• Aucun résultat trouvé

On probabilities that a random walk is negative

N/A
N/A
Protected

Academic year: 2022

Partager "On probabilities that a random walk is negative "

Copied!
9
0
0

Texte intégral

(1)

1.64033 Communicated 12 F e b r u a r y 1964 b y LENI~ART CARLESOI~

On the probabilities that a random walk is negative

B y BENGT ROSI~N

l. Introduction, notations and summary

Let X1, X~ . . . . be independent copies of a random variable X with distribu- tion function F(x). The successive partial sums are denoted Sn = X I + X 2 + ... + Xn, n = 1, 2 . . . We define a~ = P(Sn < 0), n = 1, 2 . . . To every distribution func- tion we get an associated sequence {an}[ r We list two immediate relations between the existence of moments of X and the asymptotic behavior of { a , } ~ .

A. The law of large numbers implies t h a t l i m ~ _ . ~ a n = 0 if E X > O and t h a t l i m ~ _ , ~ a = = l if E X < 0 .

B. F r o m the central limit theorem follows t h a t if E X ~ < co and E X = 0 then

lim a= = 89 (1.1)

The main aim of this paper is to answer the following question raised b y F. Spitzer in [3], p. 337. Does there exist a distribution F(x) for which the sequence { =}1 fails to have a (C, 1)-limit? a

I n Theorem 1 we show t h a t there is a distribution such t h a t E IXI2-~< co for every ~ > 0 , for which {a=}~ does not possess a (C, 1)-limit. I n Theorem 2 we discuss the limitability of {an}[ r for general limitation methods, and show t h a t for a n y regular linear limitation method there exists a distribution for which {an}F cannot be limited.

According to A, B and the result in Theorem 1, the condition E X ~ < co and E X = 0 is a weakest possible sufficient condition in terms of moments only for (1.1) to hold. In Theorem 3 we give a more general sufficient condition for (1.1). The essence of this theorem is t h a t (1.1) holds if F(x) does not deviate too much from a distribution which is symmetric around zero.

I wish to t h a n k Professor L. Carleson for having suggested the theme of this paper and for valuable guidance.

a oo

2. Existence of distributions for which { .}1 cannot be limited

Theorem 1. There exists a distribution F(x) with E IXI 2 ~ < cr /or every (~ > 0 /or which upper and lower (C, 1)-limits o~ {an}~ are respectively 1 and O.

(2)

B. ROS]~N,

On probabilities that a random walk is negative

Proo/.

W e show t h e e x i s t e n c e b y a n e x p l i c i t e x a m p e l . W e d e f i n e a d i s c r e t e d i s t r i b u t i o n w i t h m a s s p o i n t s {c:}~ r a n d c o r r e s p o n d i n g p r o b a b i l i t i e s

p ~ = P ( X = c ~ ) = [ ( e - 1 ) v ! ] -1,

v = l , 2 . . .

T h e e s s e n t i a l f e a t u r e of t h i s choice of t h e p r o b a b i l i t i e s is t h a t

p:+l/p:-+O

w h e n v--> + . W e f i r s t d e t e r m i n e t h e c's w i t h o d d indices. L e t

C 2 v _ 1 ~ ( _ _ l ~ v + l ~-( 89 ~] F 2 ~ - I , v = l , 2 , . . . ,

w h e r e ;t(2v - 1) = ~t(2v) = (log 2v) -+. (2.1)

The. e s s e n t i a l p r o p e r t y of +~(v) is t h a t i t t e n d s to 0, b u t n o t t o o f a s t , w h e n --> + . W e o b s e r v e t h a t c~ is a l t e r n a t i v e l y p o s i t i v e a n d n e g a t i v e w h e n v r u n s t h r o u g h o d d indices. F o r e v e n i n d i c e s we d e f i n e c2~ t h r o u g h t h e r e l a t i o n

pe~-lc2~=l+p2~c~=O,

v = l , 2 . . . . (2.2)

,'n89 l(2~) ~-1 (2.3)

w h i c h y i e l d s c2~ = ( - 1)" " r 2 , - 1 i02,.

T h e d i s t r i b u t i o n is n o w c o m p l e t e l y specified a n d we d e r i v e s o m e of its p r o p - erties. I t is e a s i l y c h e c k e d t h a t

~P~"~Pn

w h e n N--->co (2.4)

N

a n d t h a t [e2~-11 < [c2~[, v = l, 2 . . . (2.5)

Note.

T h r o u g h o u t t h e p a p e r t h e s y m b o l ~ m e a n s t h a t t h e r a t i o of t h e q u a n - t i t y t o t h e r i g h t a n d t o t h e l e f t of ~ t e n d s t o 1.

N e x t we show t h a t

E [ X { 2 - o < c~

for e v e r y (~>0. L e t v be e v e n a n d (~>0.

A s ~t(n)-->0 v h e n n--> c~ t h e following i n e q u a l i t y h o l d s w h e n v is s u f f i c i e n t l y l a r g e

P~I ~: ll~-~ _- ~={ ~- ~<~)<2-~) ~ 1 = ~ < (v l) - ~ . F o r v o d d a n d s u f f i c i e n t l y l a r g e we h a v e

":i - r : 1 , : - 1 ~< - - ~ v [ ( v I)!]-+~.

\ P ~ l "

T h u s EIX[:- : < + . (2.6)

I n p a s s i n g we m a k e t h e following o b s e r v a t i o n s . W e a r e going t o s h o w t h a t f o r t h e d i s t r i b u t i o n we h a v e c o n s t r u c t e d i t h o l d s t h a t {an}~ r h a s n o t a (C, 1)- l i m i t a n d

a /ortiori

t h a t {an}~ h a s n o t a l i m i t . F r o m A a n d B in w 1, i t follows t h a t such a d i s t r i b u t i o n m u s t s a t i s f y

3 1 8

(3)

(i)

EX 2= ~ ,

(ii)

E X = 0

if t h e m e a n of X exists.

F o r t h e a b o v e d i s t r i b u t i o n (i) is easily verified a n d (ii) follows f r o m (2.2).

W e shall need t h e following e s t i m a t e later.

N

Ep~c~<HpNCUN, N

even, (2.7)

1

w h e r e H is a c o n s t a n t i n d e p e n d e n t of N . F r o m (2.2) if follows t h a t p2~[c2~]=

p2v-1]C2v-l[ and

(2.5) gives

p2~c2~ > P2~_ l c2~_1.

2 2 T h u s

N N/2 N/2

C2 1

~ 2pNc~ Y. p2~ 2,pN C;~ ~.

v = l v = l v = l

E s t i m a t e s w i t h Stirling's f o r m u l a yield

2 - 1 - 2 0

l i m P 2 ( v - 1 ) c 2 ( ~ - l ) p 2 v c2v = y.-~ or

c 2 - I c2~ ~< for

a n d t h u s p2(v-1) 2(v-1)P2v 89

V~Vo.

This implies

NI2 2 ~ 0 2 {

~l P2~C2~--~pNCN 1 + 89 + (89 +... + p~l c~2 ~ p2vc2~}

a n d n o w (2.7) follows as

p~C2N--> ~

w h e n N--> ~ . W e i n t r o d u c e t h e e v e n t s

A(n,

N ) : Sn a n d cN h a v e the s a m e sign.

B(n, N) : Xt, X~ .... , X,~

all a t t a i n t h e i r values a m o n g (ct, %, ..., CN),

Ck(n,

N ) : E x a c t l y k of X1, X 2 .. . . . Xn a t t a i n t h e value cN, k = 1, 2, . . . , n . F o r simplicity, we shall s o m e t i m e s suppress t h e indices n a n d N a n d we u n d e r s t a n d t h a t t h e y b o t h are t h e s a m e for A, B a n d C w h e n these e v e n t s occur simultaneously. T h e following inequalities are i m m e d i a t e

n

P(A) >1 P( [.J ABCk) = ~ P(ABCk)

k=0 k=O

>1 ~ P(B). P(Ck[B)" P(A I BC~),

k = K

w h e r e K is a n o n - n e g a t i v e integer

<~ n. P(A]BCk)

increases w i t h k for

k<~n

a n d we g e t

P(A(n, N)) >7 P(B). ~ P(C~ I B). P(A ]BCK).

(2.8)

k=K

(4)

B. ROSfiN,

On probabilities that a random walk is negative

We shall let N tend to infinity and we consider the following choices of n and K as functions of N.

n ( N ) = N

~a(N)p~l for 8 9 1,

K(N)= 89

Our aim is to show t h a t

P(A(n(N), N)) ---> 1

(2.9)

uniformly in a for 89 ~< ~ ~< 1, when N--> ~o through odd values. We do this b y showing t h a t all three factors to the right in (2.8) tend to 1 uniformly in for 89 ~< ~ ~< 1. We start by showing

lim

P(B(n(N),

N ) ) = 1 (2.10)

N - - ~

and the convergence is uniform for 89 ~ a ~< 1.

~ n ( N ) ~ (1 ~ , n ( N )

P(B(n(N),N))

= ( ~ p ~ ) - ~+lp. ) exp ( - n ( N ) p N + I ) according to (2.4).

and (2.10) follows.

Thus

P(B(n(N), N)) ,,~

exp ( - N -~(m) Next we prove

n(N)

lim

Z P(Ck(n(N),N)[B)=

1

N.--~oo k f K(N)

(2.11)

and the convergence is uniform for ~ <~ ~ ~< 1. We introduce the truncated random variable X (m and the random variable

y(N).

Then and

N - 1

. : : 1 , 2 . . . N ( 2 1 2 )

otherwise.

"2 P ( C k ( n ( N ) , N ) I B ) = P . . . .

k = K(N)

where the Y~(m's are independent. The random variable ~

y(N)

has a binomial distribution with mean

n(N)pN (~Np~)-l.

Estimates with Tchebyeheff's inequality give t h a t the right hand side in (2.13) tends to 1 uniformly for 89 1. Thus (2.11) is proved. Finally we show

3 2 0

(5)

P(A(n(N),

N)[

BCK(m) -+ 1 (2.14)

uniformly for 89 ~< ~ ~ 1 when N--> oo through odd values.

The conditioned r a n d o m w r i a b l e

Sn I BCK(m

is identical in distribution with the r a n d o m variable

n ( N ) - K ( N )

K ( N ) . cN + ~

y ( N - 1 ) 1

where the X~ N-l) are independent copies of the r a n d o m variable

X (N-l)

defined in (2.12). Thus

As N is assumed to be odd it follows from (2.2) t h a t

E X (~-1)= O.

Tchebycheff's inequality now yields

N - 1

( n - K(N)) ~, p,c~

P ( A ] B C K(N)) >1 1 1

N - 1

K(N) c V p,

1

a n d in virtue of (2.7)

>1

1 - H " n ( N ) p N - 1 C ~ - 1

N--1

K(N) 5 P,

= 1 - R ( N ) .

B y inserting the choices of

n(N)

and

K ( N )

we get

R ( N ) , - , 4 H PN+a "PN-2 p~,~(N)

~ 2 )~(N-2) "~Vga(N)

PN'PN-1 ~'N-2

9 ~20,( N ) - )'( N - 2))

" 4 H N ~ ( N ) [ N ( N -

1)] -2~(N) ~,N-2

_20(N)-~(N-~)) ~ 1 a n d we get An estimate with Stirling's formula gives t h a t ~,~_~

R ( N ) ~ 4 H e x p - 4) Vl- g

Thus

P(AIBCK(m)->

1 uniformly for ~ ~<m~< 1 a n d (2.14) is proved. Now for- mulas (2.8), (2.10), (2.11), a n d (2.14) together i m p l y (2.9).

F o r odd values of N, cN is every second time positive a n d every second t i m e negative. Thus we get as an immediate consequence of (2.9) t h a t l i m n _ ~ an = 1 and li_mmn_,~an=0. We w a n t to sharpen this to the result t h a t also upper and lower (C, 1)-limits of {a~}~ are respectively 1 a n d 0. Choose e > 0 . F r o m (2.9) it follows t h a t if N is odd a n d sufficiently large a n d

CN

< 0, t h e n

an/> 1 - e for

n 1 (N) <~ n <~ n~(N),

where n 1 (N) =

N-a(N)p~l+l

a n d

n2(N ) = N- 89 1.

Thus

(6)

B. rtos~r(, On probabilities that a random walk is negative

1 n~(N) 1 n,(N, [

= n , ( N )

N o w n I ( N ) / n z (N) ---> 0 w h e n N---> ~ . T h u s lim 1 ~ a , = l .

7 t - - ~ r n v = 1

nl(N)~

n~(N)] "

I n t h e same m a n n e r , it follows t h a t

n

lim _1 ~. a~ = 0 n-~cr n~=l a n d T h e o r e m 1 is proved.

Concluding remark. As t h e an's are probabilities, t h e y lie b e t w e e n 0 a n d 1.

I t is well k n o w n t h a t Abel a n d (C, 1)-limitability are e q u i v a l e n t for b o u n d e d sequences (see e.g. [1] T h e o r e m 92). T h u s for t h e distribution c o n s t r u c t e d a b o v e it holds t h a t (an}; r cannot, be Abel limited. I n fact, it is n o t h a r d to show directly t h a t {an}~ has u p p e r a n d lower Abel limits respectively 1 a n d 0.

T h e p a r t of T h e o r e m 1 which concerns non-limitability of {a~}~ holds for gen- eral linear limitation methods. W e consider a regular limitation m a t r i x [Tmn], m, n = 1,2 . . . i.e. we assume

(ii) lim 7~= = 0 f o r all n,

m - - ~

(iii) ~ 7ran---> 1 w h e n m---> ~ .

Theorem 2. .For every regular limitation m a w i x [~'mn] there exists a distribution F ( x ) /or which the sequence {an}~ satisfies

amt

lim ~ )~mn an = 1

r n - - ~ o o n

lim ~ ~'mn an = O.

(2.15)

Remark. W e do n o t k n o w a n y general relation b e t w e e n [Tmn] a n d t h e o r d e r of t h e m o m e n t s t h a t F ( x ) can possess w h e n (2.15) holds.

Proo/. T h e m a i n idea in t h e proof is t h e same as in t h e proof of T h e o r e m 1 a n d therefore we m a k e t h e proof s o m e w h a t brief. W e c o n s t r u c t a discrete dis.

t r i b u t i o n with points of mass {c~}~ ~ a n d corresponding probabilities {p~}~. T h e successive signs of Ca, C 2... are chosen + - + - + - . . . . L e t {~v}~ ~ be a se- quence of positive n u m b e r s which t e n d t o 0. W e d e t e r m i n e {p,}~o, {c~}~o a se- quence {m~}r of integers a n d a sequence {i,}~o of intervals of integers I~ = [i,, ~'~]

recursively. W e assume t h a t p,, c~, mr, a n d Iv are d e t e r m i n e d f o r v = 1, 2 . . . N - 1. W e consider PN as a f u n c t i o n of t h e p a r a m e t e r 2N given b y t h e relation 322

(7)

N - 1

a n d we shall d e t e r m i n e PN b y d e t e r m i n i n g ;tN, 89 ~ 2N< 1. Firs~3~,we choose cN so

N C - - ~ v

t h a t IcN[ >

ICN_i I

a n d sgn (ZI P, ,) - sgn (cN) w h e n 2N = 89 L e t y(N) (2N), V 1, 2 , . . . , be i n d e p e n d e n t r a n d o m variables w i t h d i s t r i b u t i o n

N - 1

T c h e b y c h e f f ' s inequality implies t h e existence of a n u m b e r

iN=i(eN)SUCh

t h a t

iN > ?'N-1 a n d

e (~1X(~N) (2N) a n d cN h a v e t h e s a m e sign) ~>1 - e N (2.16) w h e n n >~ iN a n d 89 ~< 2~ < 1. N o w choose m N > mN 1 S O large t h a t ~ n = l i N

I~)mlvn [ <~- ~N

a n d jN large e n o u g h for

~n%J,,+llYm~vnl <'~.eN

to hold. These choices are clearly possible. Finally, we fix RN a n d t h u s PN b y t h e condition

p~

)'-

/> 1 - eN. (2.17)

T h e d i s t r i b u t i o n is n o w c o m p l e t e l y determined. L e t

X1,

X~ . . . . be i n d e p e n d e n t r a n d o m variables w i t h this distribution a n d

@ (n, N) = P{S,~

a n d cN h a v e t h e same sign). T h e n

~(n,N)=P(Sn

a n d cN h a v e t h e same sign

IM nlX I < N)P(MaxlX l<cN).

I n v i r t u e of (2.16) a n d (2.17) we g e t

Q ( n , N ) ~ > ( 1 - e N ) ~ w h e n

n E I N

a n d t h u s an >~ (1-- eN) ~ w h e n

n E I N

a n d N is even, while an ~ l -- (1-- eN) 2 w h e n n E IN a n d N is odd. T h e t h e o r e m n o w follows.

3. A s u f f i c i e n t c o n d i t i o n f o r l i m an = 89

A c c o r d i n g t o B in w 1

E X ~ < co

a n d

E X = O

is a sufficient condition for lim an = 89 However, this condition is n o t necessary. This follows i m m e d i a t e l y f r o m t h e fact t h a t if

F(x)

is c o n t i n u o u s a n d s y m m e t r i c a r o u n d 0 t h e n an = 89 for all n a n d t h u s lim a = = 8 9 I n t h e n e x t t h e o r e m we show t h a t t h e a s s u m p t i o n s a b o u t s y m m e t r y a n d the existence of a finite second m o m e n t a n d zero m e a n c a n be c o m b i n e d t o get a m o r e general sufficient condition.

(8)

B. ROSI~N, On probabilities that a random walk is negative

Theorem 3. I / F ( x ) is non-degenerate and can be decomposed F ( x ) = H ( x ) + G(x), where H and G are o/ bounded variation and satis/y

(1) H ( x ) is symmetric around O, i.e.

H( - x) - H ( - ~ ) = H( oo ) - H ( x ) /or all x/> 0 which are continuity points of H(x).

(2) S-~ x2 IdG(x){ < oo ant ~_% xdG(x)

= 0 ,

hen limn_,r162 an = 89

Proo/. The proof will be based on the following formula from [2], p. 331.

J a n - 89 <_n ( ~ I~(t)l" larg q~(t)[ d t + R ( n , O ) , (3.1) Jo t

where ~(t) is the characteristic function of F(x) and where R(n,&)--->O when n--> ~ for every 6 > 0.

As H ( x ) is symmetric around 0, we have

Im {~(t)}= f ; sin

xtdF(x)=f[:csinxtdG(x)

and from (2) it follows thai',

lira t -2 ~ sin xt dG(x) = O.

t - - ~ 0 j-r162

Thus ]arg q~(t) l <~ t ~ h(t), (3.2)

where h(t) --> 0 when t --> 0.

We shall also use the fact t h a t there are positive numbers 60 and C such t h a t

I~(t) l <

1 - Ct 2 for

I t1-<6o (3.3)

For a proof of (3.3) see e.g. Lemma 1 in [2].

B y inserting the estimates (3..2) and (3.3) into (3.1), we obtain, for 0 < 6 ~<6 0,

, f:

{ a n - 8 9 sup h(t) nte-"~ 6)

1 sup h(t) + R(n, 6).

Thus lim I a n - 89 (2~C) -1 sup h(t)

n - - ~ O~<t~<~

and by letting 6--> 0, we obtain the desired result.

324

(9)

R E F E R E N C E S

1. HAm)Y, G. H., D i v e r g e n t Series, Oxford, 1949.

2. Ros~.~, B., On the a s y m p t o t i c d i s t r i b u t i o n of sums i n d e p e n d e n t identically d i s t r i b u t e d r a n d o m variables. A r k i v M a t e m a t i k 4, 323--332 (1961).

3. SPZTZER, F., A c o m b i n a t o r i a l l e m m a a n d ist application to p r o b a b i l i t y theory. Trans. of t h e Amer. Math. Soc. 82, 323-339 (1956)

Tryckt den 9 juni 1964

Uppsala 1964. Ahnqvist & Wiksells Boktryckeri AB

Références

Documents relatifs

The application of modern, automatic computer control techniques in industrial process control systems has been so limited -- in- deed, so surprisingly restricted

from the corresponding generating function.. by partial fraction expansions is presented. This generalization expression apparently is not covered by the

In [3], we use this factorization to obtain local limit theorems for fluctuations of the random walk (S n ) n ≥ 0 ; we first propose another such a decomposition, and, by

They are devoted to basics on Markov chains, on representation theory, and on combina- torial representation theory of the algebras gl(n); gl(m; n) and q(n), respectively..

We show that the – suitably centered – empirical distributions of the RWRE converge weakly to a certain limit law which describes the stationary distribution of a random walk in

On the equality of the quenched and averaged large deviation rate functions for high-dimensional ballistic random walk in a random environment. Random walks in

This formula provides the means of exact calculation but tells little as it stands. The asymptotic behaviour is more interesting and may be obtained.. by utilizing

SERFOZO: Functional limit theorems for stochastic processes based on embedded processes (to appear in Adv. SEVASTYANOV: Branching