• Aucun résultat trouvé

A tubular transducer for in situ measurement of stresses and strains in ice

N/A
N/A
Protected

Academic year: 2021

Partager "A tubular transducer for in situ measurement of stresses and strains in ice"

Copied!
24
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building

Research), 1973-11-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=72eab467-c758-4c6d-9e38-f9c4b175e7fb https://publications-cnrc.canada.ca/fra/voir/objet/?id=72eab467-c758-4c6d-9e38-f9c4b175e7fb

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20338197

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A tubular transducer for in situ measurement of stresses and strains in

ice

(2)

NATIONAL RESEARCH COUNCIL O F CANADA DIVISION O F BUILDING RESEARCH

A TUBULAR TRANSDUCER F O R IN SITU

MEASUREMENT O F STRESSES AND STRAINS IN ICE

R. F r e d e r k i n g I n t e r n a l R e p o r t No. 408 of t h e Division of Building R e s e a r c h Ottawa O c t o b e r 1973

(3)

P R E F A C E

Because of a need f o r t r a n s d u c e r s suitable f o r making in situ s t r e s s and s t r a i n m e a s u r e m e n t s in i c e , a thin-walled tube with c i r

-

cumferentially orientated s t r a i n g a g e s bonded to the inside h a s been designed. The e l a s t i c theory which r e l a t e s the s t r e s s and s t r a i n field in the ice t o the s t r a i n s in the tube has been developed in detail. Both l a b o r a t o r y and field experience show that although the t r a n s d u c e r successfully d e t e r m i n e s principal s t r e s s d i r e c t i o n s , i t s u s e f o r determining the magnitude of the principal s t r e s s e s i s limited by the inability t o e s t a b l i s h t r u e values of the e l a s t i c modulus of i c e .

Ottawa,

October 1973

N.B. Hutcheon D i r e c t o r

(4)

A TUBULAR TRANSDUCER F O R IN SITU

MEASUREMENT O F STRESSES AND STRAINS IN ICE by

R. F r e d e r k i n g

Introduction

T o d e t e r m i n e the loads floating i c e c o v e r s a r e capable of e x e r t i n g on s t a t i o n a r y s t r u c t u r e s , a m a t h e m a t i c a l m o d e l of t h e i n t e r a c t i o n between the i c e and the s t r u c t u r e c a n be u s e d . Such m o d e l s c a n be c o n f i r m e d by in s i t u m e a s u r e m e n t of t h e s t r e s s o r s t r a i n in t h e i c e a d j a c e n t t o the s t r u c t u r e and c o m p a r i n g t h e m e a s u r e d v a l u e s with t h o s e p r e d i c t e d by t h e m o d e l . Suitable t r a n s d u c e r s a r e r e q u i r e d f o r t h e s e m e a s u r e m e n t s . C o m m e r c i a l t r a n s d u c e r s f o r in s i t u m e a s u r e m e n t s i n r o c k , s o i l and c o n c r e t e a r e a v a i l a b l e , but none a r e s p e c i f i c a l l y d e s i g n e d f o r u s e i n i c e . It i s d e s i r a b l e f o r in s i t u t r a n s d u c e r s t o p r o d u c e m i n i m u m d i s t u r b a n c e t o t h e s t r e s s and s t r a i n p a t t e r n i n the h o s t m a t e r i a l , p a r t i c u l a r l y in a v i s c o e l a s t i c m a t e r i a l s u c h a s i c e . It i s a l s o d e s i r a b l e t h a t t h e t r a n s d u c e r have a f r e q u e n c y r e s p o n s e u p t o 10Hz and t h a t i t be a b l e t o m e a s u r e t h e p r i n c i p a l s t r e s s e s o r s t r a i n s and r e s o l v e t h e i r d i r e c t i o n . A t r a n s d u c e r m e e t i n g t h e above r e q u i r e m e n t s i s m o s t e a s i l y r e a l i s e d if u s e d i n c i r c u m s t a n c e s f o r which the h o s t m a t e r i a l p e r f o r m s e l a s t i c a l l y .

A suitable t r a n s d u c e r would include s u c h f e a t u r e s a s : s i m p l e c o n s t r u c t i o n

e a s y field deployment

r e l i a b i l i t y a t low t e m p e r a t u r e s s i m p l e d a t a r e c o r d i n g

s t r a i g h t f o r w a r d d a t a a n a l y s i s

T o m e e t t h e above r e q u i r e m e n t s a thin-walled tube with c i r c u m - f e r e n t i a l l y o r i e n t a t e d s t r a i n g a g e s bonded t o the i n s i d e w a s designed. T h e t r a n s d u c e r i s s i m p l e t o f a b r i c a t e , lends i t s e l f t o flexibility by t h r e a d e d s e c t i o n s which c a n be joined t o g e t h e r , can be deployed by f r e e z i n g into a v e r t i c a l hole in t h e i c e c o v e r , i s rugged and p r o v i d e s adequate p r o t e c t i o n f o r t h e s t r a i n g a g e s and c a n be u s e d with r e c o r d i n g

(5)

T h e o r y

T h e following t h e o r y a s s u m e s t h a t t h e i c e i s e l a s t i c , a r e a s o n a b l e provided t h e s t r a i n r a t e i s g r e a t e r than 1 0 - " s e c - l . The t r a n s d u c e r o p e r a t i o n i s modeled by t h e e l a s t i c a n a l y s i s of a thin-walled tube i m p l a n t e d in a n e l a s t i c host m a t e r i a l u n d e r biaxial loading.

T h e b a s i s f o r the t h e o r y u s e d i n designing t h e t r a n s d u c e r i s a r e p o r t by H i r a m a t s u , Niwa and 0 k a " ) . F i g . 1 i l l u s t r a t e s t h e g e o m e t r y of t h e p r o b l e m . T h e i n s i d e and outside r a d i i a r e given by b and a

r e s p e c t i v e l y , the biaxial s t r e s s f i e l d by p and q , the biaxial s t r a i n f i e l d by c p and B and t h e e l a s t i c c o n s t a n t s by E l and v' f o r t h e h o s t

9'

m a t e r i a l and E and

v

f o r t h e tube m a t e r i a l .

The A i r y s t r e s s function f o r the tube, which f o r m s the a c t i v e p a r t of t h e t r a n s d u c e r , i s d e s c r i b e d by

@

= A , r 2 + B o A n r + ( A 2 r 4

+

B 2 r - " +

c 2 r 2 +

D 2 ) c o s 28 ( 1 ) f o r the d o m a i n a>r>b. The s t r e s s equations d e r i v e d f r o m the s t r e s s function a r e

=

2A0

+

3

-

(3

+

2C,

+

% '

c o s 28

r

r 2 r 2

I

S i m i l a r l y , t h e A i r y s t r e s s function f o r the h o s t m a t e r i a l i s

(8'

=

Abr2

+

Bb Anr

+

(Bgr-"

+

c&r2

+

Dg) c o s 28 ( 5 ) f o r t h e d o m a i n r>a. The s t r e s s equations d e r i v e d f r o m t h e s t r e s s function a r e

(6)

6q

t 2Ca

-9,

s i n 2 8

=

i-

r

The s t r e s s equations developed above m a y , in g e n e r a l , be applied t o two d i m e n s i o n a l p r o b l e m s i n p o l a r c o o r d i n a t e s . In the a b s e n c e of

body f o r c e s ( 2 )

,

t h e plane s t r e s s and plane s t r a i n A i r y s t r e s s functions a r c t h e s a m e . T o d e r i v e t h e s t r a i n s and d e f o r m a t i o n s , however, e i t h e r a plane s t r a i n o r plane s t r e s s condition m u s t be s e l e c t e d . The derivation by H i r a m a t s u , Niwa and 0ka(') a s s u m e s the plane s t r e s s condition.

In t h i s development both conditions will be c o n s i d e r e d .

i ) plane s t r e s s :

The e l a s t i c i t y equations f o r the plane s t r e s s condition a r e

and apply t o both the tube and host m a t e r i a l . Using t h e s e r e l a t i o n s s t r a i n equations c a n be developed, and i n t u r n the s t r a i n equations c a n be

i n t e g r a t e d t o obtain d i s p l a c e m e n t s . The c o n s t a n t s of i n t e g r a t i o n a r e eliminated by a s s u m i n g the s i m p l e s t solution consistent with the above s t r a i n equations. The r e s u l t i n g equations f o r s t r a i n and d i s p l a c e m e n t a r e : f o r the tube

(7)

- 4

-

B

=

1

{2(v

+

3 ) ~ , r ~ t 2(1 t v)

3

+

2(1

+

V) C , r E r - 2(1 - v) D

$

1 s i n 28 f o r t h e h o s t m a t e r i a l 1 Bb -

-

{2(1

-

v l ) Ah

-

(1

+

v t )

-p

€ \

-

E l

a'

1

+

(6(l

+

v')

f 2(1 f v ' ) C $ + 4Vr2 )COS 20, r - - 2(1

+

v t ) Y'r 0 E'

{63

-

2 ~ 4

+

9)

s i n 2 8

+

(2(1

+

v t )

3

-

2(1

+

vr) CQr

+

~ ; C O S20) r r (18) u) = 1

-

{2(1

+

v')

J Ba

+

2(1

+

v')

C J r

-

2(1

-

v')

s i n 28 8 E t r (19) T h e following b o u n d a r y c o n d i t i o n s a r e a s s u m e d i n e v a l u a t i n g t h e c o n s t a n t s A , , A t , .

.

.

,D2,

DJ.

0' =

( p +

q ) +

(p

-

q ) c o s 28 a s r + r 2 01 = ( p + q)

-

( p

-

q ) c o s 28 8 2 ( p

-

q ) s i n 28 7 k e =

-

2 at i n t e r f a c e r

=

a

u

=

u:, 7 = 7' r re r 0 u = u:, u e = u' r 8

(8)

a t i n n e r s u r f a c e r = b o = 7 = 0 r r 0 F o r t h e s c conditions, the c o n s t a n t s a r e 1

A,

=

- -

ZC,

+ %

3b2 \ b2

(9)

ii) plane s t r a i n :

The e l a s t i c i t y equations f o r t h e plane s t r a i n conditions a r e

l t v

1

c =

-

{ ( l

-

v) o @

-

vo r

8 E r J

S t r a i n equations can be developed and in t u r n can be i n t e g r a t e d to yield d i s - p l a c e m e n t s . The c o n s t a n t s of integration a r e again e l i m i n a t e d by a s s u m i n g t h e s i m p l e s t solution c o n s i s t e n t with t h e s t r a i n equations. T o f a c i l i t a t e t h e

solution the c o n s t a n t s D, and D i a r e t a k e n t o be z e r o . The equations f o r s t r a i n and d i s p l a c e m e n t d e r i v e d a r e f o r the tube - E 0 - +

v,

{2(1

-

Zv) A,

-

1 - V ) A 2 r 2 t

+

2C2 jcos 20 E r r 2(1

+

v) 6B r 8' E { 6 A 2 r 2

-

r t 2C2 jsin 28

(10)

- - 2B U 0

'

E l 2 ( 3

1

-

2 ~ ) A, r" t

-3

r t 2CBr} sin 2 0 f o r the host m a t e r i a l ( 1 t vl) E l = E ' {(l

-

2v1) 2A!, B b '6BB t 2 ~ ~ j c o s 20) 0

- ? + ( T C

U I = ( 1 t v l ) B I r 2B' t 2 c A r ) c o s 2 0 ) {2(1 - 2 v 1 ) A&

-

(-

7

r E 1

Again t h e c o n s t a n t s A,, A,',

.

.

.

,

C 2 , C' a r e evaluated using t h e following boundary conditions: a s r A r n 01 = ( p t q ) t ( p - q ) c o s 28 r 2 1 3 ( p t q )

-

( p

-

q ) c o s 28 8 2 7' -

-

re-

-

2 s i n 20 a t i n t e r f a c e r = a ; 0 = 0' ; r r a t i n n e r s u r f a c e r

=

b;

(11)

Using t h e s e conditions, constants a r e evaluated a s follows:

A s mentioned i t i s f u r t h e r r e q u i r e d that the t r a n s d u c e r produce the

minimum disturbance of the s t r e s s and s t r a i n p a t t e r n in the host m a t e r i a l , i. e . the d i s p l a c e m e n t s of the outer d i a m e t e r of the tube should approximate those of a solid cylinder of the s a m e s i z e of the host m a t e r i a l .

The A i r y s t r e s s function, s t r e s s e s and d i s p l a c e m e n t s f o r a solid cylinder (domain r ~ a ) , a s s u m i n g plane s t r e s s condition a r e

@

=

+

+

C a r 2 ) c o s 28

o = 2A0

-

2C2 c o s 28

r

cr

= 2Ao

+

( 1 2 ~ , r "

+

2 C 2 ) cos 28 8

(12)

- 9

-

.r = ( 6 A z r 2

+

2Cz) s i n 20

r 0

The c o n s t a n t s A,, Ah,

. . .

,

C:, D& evaluated by m e a n s of t h e boundary conditions:

a t i n t e r f a c e r = a 0 1 = ( p + q) - ( p - q) c o s 2 0 0 2 7' -

-

( p

-

q) sin 28

r e

2 a r e found t o be a s follows:

(13)

Using t h e s a m e e l a s t i c p r o p e r t i e s f o r the solid cylinder a s w e r e u s e d f o r the host m a t e r i a l , the equations f o r r a d i a l and c i r c u m f e r e n t i a l d e f o r m a t i o n s of the solid cylinder a t t h e i n t e r f a c e r = a a r e

r - E r ( P + 9) + + 2 v') ( p

-

q ) c o s 2 0 )

c a ( 1

+

v l ) u =

- -

E' 2 ( p

-

q) s i n 28 8

The r a d i a l and c i r c u m f e r e n t i a l d e f o r m a t i o n s f o r t h e tube a t r = a , a s d e r i v e d f r o m equations ( 1 3) and ( 1 4 ) , a r e

+

2(1

+

V)C,

-

3

j

cos 2 0 ) B

ut

=

5

I 2 ( v

+

3) A,aZ

+

2(1

+

v)

-$

+

(1

+

v)C2

-

( 1

-

v)

3)

sin 20

(14)

The d e s i g n p r o c e d u r e f o r invisibility c o n s i s t s of varying e l a s t i c p r o p e r t i e s and tube d i a m e t e r s t o produce a m i n i m u m difference between cylinder and tube d i s p l a c e m e n t s a t r = a .

Design

A n u m b e r of m a t e r i a l s and g e o m e t r i e s f o r the tube could be c o n s i d e r e d . ~t w a s d e c i d e d , however, t o r e s t r i c t t h e choice t o c o m m e r c i a l l y available

in s t a n d a r d s i z e s . A m a t e r i a l with t h e r m a l expansion c h a r a c t e r i s t i c s s i m i l a r t o t h o s e of i c e i s a l s o d e s i r a b l e and on t h i s b a s i s a n aluminum alloy was chosen. Aluminum h a s a high coefficient of t h e r m a l expansion f o r a m e t a l ,

2 3 x lo"/ " C c o m p a r e d t o 51 x 1 o - ~ / c " t h e coefficient of t h e r m a l expansion f o r i c e . A n u m b e r of aluminum a l l o v t u b e s w e r e evaluated i n o r d e r t o d e t e r m i n e one which would produce the m i n i m u m d i s t u r b a n c e t o the s t r e s s and s t r a i n field in the i c e . The i c e p r o p e r t i e s a s s u m e d w e r e Young's m o d u l u s 6900 M N / ~ ~ and P o i s s o n ' s r a t i o 0. 5. The m a t e r i a l which proved m o s t s a t i s f a c t o r y w a s

65ST6 a l u m i n u m of 2 in. (50 m m ) outside d i a m e t e r and 0. 120 i n ( 3 m m ) w a l l t h i c k n e s s . T h i s alloy h a s Young's m o d u l u s 6 9 , 0 0 0 M N / ~ ~ and P o i s s o n ' s r a t i o 0. 3 16. A s an indication of the invisibility of t h i s d e s i g n the r a d i a l and c i r c u m f e r e n t i a l d i s p l a c e m e n t s of the solid ice cylinder in m m a r e

C u = 4 4 x q ) t 131 x 10-'(p

-

q ) c o s 20 r C u = - 131 x 10-'(p

-

q ) s i n 20

8

t v e r s u s u = 4 2 ~ 1 0 - ~ ( p t q ) t 1 6 3 ~ 1 0 - ~ ( ~

-

q) cos 20 r t u =

-

131 x - q) s i n 20 A

f o r the t u b e , w h e r e s t r e s s e s p and q have units kN/m2,. The r a d i a l d i s -

p l a c e m e n t s of the tube a r e f r o m 17 t o 35 p e r cent g r e a t e r t h a n t h o s e of the solid cylinder while the c i r c u m f e r e n t i a l d i s p l a c e m e n t s a r e identical.

The o p e r a t i o n of the t r a n s d u c e r i s based on the change i n shape of the tube due t o the s t r e s s o r s t r a i n field in the i c e . T h i s change in shape p r o - d u c e s c i r c u m f e r e n t i a l s t r a i n s on t h e i n n e r wall of the tube. The c i r c u m - f e r e n t i a l s t r a i n s a s d e r i v e d f o r the plane s t r e s s and plane s t r a i n condition ( s e e equations 11 and 2 5 r e s p e c t i v e l y ) c a n be e x p r e s s e d in t e r m s of t h e s t r e s s field p and q o r the s t r a i n field E and E a s

(15)

t: = k l ( p t q ) t k , ( p

-

q) c o s 28

8

where k1, k2

,

k i and ka a r e constants dependent on the g e o m e t r y and e l a s t i c p r o p e r t i e s of the tube and host m a t e r i a l .

The constants kl and k, which r e l a t e the s t r e s s field p and q t o the t r a n s d u c e r s t r a i n € 0 a r e plotted in F i g . 2. It can be s e e n that variation in P o i s s o n ' s r a t i o h a s v e r y little influence on the values of the constants.

Comparing the plane s t r e s s and plane s t r a i n r e s u l t s shows that the difference between the two conditions i s not l a r g e provided Young's modulus i s g r e a t e r than 5000 M N / ~ ' . T h i s i s in g e n e r a l a g r e e m e n t with ~ i m o s h e n k o ( 3 , who

s t a t e s that if the d i a m e t e r of the hole i s m u c h s m a l l e r than the plate

t h i c k n e s s , the two conditions a r e s i m i l a r . Where the plate thickness i s about the s a m e a s the d i a m e t e r of the hole, the problem becomes t h r e e dimensional and beyond the scope of t h i s Report.

In F i g . 3 the constants k: and k& which r e l a t e t r a n s d u c e r s t r a i n c t o

the s t r a i n field c and c a r e plotted t o c o m p a r e the plane s t r e s s and p!ane

P 9

s t r a i n conditions and t o show the influence of the i c e e l a s t i c p r o p e r t i e s . The plane s t r e s s and plane s t r a i n condition give r e s u l t s which differ

significantly. It i s c l e a r that the relation between the t r a n s d u c e r s t r a i n and the s t r a i n field i s v e r y dependent on the e l a s t i c p r o p e r t i e s of the i c e o v e r

the range i l l u s t r a t e d h e r e . M o s t importantly t h i s figure shows the t r a n s d u c c ~ r s t r a i n s and the s t r a i n s i n the i c e a r e of the s a m e o r d e r of magnitude

( 0 . 2 5 < ki < 2,

-/

< k; < 0.25).

The final design c o n s i s t s of a 2-in. (50 m m ) outside d i a m e t e r aluminum tube 100 m m long, the 100-mm dimension being chosen t o facilitate the

placement of the s t r a i n gages. T h r e e s t r a i n gages a r e bonded on the i n n e r wall a t the c e n t r a l c i r c u m f e r e n c e . T h e y a r e aligned c i r c u m f e r e n t i a l l y and spaced a t 120'. T h r e e aluminum t a b s a r e t a c k welded a t one end of the tube t o c a r r y t e m p e r a t u r e - c o m p e n s a t i n g g a g e s . E a c h t r a n s d u c e r contains t h r e e half

bridges, the half bridge comprising one active gage and one t e m p e r a t u r e compensating gage. The 100-mm s t r a i n gaged sections a r e threaded a t e i t h e r end t o allow t h e m t o be attached t o o t h e r tubular sections. In t h i s m a n n e r a s t r i n g can be built up and the s t r a i n gaged section placed a t any d e s i r e d level. The t r a n s d u c e r i s i l l u s t r a t e d in Fig. 4.

Calibration

On the basis of a s s u m e d p r o p e r t i e s of i c e i t i s possible t o analytically d e t e r m i n e the relation between the i n n e r wall c i r c u m f e r e n t i a l s t r a i n and the

(16)

aPP

lied s t r e s s field by m e a n s of equation ( 4 9 ) . F o r 120" spacing of the

strain g a g e s , s t r a i n s a t e a c h of the t h r e e locations would be

A

' e

= k, ( p t q) t k, (p

-

q) c o s 28 B F:8

=

k, ( p t q)

-

k2

( y )

( c o s 28

-

sin 28)

cC

= kl ( p t q)

-

k2 (=) ( C O S 2 0 t

0

sin 28) 8 2

where the s u p e r s c r i p t s A , B,

C

r e f e r to s t r a i n gages A , B, C of F i g . 1. The above t h r e e equations can be solved f o r the principal s t r e s s e s p and q and the orientation 8 of the principal s t r e s s e s t o an a r b i t r a r y a x i s . T h e s e equations

B

C

A - k , ( p + q ) 8 P - q = k, c o s 28

a r e used t o d e s c r i b e the operation of the t r a n s d u c e r . Note that the principal s t r e s s d i r e c t i o n i s independent of the m a t e r i a l p r o p e r t i e s ; i. e . p a r a m e t e r s k1 and k,

.

L a b o r a t o r y calibrations w e r e p e r f o r m e d by freezing the t r a n s d u c e r into the c e n t r e of a r e c t a n g u l a r block of columnar grained ice

200 x 200 x 100 m m . The a x e s of the columnar g r a i n s and the t r a n s d u c e r w e r e perpendicular t o the 200 x 200 mm f a c e . Load was applied in a

direction n o r m a l t o the 100 x 200 mm f a c e a t a s t r a i n r a t e of 4 x l o - " sec-l. In a l l thc calibration t e s t s the applied loads w e r e uniaxial. The t r a n s d u c e r s W e r e c a l i b r a t e d in two orientations obtained by rotating the block 90" about the t r a n s d u c e r a x i s . In Fig. 5a, where the t r a n s d u c e r i s orientated such that

(17)

~ r i ~ n t a t i o n of s t r a i n gage A ) , typical applied s t r e s s

-

m e a s u r e d t r a n s d u c e r s t r a i n r e s u l t s a r e shown. F i g . 5b shows c o r r e s p o n d i n g r e s u l t s w e r e

0 = 0 " . E r r o r b a r s show t h e e x p e r i m e n t a l v a r i a t i o n in the r e s u l t s . The t h e o r e t i c a l c u r v e s of F i g . 5 w e r e obtained using equations (50) and

taking 0= 90" and 0 " r e s p e c t i v e l y , plane s t r e s s condition, Young's m o d u l u s of i c e

=

7500 MN/m2 and P o i s s o n ' s r a t i o of i c e

=

0 . 4 . The e l a s t i c p r o p e r t i e s of the i c e c o r r e s p o n d t o t h o s e a t the t e s t t e m p e r a t u r e of

-10°C. T h e r e i s good a g r e e m e n t between the t h e o r e t i c a l and e x p e r i m e n t a l r e s u l t s . Note t h a t t h e sign convention t a k e s c o m p r e s s i v e s t r e s s e s and s t r a i n s t o be positive.

A l t e r n a t i v e l y , the s t r a i n r e s u l t s f r o m F i g . 5 could be substituted into equations ( 5 1 ) t o calculate the p r i n c i p a l s t r e s s e s p and q and t h e i r o r i e n t a t i o n w h e r e the e l a s t i c p r o p e r t i e s of t h e i c e a r e t h o s e a s s u m e d i n t h e p r e v i o u s p a r a g r a p h . T h i s w a s done by using t h e s t r a i n r e s u l t s f o r a n applied s t r e s s of 690 k N / m 2 . The r e s u l t s w e r e : f o r c a s e ( a )

f o r c a s e ( b )

It c a n be s e e n t h a t i n both c a s e s the calculated p r i n c i p a l s t r e s s d i r e c t i o n i s i n good a g r e e m e n t with t h e applied p r i n c i p a l s t r e s s d i r e c t i o n (within 2 " ) . F o r c a s c (a) t h c calculated s t r e s s , p, w a s 17 p e r cent g r e a t e r than t h e applicd s t r e s s and the calculated s t r e s s , q , w a s negligible c o m p a r e d t o the applied s t r e s s . F o r c a s e ( b ) the c a l c u l a t e d s t r e s s , p , w a s 16 p e r c e n t g r e a t e r t h a n t h e applied s t r e s s ; however, t h e calculated s t r e s s , q , w a s o v e r one - t h i r d of t h e applied s t r e s s .

Another a p p r o a c h t o t h i s p r o b l e m i s t o a s s u m e that t h e t r a n s d u c e r w o r k s and t o c a l c u l a t e t h e e l a s t i c p r o p e r t i e s of t h e i c e r e q u i r e d t o m a k e the t h e o r e t i c a l r e s u l t s m a t c h t h e o b s e r v e d r e s u l t s . F o r t h e c a s e 0

=

90"

Young's m o d u l u s w a s calculated t o be 5000 MN/m2 and v = 0.5. F i e l d E x p e r i e n c e

The t r a n s d u c e r h a s been u s e d in the field on s e v e r a l o c c a s i o n s o v e r t h e p a s t t h r e e w i n t e r s . T h e r e have been m o r e difficulties with t h e r e c o r d i n g i n e t r u m e n t a t i o n than with t h e t r a n s d u c e r .

The technique f o r implacing t h e t r a n s d u c e r i s t o d r i l l a hole slightly l a r g e r than the outside d i a m e t e r of t h e t r a n s d u c e r , put s o m e w a t e r i n t h e hole and i n s e r t the t r a n s d u c e r which d i s p l a c e s the w a t e r u p w a r d s t o f i l l

(18)

the annular s p a c e . Since the amount of w a t e r in this space i s s m a l l , f r e e z i n g o c c u r s rapidly. The t r a n s d u c e r i s e a s i l y removed by cutting with a chain saw.

With e a c h s u c c e s s i v e field u s e the instrumentation h a s been improved and m o r e complete r e s u l t s obtained. A field portable oscillograph r e c o r d e r with a p p r o p r i a t e s t r a i n a m p l i f i e r s h a s been obtained and found to work

s a t i s f a c t o r i l y .

The m o s t r e c e n t field u s e of the t r a n s d u c e r w a s in conjunction with in s i t u i c e s t r e n g t h t e s t s . The t r a n s d u c e r was placed in the i c e and the s t r a i n s w e r e r e c o r d e d continuously while the i c e cover w a s being loaded. The principal s t r e s s e s in the i c e m e a s u r e d with the t r a n s d u c e r w e r e about

half t h e i r value calculated f r o m the known load condition. The e l a s t i c p r o p e r t i e s a s s u m e d f o r the ice w e r e Young's modulus

=

6900 M N / ~ ~ and

Poisson's r a t i o = 0. 5. No information is available, unfortunately, on the value of the actual e l a s t i c p r o p e r t i e s of the i c e . If a l a r g e r Young's modulus w e r e a s s u m e d , s a y 1 3 , 8 0 0 M N / ~ ~ , the m e a s u r e d s t r e s s e s would only be about 20 p e r cent s m a l l e r than the calculated s t r e s s e s . The m e a s u r e d p r i n c i p a l s t r e s s d i r e c t i o n s w e r e within 5" of the calculated d i r e c t i o n s . Conclusions

L a b o r a t o r y c a l i b r a t i o n s and field experience have shown that the t r a n s d u c e r c a n successfully d e t e r m i n e the p r i n c i p a l s t r e s s direction.

T h i s s u p p o r t s the a n a l y s i s which shows that the calculation of the principal s t r e s s d i r e c t i o n i s independent of the e l a s t i c p r o p e r t i e s of the ice when the s t r a i n g a g e s in the t r a n s d u c e r a r e spaced a t 120". In the calibration t e s t s , w h e r e the e l a s t i c p r o p e r t i e s of the ice a r e known, the calculated principal s t r e s s e s w e r e within 20 p e r cent of the applied s t r e s s e s . In the field however, the a g r e e m e n t between the calculated and applied s t r e s s field h a s not been s a t i s f a c t o r y . This i s due p r i m a r i l y t o uncertainty i n the e l a s t i c p r o p e r t i e s of the i c e .

In the p r e s e n t stage of development, the m o s t important r e s u l t obtained f r o m the t r a n s d u c e r i s the principal s t r e s s direction in a biaxial s t r e s s field. By modifying the design t o produce a m o r e compliant t r a n s d u c e r , i. e. thinner tube wall o r lower modulus m a t e r i a l , the t r a n s d u c e r would produce s t r e s s r e s u l t s which a r e l e s s dependent on the e l a s t i c p r o p e r t i e s of the i c e .

R e f e r e n c e s

( 1 ) Y. H i r a m a t s u , Y . Niwa and Y . Oka. M e a s u r e m e n t of S t r e s s in Field by Application of P h o t o - E l a s t i c i t y , Report No. 37, Technical R e p o r t s of the Engineering R e s e a r c h Institute Kyoto University, Vol. 7 No. 3 , M a r c h , 1957.

(19)

( 2 ) S. T i m o s h c n k o . T h e o r y of E l a s t i c i t y , 2nd edition, 1951, M c G r a w - H i l l , p 25.

( 3 ) S. T i m o s h e n k o . T h e o r y of E l a s t i c i t y , 2nd edition, 1951, M c G r a w - H i l l , p 85.

(20)

F I G U R E 1

G E O M E T R Y O F C Y L I N D R I C A L I N C L U S I O N I N B l A X l A L L Y S T R E S S E D H O S T

(21)

--

--

PLANE STRAIN PLANE STRESS z 0 Z 5 0 0 0 1 0 , 0 0 0 1 5 , 0 0 0 ', hl Y O U N G I S M O D U L U S O F I C E , M N / ~ ~ E ( P O I S S O N ' S R A T I O 0 . 4 )

--- -

_ _

_ _ _

_ _ _ _ _

___-

---

-

Y O U N G ' S M O D U L U S O F I C E , M ~ / r n 2 ( Y O U N G ' S M O D U L U S 7 5 0 0 M ~ / m 2 ) z

z

1 V) P O I S S O N ' S R A T I O O F I C E I- z

z

or

Ln Z

I

( Y O U N G ' S M O D U L U S 7 5 0 0 M ~ / r n ~ ) F I G U R E 2 0 u - 1 k2 D E P E N D E N C E O F C O N S T A N T S k l A N D k 2 , W H I C H RELATE T R A N S D U C E R S T R A I N T O THE STRESS F I E L D , O N E L A S T I C PROPERTIES

O F I C E on 6 9 6 - 2

_ _ _ _ _ _ _

-

- - - -

--

- - - -

- - - _

0 . 3 0 . 4 0 . 5

(22)

----

PLANE STRAIN

-

PLANE STRESS ( P O I S S O N ' S RATIO 0 . 4 ) / 0 / / ,' / 0

-

/ 0 0 / 0 / / / / Y O U N G ' S MODULUS O F ICE, M ~ / r n ~ ( P O I S S O N ' S RATIO 0 . 4 ) Y O U N G ' S MODULUS O F ICE, M ~ / r n ~ ., 0 . 3 0 . 4 0 . 5 P O I S S O N ' S RATIO O F ICE O r ( Y O U N G ' S MODULUS 7500 M ~ / r n ? P O I S S O N ' S RATIO O F ICE FIGURE 3 DEPENDENCE O F CONSTANTS k ; A N D k;, WHICH RELATE TRANSDUCER STRAIN TO THE STRAIN FIELD, O N ELASTIC PROPERTIES O F

(23)

C i r c u m f e r e n t i a l S t r a i n G a g e s

Assembled T r a n s d u c e r

Exploded View

FIGURE 4

(24)

L

EXPERIMENTAL THEORETICAL - 5 0 2 0 0 4 0 0 6 0 0 8 0 0 A P P L I E D STRESS p , k N / m 2 - 1 5 0 2 0 0 4 0 0 6 0 0 8 0 0 A P P L I E D STRESS p , k ~ / r n ~ F I G U R E 5 C A L I B R A T I O N R E S U L T S O F A T Y P I C A L T R A N S D U C E R O* 5o.r.y

Références

Documents relatifs

i) The calculated intensities are very close to those obtained by the software CaRIne, ii) There is a difference between the calculated intensities and those given by the base

c Department of Chemical Engineering , Saad Dahlab University of Blida , Blida , Algeria d Laboratory of Environmental Biotechnologies BIOGEP , Ecole Polytechnique d’Alger—10

Par contre si le scénario d’accords agricoles alternatifs a augmenté les prix aux producteurs et l’équité, il a aussi augmenté les dépenses publiques pour le financement

اًﻮْﻀُﻋ ﺔﻴﻧﺪﻤﻟا ﺔﻴﻟوﺆﺴﻤﻟا ﻦﻣ ﻦﻴﻣﺄﺘﻟا ﺠﻟا نﻮﻧﺎﻘﻟا ﻲﻓ روﺮﻤﻟا ثداﻮﺣ جﺎـــــــﺤﻟوأ ﺪـــــــﻨﺤﻣ ﻲـــــــــﻠﻛأ

The nominal result and statistical uncertainty is given in black, while the results of the dominant systematic variations to the nominal model (per Sec. VI ) are given by the

راد ،(ةنراقم ةسارد) كلهتسملا ةيامح دعاوق ءوض يف ةحايسلا دوقع يف ةمالسلا نامضب مازتلالا ،حاتفلا دبع ديلف دباع رهاقلا ،ةيبرعلا ةضهنلا ،ة 2006 ص ، 26..

detection of flooded areas on the 526 MODIS images, chosen to monitor the annual and interannual variations of the flood. The IDL routine automatically computed

the criteria towards design and accepting the latter two as constraints, a proposal for the total form of the campus for 1980 is suggested. The existing