• Aucun résultat trouvé

SMOS validation results from the HOBE site, Denmark

N/A
N/A
Protected

Academic year: 2021

Partager "SMOS validation results from the HOBE site, Denmark"

Copied!
32
0
0

Texte intégral

(1)

HAL Id: hal-02810759

https://hal.inrae.fr/hal-02810759

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

SMOS validation results from the HOBE site, Denmark

Simone Bircher, Philippe Richaume, Arnaud Mialon, Lucie Berthon, François Cabot, Al Bitar Ahmad, Olivier Merlin, Jean-Pierre Wigneron, Jan Balling,

Niels Skou, et al.

To cite this version:

Simone Bircher, Philippe Richaume, Arnaud Mialon, Lucie Berthon, François Cabot, et al.. SMOS validation results from the HOBE site, Denmark. SMOS Land Applications Workshop ESA-ESRIN, 2013, Frascati, Italy, Italy. �hal-02810759�

(2)

HOBE site, Denmark

SMOS Land Applications WORSHOP, 25-27 February 2013, ESRIN, Frascati, Italy

S. Bircher1, P. Richaume1, A. Mialon1, L. Berthon1, F. Cabot1, A. Al Bitar1, O. Merlin1, J.-P. Wigneron2, J. E. Balling3, N. Skou3, K. H. Jensen4, Y. H. Kerr1

1CESBIO (France), 2INRA (France), 3DTU Space (Denmark), 4IGN-KU (Denmark)

(3)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

Discrete Global Grid (DGG) ~15 km spacing

Area of signal contribution 123x123 km

SMOS ”pixel” around DGG node 2002029

~80% signal contribution

44 km

Hydrological OBsErvatory: 4 study sites

Danish SMOS Validation site: Skjern River Catchment (~2500 km

2

)

+ precipitation/climate stations (Danish Meteorological Institute, DMI)

+

SMOS antenna weighting pattern

SMOS FM0 fractions

[%]

Low vegetation (FNO): 84.16 Forest (FFO): 14.45 Urban land (FEU): 0.55 Wetlands (FWL): 0.43 Open water (FWO): 0.40

SMOS soil properties

Sand-% 71.1 Clay-% 11

Topo flags S/M: 0/0

(1/22) Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions Intro

(4)

Soil moisture & temperature network, 30 stations: since Jan 2010

Decagon 5TE sensors at 0-5, 20-25 and 50-55cm depth + organic layer

Land cover (CORINE2000)

Topsoil (Greve et al. 2007)

Subsoil (DJF) 800 mm

6 composite classes = 82%

HOBE sites

900 mm

loamy

+ +

(2/22)

 stations distributed accordingly...

 aligned along long-term precip. gradient:

also covering more loamy area in south-east

(5)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

Airborne Campaign: 26. April – 10. May 2010

4 flights & ground sampling, 29/04, 02/05, 04/05, 09/05, SMOS overpass ~ 6:30

2 km

2 km

L-band radiometer EMIRAD

(DTU Space), 0&40º Ө, H&V

Agriculture Heath Forest

1.4km

Ø 90% Sand - 3% Clay

Calibration over water... 10 N-S tracks

Delta-T theta probe readings + gravimetric samples of mineral &

organic layers

Roughness, veg. water content, land cover info

(3/22) Intro

(6)

 Overview of this talk

(4/22)

1. SMOS DGG 2002029: detailed temporal analysis of

retrieved SMOS soil moisture by means of network data

- SMOS data filtering - Different L2 versions - L2 vs. L3

2. SMOS DGG transect from west to east coast : analysis of changing open water fraction

3. Retrieved SMOS soil moisture using the Dobson vs.

Mironov Dielectric Mixing model

Campaign: results presented at several occasions and

compiled in publications...

(7)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

26.April – 14.June 2010

N=21

600

400 200 0

-200 -400 -600

X_Swath [km]

0.1 0.2 0.3 0.4 0.5

0 0.6 0.7 0.8 0.9 1

Chi2_P

all

Anterrieu ’good’*

SMOS data filtering – selected data quality indicators

0.1 0.2 0.3 0.4 0.5 0.6 0

RFI_index (N_RFI_X + N_RFI_Y) / M_AVA0

*

RFI detection scheme L1A (Anterrieu 2011):

X/Y snapshots RFI <50%

total nr. X/Y snapshots >110

All Anterrieu ’good’

- small RFI_index - high Chi2_P

(5/22) DGG2002029

(8)

SMOS data filtering – selected data quality indicators

N=523

600

400 200 0

-200 -400 -600

X_Swath [km]

0.1 0.2 0.3 0.4 0.5

0 0.6 0.7 0.8 0.9 1

Chi2_P

0.1 0.2 0.3 0.4 0.5 0.6 0

RFI_index (N_RFI_X + N_RFI_Y) / M_AVA0

Jan 2010 – Dec 2012

Generally:

- Small RFI_index = high Chi2_P

- High Chi2_P over entire X_Swath

 Define RFI_index threshold for filtering...

(6/22)

(9)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

26.Apr-14.Jun2010 Jan2010-Dec2012

T=0.03 T=0.04 T=0.05 T=0.03 T=0.04 T=0.05 92.9 92.9 86.7 88.4 87.7 87.7 7.1 7.1 13.3 11.6 12.3 12.9 100.0 100.0 100.0 81.4 85.2 86.4 0.0 0.0 0.0 18.6 14.8 13.6 RFIX<T:Correct(Chi2P>0.5)

Wrong(Chi2P<0.5) RFIX>T:Correct(Chi2P<0.5) Wrong(Chi2P>0.5) Classification [%]

~350 RFI_index

50 40 30 20 10 0

0 0.02 0.04 0.06 0.08 0.1

0.5 0.04

350 300 250 200 150 100

0 50

0 0.2 0.4 0.6 0.8 1

Chi2_P

Count

Jan 2010 – Dec 2012

(7/22) DGG2002029

”bad” ”good”

(10)

0.5 0.4

0.3 0.2 0.1 0 - 0.1

Jan10 Mar May Jul Sep Nov Jan11 Mar May Jul Sep Nov Jan12 120 100

80 60 40 20 0

Precipitation [mm]

Network avg.

L2 V5 filter N: 288 R: 0.74 RMSD (bias-corr): 0.043 BIAS: 0.096

Soil moisture [m3/m3]

SMOS DGG 2002029 retrieved L2 ascending vs. 0-5cm in situ soil moisture

(SMOS V5, 2. reprocessing; filter: rfi_index < 0.04; omitting negative surf. temp.)

Over 2-year timespan good agreement between SMOS L2 and in situ soil moisture in terms of temporal correlation and bias-corrected RMSD

But SMOS soil moisture significantly lower than in situ observations

(8/22)

(11)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

Taylor diagramme: SMOS DGG 2002029 retrieved L2 ascending vs. in situ SM, Jan–Dec 2010

L2 V3: original data L2 V4: 1. reprocessing L2 V5: 2. reprocessing f: filter

[Figure adapted from A. Mialon] (9/22)

DGG2002029

Clear quality increase between L2 V3 & V4, V4 & V5 in similar range (high impact of new forest tau formulation in V4)

Also quality increase when applying filter (rfi_index<0.04)

 L3 in similar range as L2 V4 & V5 when filtered

(12)

Bias 0.1

- 0.08 0.08 0.04 0.02 0 - 0.02 - 0.04 - 0.06 0.06

- 0.1

Jan – Dec 2011 Jan – Dec 2010

Number of retrievals

all filtered L2V3 106

L2V4 115 105 L2V5 131 109

L3 148 108

all filtered

L2V5 199 179

L3 208 197

 in 2011 L3 clearly less good, while L2 stays in a similar range as in 2010 -

+

however, decreasing network quality!

SMOS DGG 2002029 retrieved L2 & L3 ascending vs. in situ SM

(10/22)

2010 2011

 Number of retrievals increasing from L2 V3 to V5, from L2 to L3 (unfiltered) as well as from 2010 to 2011

(13)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

SMOS DGG nodes 10km precipitation grid (Danish Meteorological Institute)

SMOS DGG transect west – east coast

(11/22) DGG Transect

(14)

WEST EAST

Jan 10 Apr Jul Oct Jan 11 Apr Jul Oct Jan 12

0 0.2 0.4

Retrieved L2 SMOS soil moisture [m3/m3], Jan 2010 – Dec 2011

 Increase in soil moisture level from west to east...

(12/22)

(15)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

WEST EAST

62.2 15.5 0.96 0/0

65.0 13.6 0.89 0/0

69.6 11.6 0.86 0/0

73.3 10.4 0.87 0/0

71.1 11.0 0.88 0/0

63.5 13.6 0.94 0/0

54.5 16.9 1.09 0/0

47.1 20.3 1.26 0/0 Sand-%

Clay-%

Bulk Dens.

Topo S/M

(13/22)

Retrieved FN0-fraction (low veg.), FF0-fraction (forest), sand-%:

increase from west to center, then decrease towards east coast

FW0-fraction (open water), clay-%, bulk density: inverse behavior

No topography flags set

(16)

WEST EAST

Clay-%

Sand-%

Bulk Density

Avg. precipitation Avg. surface temp.

(14/22)

Soil moisture

FN0-%

(retrieved) FF0-%

FW0-%

 Increase in soil moisture level from west to east not fully explicable by geophysical parameters

???

(17)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

0.1 0.2 0.3 0.4

WEST EAST

Jan 10 Apr Jul Oct Jan 11 Apr Jul Oct Jan 12

RFI probability [%] , Jan 2010 – Dec 2011

 Increase from west coast to center and again decrease towards east coast

Does not seem to explain west-east soil moisture trend either

(15/22) DGG Transect

However, clear decreasing trend in RFI prob. over time for all DGGs!

(18)

West

East

S_Tree_1

2 (FW0) 12 (FN0) 12 (FN0) 12 (FN0) 12 (FN0) 12 (FN0) 12 (FN0) 12 (FN0)

West-east soil moisture increase clearly more pronounced til mid 2011...

(16/22) Jan 2010 – Dec 2011

No retrieval for S_Tree_1 class 2 (FWO = open water)

(19)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions WEST

EAST

... in correspondance with significant less noise in SMOS L1C TBs and much smaller RFI_index after mid 2011!

(17/22) DGG Transect

Jan 2010 – Dec 2011

RFI_index

L1C TB_40-45 HV [K]

Hint towards sudden improvement in SMOS data quality (also keep increased number of retrievals in 2011 and decreasing RFI_P in mind...)

(20)

WEST

EAST

(18/22) 01-Sep – 31-Oct 2011

this ratio also seems to be somewhat correlated with the FW0 (open water) fraction...

”bad” | ”good”

Could it possibly be used to define a threshold when DGGs should be discarded due to coastal impact?

Further studies needed...

Chi2_P ratio ’bad’(<0.5)/’good’(>0.5) seems to be very small even close to coast line, hinting towards satisfying quality of data

(21)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

Dobson/Mironov: Campaign results model in-situ vs. EMIRAD TB

TB EMIRAD [K]

TB GROUND MODEL L-MEB [K]

210 230 250 270

210 230 250

H_0

V_0

H_40

V_40

Agricult  Forest  Heath 

Good agreement using MIRONOV

Not able to remove bias using DOBSON

while keeping

model parameters in reasonable

range...

DOBSON MIRONOV

(19/22) Dobson/Mironov

29.Apr & 2/4/9.May 2010

(22)

0.08

- 0.08 0.06 0.04 0.02

0 - 0.02

- 0.04 - 0.06 Bias

Taylor diagramme: SMOS DGG2002029 retrieved ascending soil moisture using Dobson/Mironov (L2 Prototype V551) vs. 0-5cm in situ SM

”10”: 01.05.–30.06.2010

Lots of RFI, ~HOBE campaign

”11”: 01.09.–31.2011

 Little RFI

[Figure adapted from A. Mialon] (20/22)

R and RMSD not meaningful due to short timespans (cross-check with L2 2.reproc.), but bias shows interesting feature:

in ”RFI-polluted” period 2010 Mironov unbiased (0.005 m3/m3), while Dobson clearly too dry (0.076 m3/m3) = in accordance with EMIRAD-in situ model comp.

in ”RFI-free” period 2011 Mironov too wet (-0.036 m3/m3), while dry-bias Dobson is halfed (0.036 m3/m3)

(23)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

SMOS pixel, DGG node 2002029

Sand [%] Clay [%] Bulk Density [g/cm3]

SMOS 71 11 0.87

InSitu ~ 89 ~3.5 1.23

SMOS: too low sand-%/bulk density, too high clay-% ?

Soil properties

Roughness parameter HR

SMOS: 0.1

In situ: ~0.6-0.8

SMOS: too low HR ?

Increasing sand-% would dry the system and could potentially lead to a good fit with Mironov in RFI-free periods...

Increasing HR could possibly lower the retrieved SMOS Tau which was also found to be higher than in situ data during the campaign

More studies over longer timeframes needed!

(21/22) Dobson/Mironov

(24)

Conclusions/Outlook

(22/22)

DGG 2002029

- Good agreement SMOS – in situ (R, RMSD), but with distinct SMOS dry bias - Clear SMOS soil moisture data quality increase from L2 V3 to V4/5 and when

applying rfi_index<0.04 filter

- L3 does not seem to have fully reached L2 quality yet

DGG Transect west-east

- West-east soil moisture level increase seems to be unexplicable by geophysical parameters only  explanation?

- Seems less pronounced after mid 2011, in correspondance with less L1C TB noise and decreased RFI probability  sudden improvement in SMOS data quality

- Chi2_P </>0.5 ratio hints to satisfying data quality close to coastline

Dobson/Mironov

- During ”RFI-polluted” period bias removed using Mironov, during ”RFI-free” period Mironov too wet, Dobson bias halfed

- However, increasing sand-% and HR could increase soil moisture/lower tau level?

To come: SMOSHiLat – emissions of high latitude organic surface layers

(25)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

Thank you very much for your attention...

...questions?

(26)

DGG Transect – X_Swath

→ for all DGGs equal, no anomalies detectable...

(27)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

TB L1C

Soil moisture initial retrieved

Tau initial

retrieved HR

Surface temp.

Sand-%

Clay-%

Bulk density

Dielectr. mixing model

Campaign short-term offset

clear trend,same range trend,higher,noisy

lower lower higher lower

Mironov better Dobson

(2x2km scale)

Results SMOS compared to in situ

(Bircher et al. 2010, 2012a, 2012b, 2013)

Network long-term

clear trend,higher clear trend,lower

clear trend,same range lower

higher lower

(4/X) Intro

(28)

0 2 4 6 8 10 12 14 16

24-04 26-04 28-04 30-04 02-05 04-05 06-05 08-05 10-05

[mm]

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

[m3/m3]

24h precipitation sum [mm] moisture content [m3/m3]

Campaign 0-5 cm soil moisture

 Constantly small rain events: low temporal soil moisture variability

 But high spatial variability (standard deviation)

 Organic moisture >> mineral moisture

Theta probe recalibrated

(patch avg.) Decagon 5TE

(1 network station within patch)

Forest Heath Agriculture Mineral

Organic

(0.037) (0.111)

(0.081)

(0.126) (0.163) (std)

(6/13)

(29)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

Campaign results: Avg. In situ vs. EMIRAD vs. SMOS L1C TB

TB [K]

10 20

180 0 200 220 260

Ө [°] 40 50 60

280 300

SMOS H/V

+/

May 2, 2010 04:15 UTC

Model weight avg H/V : 77% Agriculture, 8% Heath & 15% Forest)

EMIRAD H/V actual angular signature (2nd ord. poly, forced 0°)

(J. E. Balling)

EMIRAD in comparable range with SMOS L1C, small positive bias

Mean modeled TBs distinct positive bias

Partly scale effects: patch data ’dry’ sandy conditions only

Advantage of step-wise comparison, BUT only one campaign date without SMOS RFI-contamination...

(10/13)

(30)

SMOS initial ~0.1-0.2

Campaign results: TB, H

R

, Т

NAD

18.Apr.–18.May 2010

TB VH 40°Ө

280

240

200

H RT NAD

1.3

0.9

0.5 0.3

0.1 0 0.2

FMO fractions (L2 DAP): 84. 1% FNO  S_TREE_1 (L2 UDP): 12

forest heath agriculture patch avg., f(land cover fractions)

Initial (DAP)

preparation of potato fields...

SMOS L2 Retrieved (UDP)

EMIRAD patch weight avg. network avg.

SMOS L1C (35-45°) Model

(31)

Intro DGG2002029 DGG Transect Dobson/Mironov Conclusions

Network results: soil moisture, precipitation, temp. Jan-Dec 2010

NW avg 0-5cm Temp. SMOS L2

SMOS retrieved

SM [m3/m3]P 24h [mm] Temp [°C]

Retrieved/Initial RMSE:0.094/0.061,BIAS:-0.087/0.057,R2:0.61/0.67

SM Initial, ECMWF

RMSE:1.1,BIAS:-0.2,R2:0.97

Jan10 Mar10 May10 Jul10 Sep10 Nov10 Jan11

(11/13)

Very good agreement between in-situ 0-5cm T and SMOS initial surface T

No significant uncertainties expected from this parameter...

Precipitation seems to be reflected in soil moisture data

R2 values confirm clear trend between SMOS and in-situ SM data, with a tendency of SMOS to overestimate the dynamics

Positive/negative bias between SMOS intitial/retrieved & in-situ data

(32)

Results: SMOS soil moisture - modeled soil moisture Teuling (avg.

Voulund & Gludsted) and Daisy (avg. V&G and avg. all stations)

Teuling avg V&G Daisy avg V&G avg all stations

R RMSE BIAS R RMSE BIAS R RMSE BIAS [m3/m3]

-1cm 0.52 0.085 -0.050 0.82 0.073 -0.062 0.83 0.084 -0.075 -2cm 0.63 0.078 -0.060 0.83 0.074 -0.064 0.83 0.085 -0.076 -3cm 0.72 0.080 -0.065 0.84 0.074 -0.064 0.84 0.085 -0.077 -4cm 0.78 0.083 -0.068 0.84 0.074 -0.064 0.83 0.086 -0.077 -5cm 0.80 0.085 -0.070 0.84 0.074 -0.064 0.83 0.086 -0.077 -6cm 0.79 0.086 -0.071 0.82 0.095 -0.086 0.82 0.101 -0.093 -7cm 0.77 0.088 -0.072 0.82 0.095 -0.086 0.82 0.101 -0.093 -8cm 0.74 0.089 -0.073 0.82 0.095 -0.086 0.82 0.101 -0.093 -9cm 0.71 0.090 -0.073 0.82 0.096 -0.086 0.82 0.101 -0.093 -10cm 0.68 0.090 -0.074 0.82 0.096 -0.086 0.81 0.102 -0.093

(14/16) SMOS – in situ: R: 0.84, RMSE: 0.086 m3/m3, BIAS: -0.077 m3/m3

 Best correlation between SMOS and modeled soil moisture at 3-5cm depth, statistics remain in same range as for SMOS - in situ data comparison

 As average Voulund/Gludsted drier than overall network average: deeper layer corresponding best with SMOS data, dry bias slightly reduced

 Teuling gives ’clearer’ picture: more variation between results of different layers

Références

Documents relatifs

Arnaud Mialon, Al Bitar Ahmad, Lucie Berthon, Simone Bircher, François Cabot, Maria-José Escorihuela, Delphine Leroux, Olivier Merlin, Nathalie. Novello, Thierry Pellarin,

Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The mission requirements are to retrieve soil moisture globally for all the nominal surfaces with an ac- curacy of 0.0 4m 3 /m 3 every 3 days at most and with a spatial

Satellite Soil Moisture Validation and Application Workshop in Frascati, Italy, 1-3

Difference between (a) airborne and ground estimates and (b) retrieved soil roughness parameter H versus 1-km field soil moisture variability includ- ing data from the four

SMOS and ASCAT SSM products were com- pared with the simulations of the ISBA-A-gs model and with in situ measurements from the SMOSMANIA network, in- cluding 21 stations located

 A wealth of uses in hydrology were identified using SMOS which demonstrates the power of real soil moisture fields in a variety of uses. 