• Aucun résultat trouvé

Modélisation de la chaîne de conversion d énergie éolienne basé sur une MADA

N/A
N/A
Protected

Academic year: 2022

Partager "Modélisation de la chaîne de conversion d énergie éolienne basé sur une MADA"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-03441162

https://hal.archives-ouvertes.fr/hal-03441162

Submitted on 22 Nov 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

éolienne basé sur une MADA

Khouloud Bedoud

To cite this version:

Khouloud Bedoud. Modélisation de la chaîne de conversion d´énergie éolienne basé sur une MADA.

CFM 2013 - 21ème Congrès Français de Mécanique, Aug 2013, Bordeaux, France. �hal-03441162�

(2)

1

Modélisation d’une chaine de conversion d’énergie éolienne Basée sur une machine asynchrone à double alimentation.

K. BEDOUDa,b, R. LAKELb, M. ALI-RACHEDIc, S. LEKHCHINEd, T.BAHId. a. Unité de Recherche en Technologies Industrielles URTI/CSC, BP1037, Annaba, Algérie.

b.Laboratoire d’Automatique et Signaux-Annaba, Université Badji Mokhtar, Annaba.

c.Ecole Préparatoire aux Sciences et Techniques -Annaba- d.Département d’électrotechnique, Université Badji Mokhtar.Annaba.

Résumé :

Actuellement, les éoliennes utilisant une génératrice asynchrone à double alimentation « GADA » sont les plus utilisées pour production de l’énergie électrique. Notre travail consiste dans la première étape à la modélisation de la chaine de conversion de l’énergie éolienne où la génératrice asynchrone à double alimentation fonctionne à vitesse variable. Et, en seconde étape, on considère le réglage des puissances active et réactive afin d’assurer un fonctionnement optimal. A cet effet, une commande vectorielle est appliquée pour assurer un découplage entre ses grandeurs électromécaniques. Ces deux parties, sont développées et programmées sous Matlab/Simulink a fin d’analyser par simulation le comportement de la chaine dans les différant domaines de fonctionnement possibles. Les résultats de simulations obtenus seront présentés et analyser.

Abstract:

Currently, the wind using a doubly-fed induction generator « DFIG» are the more used for production of the electric energy. Our work consists in the first step to modelling of chain of conversion of the wind energy where the doubly-fed induction generator operates at variable speed. And, in second step, we consider the regulating of the active and reactive powers in order to ensure an optimum operation.

To this effect, a vectorial control is applied to ensure a decoupling between the electromechanical variables. These two parts are developed and programmed using Matlab/Simulink in order to analyze by simulation the behavior of the chain in the areas of possible function. The results of simulations obtained will be presented and analyzed.

Mots clés:

Aérogénérateur - Turbine éolienne - GADA - MLI à bande d’hystérésis.

1.

Introduction

L’augmentation des activités industrielles est la cause d’une forte demande mondiale en énergie.

Alors, pour satisfaire cette demande, le monde se dirige vers les sources renouvelables [1]. Parmi ces sources, l’énergie éolienne a un potentiel énergétique plus important et elle est la première source d’énergie renouvelable après l’hydraulique [2]. Par conséquent, leurs installations ont augmenté considérablement dans le monde car en produisant de l’électricité, elles ne propagent pas de gaz à effet de serre [3]. Actuellement, le système éolien à vitesse variable à base de « GADA » est le plus utilisé dans les fermes éoliennes. La GADA offre plusieurs avantages: un très bon rendement énergétique, une bonne robustesse ainsi qu’une facilité d’exploitation et de commande. En plus, elle permet un fonctionnement sur une plage de vitesse de ± 30 % autour de la vitesse de synchronisme, garantissant ainsi un dimensionnement réduit des convertisseurs statiques [5]. Grâce à ces avantages, cette machine a suscité beaucoup de curiosité de la part des chercheurs qui ont essayé de développer des stratégies pour exploiter au mieux ses points forts [6].

(3)

2

2. Modélisation de la chaine de conversion éolienne

La chaîne de conversion éolienne est constituée de la turbine, du multiplicateur et de la GADA.

L’éolienne capte l’énergie cinétique du vent et la convertit en un couple qui fait tourner les pales du rotor. Par la suite, la GADA transforme la puissance mécanique en puissance électrique.

FIG.1- Configuration d’une éolienne.

2.1 Modélisation de la turbine éolienne

On considère que le système mécanique est caractérisé par la somme de toutes les caractéristiques mécaniques, on obtient un modèle mécanique comportant deux masses FIG. 2.

FIG.2 - Modèle mécanique simplifié de la turbine.

La puissance disponible du vent traversant une surface S est définie par [7]

3

v ρ s V

2

P 1   (1)

La puissance mécanique de la turbine éolienne est alors :

2 ρ.s.V . C P

3 p

tur

(2)

Le coefficient de puissance est défini par le ratio de la puissance capté par la turbine sur la puissance du vent :

v tur

p P

C  P

(3)

L’évolution du Cp dépend de l’angle d’orientation des pales β et de la vitesse spécifique λ :

v λ R.Ωt

(4)

A partir de relevés réalisés sur une éolienne, l’expression du coefficient de puissance a été approchée, pour ce type de turbine, par l’équation suivante [8]:

v

Pélec

Pt

GADA Multiplicateur

Cmec

Eolienne

Cem

G

Ct

R mec

t

β

β

Jg Jtur

G f

Cg Ctur

tur m

(4)

3

5

10

15 0

200 400

600 800 0

2 4 6 8 10

x 104

P turbine (KW)

Vitesse du vent (m/sec) Wr rotorique (rad/sec)

λi

21

i

p

0,4.β 5)e

λ 0,22.( 116 β)

, ( C

(5)

Avec : β 1

0,035 0,08. β. λ

1 λ

1

3

i   

(6)

L’expression du couple aérodynamique est donnée par:

tur 3 p

tur tur

tur

Ω

. 1 2 ρ.s.V . Ω C

C

P

(7)

La Fig. 4, montre les courbes de la puissance de la turbine en fonction Wr et Vvent. On remarque que chacune présente à un moment donné un maximum de puissance.

Le multiplicateur est la liaison entre la turbine et le générateur pour adapter la vitesse de la turbine à celle de la génératrice :

tur

m éc G. Ω

Ω 

(8) Le frottement, l’élasticité et les pertes énergétiques dans le multiplicateur sont négligés.

m éc tur

C G C

(9) L’équation dynamique est modélisée par la relation suivante :

m éc r

m éc C fΩ

dt

JdΩ  

(10) Avec : tur2 JGénérateur

G

J J  (11)

2.2 Modélisation de la machine

La GADA est modélisée en tenant compte des hypothèses simplificatrices suivantes [9]:

- l’entrefer est d’épaisseur de l’entrefer est uniforme ; - l’effet d’encochage est négligeable ;

- la saturation du circuit magnétique sont négligeables ; - les résistances des enroulements est constante ; - la force magnétomotrice est à répartition sinusoïdale.

FIG.3 - Présentation de la puissance en fonction de la vitesse de rotation et de la vitesse du vent.

(5)

4

On cherche à obtenir un système d’équations écrit sous forme d’état :

(12)

Avec : , [U] et [Y] : respectivement vecteurs des variables d’état, de commande et de sortie ; [A] ,[B], [C] et [D] : respectivement matrice d’état, de la commande, d’observation et de transmission.

Cette forme dépend du type d’alimentation et des grandeurs à réguler. On ce qui nous concerne, on considère que le repère (dq) est lié au champ tournant statorique (a=s). Par consequent, Le système d’équation est [10]:

(13)

D’où , la représentation d’état:

(14)

icient de dispersion Avec :

s r

k M L L

.

3. Commande des puissances

L'utilisation de la GADA consiste dans la plupart des cas d'amener le glissement à la valeur désirée, avec le meilleur rendement possible en alimentant les enroulements rotoriques par un convertisseur électronique de puissance. Le modèle de la machine établi précédemment sera considéré pour appliquer un contrôle vectoriel. Ainsi, l'analyse des équations en régime permanent détermine la dépendance des variables d'action et les objectifs de commande (orientation du repère tournant dq suivant le flux statorique) [11], on obtient:

0

; qs

s

ds   

 (15) L’équation du couple devient alors :

qr ds s

em I

L pM

C (16) En considérant que la résistance statorique est négligeable, on obtient :

(17) En régime permanent nous pouvons écrire:

(18)

(19)

(20)

(6)

5

(21)

Nous avons opté pour la méthode de compensation des pôles pour la synthèse du régulateur. Ci- dessous les expressions des coefficients Kp et Ki du régulateur proportionnel intégral.

(22)

Avec:

(23)

4. Simulation et interprétation

Nous avons considéré un vent variable en palier de 6m/ s à 8m/s. Pour la première vitesse, le couple électromagnétique se stabilise après un régime transitoire à la valeur 1000 rd/s puis lorsque le vent atteint 8m/s le couple augment pour atteindre 2400 rd/s environ (voir FIG. 4). Il en est de même, la vitesse régit aussi avec la variation de la vitesse du vent dont la MADA fonctionne en mode génératrice. La FIG.5 montre les courants des trois phases statoriques ainsi qu’un zoom sur la partie du changement du vent. Celle de la FIG.5b présente les allures des courants rotoriques. Finalement, la FIG.6 montre les puissances active et réactive. On constate que les échelons de puissances imposés par la commande sont bien suivis par la génératrice.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-800 -600 -400 -200 0 200 400 600 800 1000 1200

temps (s)

Courants au stator

0.95 0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

-500 -400 -300 -200 -100 0 100 200 300 400 500

temps (s)

Courants au stator

a) Courants statoriques

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-7000 -6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000

temps (s)

Couple (N.m)

a) Couple électromagnétique

FIG. 5- Courants statoriques et rotoriques

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1000 -500 0 500 1000 1500

temps (s)

Courants au rotor

b) Courants rotoriques

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-100 -50 0 50 100 150 200 250 300 350

temps (s)

vitesse

b) Vitesse de rotation

FIG. 4 - Couple et vitesse de rotation

(7)

6

5. Conclusion

A travers les résultats obtenus ; on peut conclure que l’utilisation de la commande en puissance est bien adaptée pour ce genre de système. Nous avons détaillé présenté la modélisation de la partie mécanique de l’éolienne prenant en compte les caractéristiques du profil de pales utilisées et l’angle de calage de celle-ci, ainsi l’ensemble mécanique incluant le multiplicateur. Cette partie est essentielle dans la conversion éolienne. Finalement, en s’est inspiré de la modélisation de la génératrice asynchrone à double alimentation pour appliquer une commande séparée des puissances active et réactive. Cette approche permet de régler le facteur de puissance de l’installation et obtenir par conséquent, de meilleures performances

.

La simulation du comportement de toute la chaine nous aidera par la suite dans la partie commande et régulation.

Références

[1] Nesmat, Abu.Tabak.(2008): Stabilité dynamique des systèmes électriques multimachines : modélisation, commande, observation et simulation. Ecole centrale de lyon.

[2] L. P. a. K. E, Johnson.(2011): Control of Wind Turbines.IEEE Control system magazine.pp 44 -61.

[3] Aimani, S.El. (2004):modélisation de différentes technologies d’éoliennes intégrées dans un réseau de moyenne tension. Thèse de doctorat, L2EP de l’école centrale de Lille.

[4] Mirecki, Adam.(2005) : Etude comparative de chaînes de conversion d’énergie dédiées à une éolienne de petite puissance. Thèse de doctorat de l’institut national polytechnique de Toulouse.

[5] Thierno Lamarana, Sow.(2012) : Commande non linéaire de l’éolienne à MADA pour une participation au réglage de la fréquence du réseau montréal. École de technologie supérieure université du québec mémoire présenté à l’école de technologie supérieure.

[6] W. Hofmann, F. Okafor,(2001): Doubly-Fed Full-Controlled Induction Wind Generator for Optimal Power Utilization. Proceeding of 4th IEEE International Conference on Power Engineering and Drive Systems, Vol. 1, pp. 355 – 361.

[7] Beltran, B ; Sliding, al.(2008): Mode power control of variable speed wind energy conversion systems. IEEE Trans. Energy Conversion, vol. 23, n°2, pp. 551-558.

[8] Aguglia, D; Viarouge, P; Wamkeue, R; Cros, J.(2010):Determination of Fault Operation Dynamical Constraints for the Design of Wind Turbine DFIG Drives. Mathematics and Computers in Simulation, Vol. 81, N°2, pp. 252 – 262.

[9] Vidal, Paul-Étienne.(2004) :Commande non-lineaire d'une machine asynchrone à double alimentation. Thèse de doctorat de l’institut national polytechnique de Toulouse.

[10] D. forchetti, G. garcia et M. I. valla, (2002):Vector control strategy for a doubly-fed standalone induction generator vector . IEEE Trans . Energy conversion, pp: 991-995.

[11] J.L. Rodriguez-Amenedo, S. Arnalte and J.C. Burgos, (2002). Automatic Generation Control of a Wind Farm with Variable Speed Wind Turbines’, IEEE Transactions on Energy Conversion, Vol.17, N°2, pp. 279 – 284..

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-5 0 5 10x 105

temps (s)

Puissanceactive

a) Puissance active

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1 -0.5 0 0.5 1 1.5x 105

temps (s)

Puissanceréactive

b) Puissance réactive

FIG.6 - Puissances active et réactive.

Références

Documents relatifs

Notre travail consiste dans la première étape à la modélisation de la chaine de conversion de l’énergie éolienne où la génératrice asynchrone à double alimentation fonctionne

Notre travail consiste dans la première étape à la modélisation de la chaine de conversion de l’énergie éolienne où la génératrice asynchrone à double alimentation

The histogram used to normal- ize is built by considering all the eigenfrequencies of the homogeneous medium spectrum at each of the sampling points in the reciprocal space used in

Intensity maxima and zeros of speckle patterns obtained behind a diffuser are experimentally interchanged by applying a spiral phase delay of charge 1 to the impinging coherent

Expression of trophic amidated peptides and their receptors in benign and malignant pheochromo- cytomas: high expression of adrenomedullin RDC1 receptor and implication in tumoral

This poem is about thinking taken to the painful limits of what may, or can, be thought; it does not describe the act of thinking about something (reflecting upon it), or the act

Nous pouvons alors déterminer avec les deux premières caractéristiques la puissance en entrée de la chaîne de conversion électrique pour un vent donné (figure 19) et donc

La SPPT (Simplified Papilla Preservation Technique) a été utilisée pour les 15 défauts osseux et dans tous ces cas, l’incision s’est limitée au défaut associé à la papille..