ£©‹B\Ivjizgk|~rJl\€p©g{\ ™ nZp©|Z|B\3

(145) šp¦iXiXZ\gl7r}£qr}v|Zvmhhn~liZ\«~oZ\3

(146) ‹Ce &ž­mJv{r}£©£ f, g ∈ H ¬ šX~\7v\. <f, g> =. g(x). Z. ∞. f (x)g(x) exp. p©giXZ\ lmJ[*|~£Ÿ\7º

(147) lmJoAwxnZŽCrAik\`m}ž. 7zmAš ¬fž­msv«Zºh\I. kf k =. x. ¬ZšV\€pqh\7oCip¦ž­e. p(x, `) =. 1 σ. −∞. sZ. r. ∞ −∞. gu (x). g(x). |f (x)|2. . . α(x − m)2 σ2. . dx,. ikXZ\ o~msv[ m}ž>r}o

(148) \7£©\7[+\7oCi. exp. . α(x − m)2 σ2. špŸikX

(149) ikXZ\gk\ ™ nZ\Io~l\. . f∈H. dx.. (p(x, `), l ≥ 0). p©g. ªD=¨eh\7«~oZpŸikp©mso®¬.   α(x − m)2 α exp − P(L = ` | X = x), π σ2. Ú­ÛÕ®Ú¯Ü.

(150)  

(151) 

(152) 

(153) 

(154) . ! !. M/M/1. . rso~

(155) l£©\Ir}v£©e ∞ X.   α 2α(x − m)2 , |p(x, `)| < exp − πσ 2 σ2 2. pŸiRž­mJ£Ÿ£©mAš{g&iX~rAiVikXZ\`gj\ ™ n~\7o~l7\ (p(x, `), ` ≥ 0) p©gRpŸo›ikXZ\`³{p©£Ÿ‹H\7vki¨gk|~rsl7\ L (N) lmJ[+|BmCgj\3+m}ž®g ™ n~rsvk\ gknZ[+[r}‹Z£©\ gj\ ™ nZ\7o~l7\Igp©o C ¬fikX~r}i{p©gI¬ ( ) `=0. 2. L2 (N) =. f = (fn ) ∈ CN :. \ ™ nZpŸ|~|B\3špŸikX

(156) iXZ\gklIr}£qr}v|Zvmhhn~li{h\7«~oZ\3‹fe ž­mJvixšVm+\I£Ÿ\I[*\IoCig. r}o~ f = (f ) n. <f, g> =. ∞ X. ∞ X. n=0. |fn |2 < ∞ ,. ) -IŒ 1. fn gn ,. ªFWX~\ oZmsv[ m}ž&r}o,\7£©\7[+\IoJi f m}ž L (N) p©gŽJpŸœJ\7o‹Ce g = (g ) n=0. 2. n. v u∞ uX kf k = t |fn |2 .. ) - -01. W X~\ms|H\7vtrAimsv l7rso=‹H\(gj\I\7o‡rJg{r}o‡ms|H\7vtrAikmJv{h\«BoZ\ITp©oTiXZ\i\7o~gkmsv{|~vkmhhn~li š¨\ gxipŸ£©£h\IoZm}i\€Ω‹Ce Ω rso~

(157) Žsp©œs\7o‹fe n=0. šX~\7v\. H ⊗ L2 (N). ¬HiX~rAi. Ω = A ⊗ I + I ⊗ B + V,. W XZ\gkeC[.‹BmJ£ I h\7o~m}ik\3g¨ikXZ\ pqh\IoJip¦ixems|H\7vtrAimsvpŸoikX~\r}|Z|Zvms|~vkpqrAi\`³zpŸ£©‹B\Ivjizgk|~rJl\sª WXZ\ ms|H\7vtrAimsv A pqgh\«~o~\I

(158) ‹fe Af =. σ2 ∂ 2 f ∂f + α(x − m) + αf ; 2 ∂x2 ∂x. ikXZ\Zms[r}p©omsž&Z\«~oZpŸikp©mso,msž A pqg{h\7o~m}ik\3 ‹fe. rso~

(159) p©gŽJpŸœJ\7o

(160) ‹fe. D(A)     α(x − m)2 2 D(A) = f ∈ H : x2 f exp ∈ H (R) . 2σ 2. WXZ\ ms|H\7vtrAimsv B pqgh\«~o~\I

(161) ‹feikXZ\ p©oh«~o~p¦i\ [+r}ikvp¦º . −λ λ   0   0 .. µ −(λ + µ) λ 0 .. 0 µ −(λ + µ) λ ..  . . . 0 . .  µ 0 .  −(λ + µ) µ . . . .. ikXZ\Zms[r}p©omsž B šp©£©£®‹B\ h\7ik\Ivk[+p©oZ\I

(162) p©oiXZ\€ž­ms£©£©mAšpŸoZŽBª ÕÕ ÑK~ê Lóó. ) -3† 1.

(163) -3Œ.     22. 2

(164) 

(165) : . WXZ\*ms|H\7vtrAikmJv p©gŠ\ n~rs£im ¬¹šXZ\Ivk\ Φ pqgŠikXZ\*ms|H\7vtrAimsvzZ\«~oZ\3=mJo [(nZ£Ÿikp©|Z£©p©lIrAipŸmJo

(166) V‹fe φ −™ 1 ¬hp:ª \sª Φ ⊗ C. L2 (R). ‹fe,ikXZ\. Φ(f )(x) = (φ(x) − 1)f (x),. r}o~ C p©g¨iXZ\ |ZnZv\ h\Ir}ikX,ms|H\7vtrAimsv3¬hh\«~o~\I

(167) ‹feikXZ\ p©oh«~o~p¦i\ [+r}ikvp¦º . .  . .

(168)   . . $*+'(*". &#(. 0 µ 0 . . 0 −µ µ 0 .  0 0 −µ µ 0  0 0 0 −µ µ . . . . . &. . . . 0 .. # '($).  . .  .  . .. ) -I 1. '¢o

(169) iXZp©gzgj\3likp©mso¬hšV\€\ºZrs[*p©oZ\`ikX~\ |ZvkmJ|B\IvjipŸ\3gm}žikXZ\ mJ|B\Ivr}ikmJvg. r}o~ ª>´¶\gk|B\3lpŸ«Bl7rs£Ÿ£©eh\7ik\Ivj  [+p©oZ\ nZo~Z\7všXZpqltX

(170) l7mso~Zp¦ipŸmJo~g¨ikXZ\3gj\€mJ|B\Ivr}ikmsvtgr}v\`gk\7£Ÿž¯ ¢rs8wxmJpŸoCAiIª>WXZ\Bgk\7£Ÿž¯ ¢rs8wxmJpŸoCiko~\IggV|~vkmJ|B\Ivjixe šp©£©£F‹B\›l7vknBlpqr}£&pŸo˜gknZ‹~gk\ ™ nZ\IoJi(gk\Ilikp©mso~g`imTl7r}vveTmsnhi(r

(171) |H\7vkiknZv‹~rAipŸmJo¶rso~r}£©ehgjpqgIª+Wm,|ZvmAœs\+gj\I£¦ž¯  rJ8wxmsp©oCikoZ\3gkgI¬3šV\FnBgj\RikXZ\Rl7£©rJgkgkpql7r}£}ikmfms£qg®msž~gj|H\Ilikvtr}£Jrso~r}£©ehgjpqAg ):gj\I\RˆŠrsnhikvtr8e€r}o~ pŸmJo~Ag + ?/ά}ˆznZoZž­msvt rso~,chltXfš¨rsvji± + /ά~y\7\3rso~,cfpŸ[+mJo + -G0/®msv{yn~ZpŸo +.- /®ž­mJv‹~rsgkp©lŠ\7£©\7[+\IoJitgm}ž>gj|H\Ilikvtr}£HikX~\7msv<e 1ª WXZ\zms|H\7vtrAikmJv h\«BoZ\I*p©o p©gFoZm}iRgkef[*[+\7ikvp©lsª³zmAšV\Iœs\7v3¬A‹fe(v\IhnBlp©oZŽ€ikXZ\znZo~h\Ivk£©efpŸoZŽ ³zpŸ£©‹H\7vki€gk|~rsl7\s¬HšV\+Bl7rso=ms‹Zir}p©o‡rL gj(N) ef[+[+\ikvpqlms|H\7vtrAimsv`rsgzž­ms£©£ŸmAš{gIª \i`n~g€lmsoBgjpqh\7vzikXZ\+³{p©£©‹B\Ivji gk|~rJl\ L (N) h\7«~oZ\I

(172) ‹fe 2. 2 ρ. L2ρ (N) =. šX~\7v\. (. f = (fn ) ∈ CN :. ªFWXZ\ gl7rs£©rsv¨|~vkmhhn~lipŸo ρ = λ/µ < 1. ∞ X. ). |fn |2 ρ−n < ∞ ,. p©gZ\«~oZ\3

(173) ‹Ce. n=0. L2ρ (N). <f, g>ρ =. rso~ ikXZ\ oZmJvk[ ‹Ce. ∞ X. fn gn ρ−n. n=0. v u∞ uX kf kρ = t |fn |2 ρ−n .. hc pŸo~l7\ ρ < 1 ¬ikXZ\gj|~rJl\ L (N) pqgl£©\Irsvk£©e%r=gknZ‹~gk|~rJl\m}ž L (N) ª=WXZ\›ms|H\7vtrAimsv B p©o~hnBl\Ig(pŸo r}omJ|B\Ivr}ikmsv3¬AiX~rAiRš¨\{gjikp©£Ÿ£Hh\7oZmsik\{‹fe r}o~*iX~rAiVp©gFZ\«~oZ\3‹feiXZ\{p©oh«~oZpŸik\Š[+r}ikvp¦º*Žsp©œs\Io L (N) ‹fe

(174) Å ™ n~rAipŸmJo )-8† 1ª:'¢oTiXZ\ž­mJ£Ÿ£©mAšpŸo~Ž~¬BikXZ\*gjefB[(‹Hms£ B v\ž­\Ivg{ikmiX~rAi€ms|H\7vtrAimsvzZ\«~oZ\3Tp©o L (N) ‹feiXZ\ p©oh«~oZpŸik\ [rAivkpŸº ) -3† 1ª \i h\7oZmsik\.ikXZ\hmJ[r}p©o%msžFikXZ\+mJ|B\Ivr}ikmsv ¬p:ª \sª©¬¹ikX~\+gknZ‹~gk\i msž l7ms[+|BmCgj\3=msž iXZmJgk\€\7£©D(B) \7[+\7oCitg f ∈ L (N) gkn~ltX

(175) ikX~r}i Bf ∈ L (N) ªFBWXZ\rJ8wxmsp©oCimsžiXZ\ ms|H\7LvtrA(N) imsv B p©gZ\7oZmsik\I n=0. 2 ρ. 2 ρ. 2. 2 ρ. 2 ρ. 2 ρ. 2 ρ. Ú­ÛÕ®Ú¯Ü.

(176)  

(177) 

(178) 

(179) 

(180) . M/M/1. ! !. --. ‹fe B r}o~=p©gŠh\«~o~\IT‹fe ¨ž­msv f ∈ D(B) rso~ g ∈ H ‹fe <Bf, g> = <f, B g> r}o~ D(B ) pqg¨ikX~\hms[r}p©o

(181) m}ž B ª '¢oikXZ\€ž­mJ£Ÿ£©mAšp©oZŽ~¬CikX~\`mJ|B\Ivr}ikmJv pqggjXZmAšo ikm+‹H\€gk\7£Ÿž¯ ¢rs8wxmJpŸoCiI¬hp5ª \sª ¬~šXZp©ltXvk\ nZpŸv\Ig p©o»|~rsvjip©l7nZ£qr}v iX~rAi D(B) = D(B B) ª‡Wm‡ŽJ\iiXZp©g.|Zvms|H\7vkixe‡pŸi.pqg.gkn &›Blp©\7=oCiBim‡|ZvmAœs\+iX~rA™ i.ikXZ\ mJ|B\Ivr}ikmJv B pqg a gjef[+[+\ivkpql &ž­mJv{r}£©£ f, g ∈ D(B) ¬ <Bf, g> = <f, Bg> a ‹BmJnZo~h\3 >iXZ\ ™ nBr}oCikpŸixe . ∗. ρ. ∗. ∗. ρ. ∗. ∗. ∗. . ρ. ρ. . ©p g«~oZpŸik\sª V ¿  »”  <.  < 

(182)  . . kBkρ = inf |<Bf, f >ρ | : f ∈ L2ρ (N), kf k2ρ = 1 B. , . . . 

(183)  4.     # 2. ) -7 1. √ √ kBkρ ≤ ( λ + µ)2 ,.  <  ! 

(184)   B   <  ! !    

(185)  2! +     +zWX~\€gkef[+[*\7ikve msžikX~\ ms|H\7vtrAikmJv B p©ggjikvtr}p©ŽsXCijž­mJvkšr}vt¹ª°Zmsv <Bf, f >ρ =. l7mso~gk\ ™ nZ\IoCik£©e. ∞ X. n=0. f ∈ L2ρ (N). ¬.  (λ + µ1{n≥0} )fn − λfn−1 − µfn+1 fn ρ−n ,.

(186)

(187)

(188)

(189) ∞ ∞

(190) X

(191)

(192) X

(193)

(194)

(195)

(196)

(197) |<Bf, f >ρ | ≤ (λ + µ)||f ||2ρ +

(198) µfn+1 fn ρ−n

(199) +

(200) λfn−1 gn ρ−n

(201) ,

(202)

(203)

(204)

(205). ‹fe›nBgjp©oZŽ›chltXfš¨rsvk±`p©oZ\ ™ n~rs£ŸpŸixes¬hš¨\€Žs\i. n=0.

(206)

(207)

(208) X

(209) p

(210)

(211) µfn+1 fn ρ−n

(212) ≤ λµ||f ||2ρ ,

(213)

(214)

(215) n=0

(216)

(217)

(218) p

(219) X

(220) −n

(221) λfn−1 fn ρ

(222) ≤ λµ||f ||2ρ ,

(223)

(224)

(225). n=0. rso~Å ™ n~rAipŸmJoB) -7 1Vž­mJ£Ÿ£©mAš{gIª WXZ\gk|H\Ilivkn~[ σ(B) m}žikXZ\ mJ|B\Ivr}ikmsv B pqg{h\«BoZ\I

(226) ‹fe pqgoZm}i{p©ofœs\IvjipŸ‹Z£©\ }, σ(B) = {z ∈ C : (B − zI) gkp©o~l\ B pqg.gk\7£Ÿž¯ ÎrJ8wxmsp©oCiI¬ σ(B) ⊂ R ª%_TmJvk\ImAœs\7v3¬Å ™ n~rAipŸmJ> o ) -7 1(pŸ[+|Z£©p©\Ig(ikXZ\

(227) vk\I£©r}ikp©mso σ(B) ⊂ √ F ª C c  i s r ~ o Z  } r t v.  k g H | I \  l  i  v s r H £ k i Z X I \ s m  v › e j g Z X A m { š V g  i ~ X A r iikX~\€gk|H\Ilivkn~[ σ(B) lIr}o

(228) ‹B\ h\3lms[*  √ [−( λ + µ) , ∞] |HmJgk\I

(229) rsg¨ž­mJ£Ÿ£©mAš{g n=0. 2. . σ(B) = σp (B) ∪ σc (B),. ÕÕ ÑK~ê Lóó.

(230) -8†.     22. 2

(231) 

(232) : . šX~\7v\ σ (B) pqg¨ikXZ\ l£©mJgknZv\ŠmsžiXZ\gj\7i{lms[+|HmJgk\I m}žiXZ\€\7p©Žs\IoCœArs£ŸnZ\3g¨m}ž B ¬Zv\ž­\7vv\I+im+rJg|BmJpŸoCi gk|H\Ilivkn~[

(233) ¬Cr}o~ σ (B) p©gFikXZ\zl7msoCikp©ofnZmsnBg>gj|H\IlikvnZ[,ª&WX~\{|BmJpŸoCiVgk|H\Ilivkn~[ pqgF|Zn~vk\I£Ÿe*hp©glv\i\{r}o~ pŸžr}o~%msoZ£©e=pŸžViXZ\7v\\ºhpqgxitg gjmJ[+\ gkn~ltX%ikX~r}i Bf = zf ª+°Zvms[ gk|H\Ilivrs£ ziXZ∈ \7mJvkσeJ¬f(B) ikXZ\€ž­mJ£Ÿ£©mAšp©oZŽ.|~vkmJ|BmCgjpŸikp©mso

(234) XZms£qZgIª f ∈ L (N) “ à Rà ‘ â’  à  <     @

(235) 

(236)     dψ(z)      : J

(237) A)! 

(238)  

(239)     # <  $ < p. c. 2 ρ. p. . . . . . 

(240)  %

(241) 

(242)  2 J)<

(243)   {H }  z ∈ σ(B) A%  <

(244)  σ(B) z  !2. @)<

(245)   L2 (N) E !

(246)     ! 2 @    ! )!

(247)  . . . . ρ. Z. H=. &+2,+ 

(248)  R kf. f ∈ L2ρ (N) 2 z kρ ψ(z) < ∞.

(249) H       < 42  

(250) J

(251)  2  . .  <  < 

(252)   B E   !  )!

(253)  H + (Bf ) %. . (Bf )z = zfz. Z. .  <

(254)   . )-8„ 1. Hz dψ(z),. +

(255) C  ! . <f, g>ρ =. 7zm}ik\VikXBrAi. ⊕. Hz. (fz , z ∈ σ(B)). . # <  . f z ∈ Hz. <fz , gz >ρ dψ(z). z ∈ σ(B). . # ! . (Bf )z.  <        . qp grso\7p©Žs\IoCœArs£ŸnZ\Rm}žZiXZ\RmJ|B\Ivr}ikmsv B pŸžBr}o~msoZ£©e€p¦ž ψ({z}) > 0 r}o~€iX~rAiikX~\¨gk|~rsl7\ z m}ž © p Š g › r k g Z n ~ ‹ k g  \ { i p¦žFrso~,msoZ£©e

(256) p¦ž pqg{rsoT\7p©Žs\7ofœAr}£©nZ\Jª¨WXZ\(oZ\ºfizv\IgknZ£ŸizŽsp©œs\3g¨ikXZ\.\ºh|Z£©p©l7p¦i H v\7|~vk\3gj\IoJitrAipŸmJom}ž®iLXZ\`(N)gk|H\Ilivrs£B[+\3rsgknZvk\`zr}o~›ikXZ\€gk|~rsl7\Ig H rs|Z|H\Ir}vp©oZŽ(p©oˆŠ\Il7ms[+|BmCgjpŸikp©mso )-3„ 1ª “ ÃRà ‘â’ à   < ! 

(257)  

(258)     dψ(x)     z. 2 ρ. z. z. . Z. f (x)dψ(x) = (1 − ρ)f (0). . √ s  2 √ Z −( λ − √µ)2 ρ f (x) x+λ+µ √ 1 − − dx, √ π −( λ + √µ)2 x 2 λµ. )-? 1. E

(259)      

(260) :  

(261)        f +  < !

(262)   B !

(263) 

(264) 4   !      

(265)  !

(266)  0 

(267)  % !

(268)    

(269)   *        E$H 

(270)    

(271)    <

(272) !D <  !   <  n   .   !@  !

(273)    ρn +  <)<

(274)   H  0.  <) <

(275)   ) !

(276) ! .   !   e(ρ) e(ρ) + #  ∈ (−(√λ + √µ)2 , −(√λ − √µ)2 )   !E !

(277)   H , < ,)!

(278)  E !

(279)  .   <   !   z (Q.  A  .   ! 2. # 2 4    z (z)) n.  !   !   . Q0 (z) = 1, Q1 (z) = (z + λ)/µ µQn+1 (z) − (z + λ + µ)Qn (z) + µQn−1 (z) = 0, n ≥ 2.  z ∈ (−(√λ + √µ)2 , −(√µ − √λ)2 )  E

(280)  (Qn (z)).  !  

(281)  

(282) 2  + . Ú­ÛÕ®Ú¯Ü.

(283)  

(284) 

(285) 

(286) 

(287) . M/M/1. -I. ! !.    +zWm‡h\7ik\Ivk[+p©oZ\›iXZ\

(288) gk|H\Ilivkn~[. msžikXZ\ms|H\7vtrAimsv B ¬>šV\

(289) lmsoBgjpqh\7v(ikXZ\\ ™ n~r}ikp©mso Bf (z) = ¬ h  š Z X I \ k v \ ª V = e

(290) rsggjn~[*p©oZŽ*ikXBrAi f (z) = 1 ¬hikX~\(gj\ ™ nZ\7o~l7\ f (z) gkr}ikpqgx«~\3g zf (z) iXZ\ v\Iln~vkv\7o~l7\Šf (z) v\7£qrA=ipŸmJ(fo (z)) ∈ C . N. n. 0. f0 (z) = 1, f1 (z) = (z + λ)/µ, µfn+1 (z) − (z + λ + µ)fn (z) + λfn−1 (z) = 0,. ) -G1. n ≥ 2.. WX~\‡r}‹HmAœs\,iXZvk\I\ 5ik\Ivk[ vk\3lnZvvk\Io~l\Tv\7£qrAipŸmJoµpŸ[+|Z£©pŸ\3g›iX~rAi f (z) p©gr˜|Hms£©eCo~ms[+p©rs£zp©o œAr}vp©rs‹Z£Ÿ\ šp¦iX»h\7ŽJvk\I\ r}oB‡iX~rAi(ikXZ\›|Hms£©efoZms[+pqr}£qg ž­mJvk[ r}omsvkikXZmJŽsmJo~r}£&|Hms£©eCo~ms[+p©rs£Rgkefgjik\I[ z gkp©o~l\ °Br8œAr}vt  g.nlmJo~hpŸikp©mso˜pqg(mJ‹Cœfp©msn~gk£©e%grAikpqgj«~(f\I (z)) ):gj\I\ — gk¤s\Ie¶rso~ 'xgk[r}p©£:+ /Vž­mJv*Z\irspŸ£qg 1ª‡WXZ\ mJvjiXZmsŽJmso~rs£ŸpŸixe [+\IrJgjnZv\m}ž§iXZ\Igk\{|Hms£©eCo~ms[+p©rs£©gFp©gR|Zvk\3lpqgj\I£Ÿe(ikXZ\Šgj|H\Ilikvtr}£~[+\3rsgknZvk\msžHiXZ\zmJ|B\Ivr}ikmJv gkp©o~l\ B p©ggk\7£Ÿž¯ ¢rs8wxmJpŸoCiIª B Wm»h\i\7v[+pŸoZ\ ¬š¨\TlmJ[*|~nhik\,iXZ\T£Ÿp©[+p¦ipŸo~Ž˜œ8rs£Ÿn~\=rsg ik\7oBZg+ikm˜p©oh«~o~p¦ixe¸m}ž`ikXZ\TvtrA  ipŸm f (z)/f (z) ¬Ršdψ(x) XZ\7v\ f (z) ¬ n = 0, 1, 2, . . . r}v\›iXZ\

(291) rJgkgkmhlpqrAni\›|BmJ£ŸefoZmJ[+p©rs£©gI¬>šXZpqltXOgkr}ikpqgxž­e v\Il7nZvvk\Io~l\`vk\I£©r}ikp©mso )-G1¨šp¦iXiXZ\ p©oZp¦ip©rs£lmJo~hpŸikp©mso~g r}o~ f (z) = 1/µ. f (z) = 0 cfikvtr}p©ŽsXCijž­mJvkšr}vt›lmJ[+|Znhir}ikp©mso~gefp©\7£q›iX~rAi3¬hž­msv z ∈/ [−(√λ + √µ) , −(√λ − √µ) ] ¬ n. n. ∗ n. ∗ n. n. 0. 1. 2. šX~\7v\. 1 fn (z) = Z+ − Z −. ". λ+z−µ+ 2µ. p. δ(z). !. n Z+. z+λ+µ± Z± = 2µ. −λ − z + µ + 2µ. +. p. 2. 2. 2. fn∗ (z) =. iX~rAi. Z. šX~\7v\. 0. dψ(x). X~rsg¨r(gknZ|Z|HmsvkiVp©o~l7£Ÿn~Z\I›p©o. dψ(x) = χ(z), z−x. p©gŠikX~\*l7msoCikp©ofnZ\I,ž­vtrslikp©msoTšXZmCgj\ nikX¶r}|Z|Zvm8ºhpŸ[rsoJiŠp©g χ(z) ­ ž J m v p©gŽJpŸœJ\7o

(292) ‹fe χ(z) z∈ / (−∞, 0] 'Îi{pqg\IrJgjp©£©e ltXZ\Ilt¤J\I›ikX~r}iž­msv. ¬. −∞. fn∗ (z)/fn (z). fn∗ (z) . n→∞ fn (z). χ(z) = lim. z > 0 Z + > Z− > 0 χ(z) =. ÕÕ ÑK~ê Lóó. fn∗ (z).  n  1 n Z+ − Z − . µ(Z+ − Z− ). cCipŸ\I£¦i:wx\Ig¨iXZ\7mJvke4+ /®gxitrAik\3gFiX~rAi¨ikX~\z[+\IrJgjnZv\ . δ(z). r}o~iXZ\7o

(293) ž­msv. 2 λ+z−µ+. !. n Z−. #. ,. δ(z). špŸikX =√(z + λ + µ) −√ 4λµ ªz_=msv\7mAœs\IvI¬ZikXZ\*rsggjmhlpqrAi\I

(294) |Hms£©eCo~ms[+p©rs£©g ž­mJv z δ(z) √ √ ∈ / [−( λ + µ) , −( λ − µ) ] 2. p. p. δ(z). .. z>0. r}v\ Žsp©œs\7oT‹fe. . (−∞, 0]. rso~. ª€WX~\ž­nZo~likp©mso. ¬ )- 1.

(295) -I .     22. 2

(296) 

(297) : . W X~\ž­nZo~likp©mso%msoTiXZ\.vp©ŽsXCiŠX~rso~=gkp©Z\(m}žVÅ ™ n~rAipŸmJo )- 1{lIr}o=‹H\+r}o~rs£ŸeCikpql7rs£Ÿ£©e,lmsoCipŸofnZ\3,ikmikXZ\ l7ms[+|Z£©\º›|Z£qr}o~\€Z\7|ZvpŸœJ\I m}ž®iXZ\gj\IŽs[+\7oCi √λ + √µ) , −(√λ − √µ) ] rso~iXZ\€msvpŸŽJpŸoª&_=msv\ |~vk\3lpqgj\I£ŸeJ¬BiXZ\.ž­nZo~lipŸmJo χ(z) X~rJgŠrnZoZp ™ nZ[−( \*|BmJ£Ÿ\+rAi r}oB=pŸig`vk\3gjpqhnZ\.p©g`\ nBr}£ikm ª WX~\\7p©Žs\IoCœJ\Ilikmsv{rJgkgkmhlpqrAi\I

(298) šp¦iXTikX~\(\7p©Žs\Iofœ8rs£Ÿn~\ 0 zp©g{=ikXZ\.0 œs\3likmJv{šXZpqltX nikX‡l7ms™ [+|BmJoZ\7oC(1i{pq−g ρρ) ª ):WXZpqgœs\3likmJvl£©\Ir}v£©e‹B\I£ŸmJoZŽJg¨im L (N) ª 1 °~vkmJ[ u&\Ivkvmsoh xcCipŸ\I£¦i:wx\Igp©ofœs\IvgkpŸmJož­msv[(nZ£qrZ¬>gk\7\ — gj¤J\7e˜r}oB 'xgj[rspŸ£ +  /rso~»³{\IoZvp©l7p + /ά>ikXZ\ l7msoCikp©ofnZmsnBg¨gk|H\Ilivkn~[ m}žikXZ\ [+\3rsgknZvk\ dψ(x) pqgŽsp©œs\7o

(299) ‹fe 2. 2. n. 2 ρ. . 1 dψ(x) = lim (χ(x − iε) − χ(x + iε)). ε→0 dx 2iπ. 'Îi›pqg\3rsgkpŸ£©eOltXZ\3lt¤s\I»ikX~r}i›ikX~\=r}‹HmAœs\

(300) £Ÿp©[+p¦i pqgoZmJo¸ofnZ£©£{mJoZ£ŸeOž­msv. √ √ 2 √ µ) , −( λ − µ)2 ). rso~¹¬Zp©oikX~r}izl7rsgk\s¬. x. p©oikXZ\Tp©oCik\IvkœAr}£. √ (−( λ +. √ s ρ (x + λ + µ)2 dx. dψ(x) = − 1− πx 4λµ. 'Îi,pqgš¨msvkikX. oZm}ipŸoZŽ¸ikXBrAi pqgœJ\7ve l£©mJgk\=ikm¸ikXBrAi

(301) ikXZ\˜lmJvkv\Igk|Hmso~hp©oZŽOgk|H\Ilivrs£Š[+\3rsgknZvk\ rJgkgkmhlpqrAi\I

(302) šp¦iX%]VXZ\7‹fehgkXZ\7dψ(x) œ

(303) |BmJ£ŸefoZmJ[+p©rs£©gIª '¢o,žârsli3¬~iXZ\(|Hms£©efoZms[+pqr}£qgnZo~Z\7vŠl7mso~gkpqh\7vtrAipŸmJoXZ\Ivk\ Zp¦¥§\7v`ž­vms[ ]VXZ\I‹CehgkXZ\7œ,|Hms£©efoZms[+pqr}£qgzmJoZ£Ÿe

(304) iXZvkmJnZŽsX‡ikXZ\*p©oZp¦ip©rs£>lmsoBhp¦ipŸmJo~g )âgk\7\›]VXZp©X~r}vtr +̄0/&ž­msv rso\7ºhX~r}n~gjikp©œs\`ivk\3rAik[+\IoJimsžl£qrsggkp©lIr}£§msvkikXZmJŽsmJo~r}£§|Hms£©eCo~ms[+p©rs£©g 1ª 'Îi{pqg\IrJgjp©£©e›ltXZ\Ilt¤J\I ikX~r}i Z. √ √ −( λ− µ)2 √ √ −( λ+ µ)2. √ √ Z 1 − x2 2 λµρ 1 √ dx dψ(x) = π −1 λ − 2 λµx + µ Z ∞ p 2ρ X n/2 1 = ρ Un (x) 1 − x2 dx = ρ, π n=0 −1. šX~\7v\ U (x) ¬ n = 0, 1, 2, . . . r}v\ikX~\]VXZ\I‹fefgkXZ\IœT|BmJ£ŸefoZmJ[*pqr}£qgŠm}žFiXZ\gj\3lmsoBT¤fpŸo~®¬®šXZpqltX%r}v\ mJvjiXZmso~msv[+rs£BšpŸikX,v\Igk|B\3liim.iXZ\ š¨\7p©ŽsXCi[*\3rsgknZv\ w(x)dx špŸikX n. 'Îiž­mJ£Ÿ£©mAš{gVikX~r}iikXZ\€im}itr}£¹[rsggm}ž. w(x) = dψ(x) Z. p. p©g. 1 − x2 1(−1,1) (x).. 0. dψ(x) = 1.. WX~\‡msvkikX~msŽsmJo~r}£©pŸixeOm}ž iXZ\%gk\ ™ nZ\Io~l\3g (Q (z)) ž­msv z ∈ [−(√λ + √µ) , −(√λ − √µ) ] r}oB Å ™ nBrAikp©msBo )-0? 1rsvk\ŠikXZ\Ivk\7ž­msv\€\Igjir}‹~£ŸpqgjX~\I¹ª 'ÎiRpqg>š¨msvkikX+oZmsikp©oZŽ€ikX~r}iFikX~\{|BmJpŸoCiRgk|B\3livknZ[ m}žHikX~\{ms|H\7vtrAimsv lmJoCir}p©o~g>mJoZ£©e(mso~\|BmJpŸoCiRr}oB iX~rAiiXZ\lmJoCikp©oCn~msn~ggk|B\3likvnZ[p©g¨iXZ\ pŸoCi\7vœ8rs£ (−(√λ + √µ) , −(B √λ − √µ) ) ª −∞. 2. n. 2. 2. 2. Ú­ÛÕ®Ú¯Ü.

(305)  

(306) 

(307) 

(308) 

Références

Documents relatifs

C'est aussi le résidant pas chez leurs parents fréquentent deux fois parativement à la province, les étudiants de Nanterre ne lement ce moindre attachement à la ville

In this paper, we study the performance of an enhanced channel estimation technique combining estimation using an autocorrelation based method and the Expectation-

Selon Laeven et Valencia (2012) , le coût budgétaire de la crise bancaire s’est respectivement élevé à 44 et 41 points de PIB en Islande et en Irlande, ce qui place ces deux

Dans ce travail, nous comparerons les entreprises coopératives, détenues par leurs membres, dont le produit risqué est la ressource critique apportée et dont l’objectif est

L’indice EMBI a augmenté de 77 points de base entre le point bas de mi-septembre 2007 et fin février, en partie conduit par la hausse de 300 points de base du spread de l’Argentine

À cet effet, un nombre considérable de recherches démontre cliniquement que les enfants de parents souffrant de problème de santé mentale sont plus à risque d’un retard dans leur

usual route to school and provide us with some details about their travel routine (e.g., schedule, mode of transportation, people accompanying them, etc.); 3) recent interventions

La question de l’extension des limites de Paris jusqu’à cette ligne avait été discutée mais ne fut tranchée que par un décret impérial du 9 janvier 1859 qui décidait de