• Aucun résultat trouvé

The unit of time: Present and future directions

N/A
N/A
Protected

Academic year: 2021

Partager "The unit of time: Present and future directions"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: hal-02164954

https://hal.sorbonne-universite.fr/hal-02164954

Submitted on 25 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The unit of time: Present and future directions

Sebastien Bize

To cite this version:

Sebastien Bize. The unit of time: Present and future directions. Comptes Rendus. Physique,

Académie des sciences (Paris), 2019, 20 (1-2), pp.153-168. �10.1016/j.crhy.2019.02.002�. �hal-02164954�

(2)

The unit of time: Present and future directions

L’unité de temps : directions actuelles et futures

Sébastien Bize

SYRTE,ObservatoiredeParis,UniversitéPSL,CNRS,SorbonneUniversité,LNE,61,avenuedel’Observatoire,75014 Paris,France

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Availableonline26February2019

Keywords:

Atomicfountain Timescale

Opticalfrequencystandard Fundamentalphysicstest Chronometricgeodesy RedefinitionoftheSIsecond

Mots-clés : Fontaineatomique Échelledetemps Étalondefréquenceoptique Testdephysiquefondamentale Géodésiechronométrique RedéfinitiondelasecondeduSI

Some 50 years ago,physicists, and after them the entire world,started to found their timereferenceonatomicpropertiesinsteadofmotionsoftheEarththathavebeeninuse sincetheorigin.Farfrombeinganarrivalpoint,thisdecisionmarkedthebeginningofan adventurecharacterizedbyanimprovementby6ordersofmagnitudeintheuncertainty ofrealizationofatomicfrequencyandtimereferences.Ever-progressingatomicfrequency standards and timereferences derivedfrom themare key resourcesfor science andfor society. We will describe how the unit of time is realized with a fractional accuracy approaching1016andhowitisdeliveredtousersviatheelaborationoftheinternational atomic time. We will describethe tremendous progress ofoptical frequency metrology overthelast20 yearsthatledtoanovelgenerationofopticalfrequencystandardswith fractionaluncertaintiesof1018.Wewilldescribeworktowardapossibleredefinitionof theSIsecondbasedonsuchstandards.Wewilldescribeexistingandemergingapplications ofatomicfrequencystandardsinscience.

©2019Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s um é

Il y a une cinquantaine d’années, les physiciens, et après eux le monde entier, ont commencé àfonder leurréférence temporellesur lespropriétés atomiquesau lieudes mouvementsdelaTerre,quiétaientutilisésdepuisl’origine.Loind’êtreunpointd’arrivée, cette décision a marquéle début d’uneaventurecaractérisée par une amélioration par six ordres de grandeur de l’incertitude de la réalisation des références atomiques de fréquenceetdetemps.Lesétalonsdefréquenceatomiqueenconstanteprogressionetles références detempsquiendécoulentsont desressourcesessentielles pourlascienceet pourlasociété.Nousdécrironscommentl’unitédetempsestréaliséeavecuneprécision relative approchant1016 etcomment elleest miseàla dispositiondesutilisateursvia l’élaborationdutempsatomiqueinternational.Nousmontreronslesprogrèsconsidérables de la métrologiedes fréquences optiquesau cours desvingt dernièresannées, qui ont conduit àunenouvelle génération d’étalonsde fréquence optiqueavecdes incertitudes relativesde1018.Nousdécrironslestravauxenvued’uneéventuelleredéfinition dela

E-mailaddress:sebastien.bize@obspm.fr.

https://doi.org/10.1016/j.crhy.2019.02.002

1631-0705/©2019Académiedessciences.PublishedbyElsevierMassonSAS.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

secondeduSIbaséesurcesétalons.Nousdécrironslesapplicationsscientifiquesexistantes etémergentesdesétalonsatomiquesdefréquence.

©2019Académiedessciences.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Theunitoftime

In 1967, the 13th General Conference on Weights and Measures (CGPM) defined the SI second as “theduration of 9 192 631 770periodsoftheradiationcorrespondingtothetransitionbetweentwohyperfinelevelsofthegroundstateofthece- sium133atom”[1].Atomshavequantizedenergylevels.WithanypairofquantizedlevelsofenergyEgandEe,afrequency

ν isassociatedviaPlanck–Einstein’srelation:hν=EeEg.Onefundamentalideabehindthedefinitionisthattheseatomic frequenciesareperfectlystableanduniversal.Observationssupportthisidea.Atomscanberegardedas“perfect”frequency standards givenby nature. The immutability of atomicfrequencies is integrated intofundamental theoriesunderpinning physics:generalrelativityandthestandardmodelofparticlephysics.

Accessing the atomic frequency andtransferring its qualities to a macroscopic usable signal requires a device called atomicfrequencystandard.Thetypicalarchitectureofsuchdevice isshownandexplainedinFig.1.Theoutputfrequency

ν(t)doesnotcoincidewiththeatomicfrequency νat.Itisperturbedbynoisesandbiasesofbothtechnicalandfundamental nature.Thesenoisesandbiasesdeterminetwomainscharacteristicsofagivenatomicfrequencystandard.Noiseslimitthe uncertaintywithwhicha frequencymeasurementcanbe madewiththisstandardina givenduration.Itischaracterized by the fractionalfrequency instability σy(τ), whichisa functionof themeasurement duration τ.Biasesoffsetthe mean output frequency withrespect to the unperturbed atomicfrequency νat. Ifknown and stable, a bias can be taken into account. What reallymattersis theuncertaintyto whichbiases areknown. Thisuncertainty,often reportedinfractional terms,definestheleveltowhichthestandardactuallygivesaccesstotheunperturbedatomicfrequency.Itsummarizesthe capabilityofthestandardtorealizetheSIsecond(for133Cs primarystandards),tobeusedforfundamentalphysicsandfor otherapplications.

In practice,onlywell-chosen atomictransitionsare suitableto realizestandardswithloweststability anduncertainty.

LevelsmusthavelonglifetimestoenableahighatomicqualityfactorQat (seeFig.1).Transitionmusthavelowsensitivity toexternalfields(electric,magnetic,thermalradiation,etc.).Theatomicstructuremustbecompatiblewithmethodsneeded to manipulateanddetectatoms. It isalsoessential toconsider practicalcriteriasuch asreliability,operability, possibility to generateand use theinterrogation field at the transition frequency. Giventhe state ofknowledge and technology at the time of the 13th CGPM, a frequency standard based on the 133Cs ground-state hyperfine transitionwas one of the best possibilities, almost two decades after the first observation of the transition [2]. It had shown sufficient maturity and hadbeen accurately measured withrespect to the ephemeris time [3,4]. Since then, fundamental andtechnological breakthroughs inmanyareasledtomajorchangesinwaystorealizeandusehighly accurateatomicfrequencystandards.

Theiruncertaintyimprovedby6ordersofmagnitude.References[5] and[6] provideanoverviewofthesedevelopments.

In November2018, the 26th CGPMadopteda majorredefinition oftheinternationalsystemofunits.The redefinition concerns the unitsofmass,oftemperature, ofelectrical currentandofamount ofsubstance. Thenewsystemis defined by adoptingconventionalvaluesforPlanck’sconstanth,forBoltzmann’sconstant kB,fortheelementarycharge e andfor Avogadro’s constant NA,similarly to what was alreadydone since 1983 [7] withthe speed of light c to define theunit oflength.Inessence, thedefinitionofthesecond remainsunchanged. Theformofthedefinition,however,ismodifiedto resemblethoseofotherunits,i.e.“theInternationalSystemofUnits,theSI,isthesystemofunitsinwhich:theunperturbedground statehyperfinetransitionfrequencyofthecaesium133atomνCsis9 192 631 770 Hz[...]”[8].

2. Researchonhighlyaccurateatomicfrequencystandards

Section 1 above gave fundamental concepts behind atomic time andatomic frequency standards. These concepts are amazinglysimpleandhavebeenusedformorethanfivedecades.Still,theycontinuebeingatthebasisofanactivefieldof researchinthefollowingways.

Search foradvancingatomicfrequencystandardswithextremelylowuncertaintiesgoeshandinhandwithexploration ofatomicsystemsinteractingwithelectromagneticfields.Progressinatomicfrequencystandardsrevealsnewphenomena andprovides meansofinvestigatingthem. Andviceversa, progressinother areas(e.g.,laser-coolingofatoms, physics of collisionsandinteractions,quantumentanglement...)enablestheimprovementofatomicfrequencystandards.

These devices with extremely low uncertainties are tools of choice to probe the structure of space-time andto test fundamentallawsofnature.Theyprovideexperimentalinputstothequestforaunifiedtheoryofgravitationandquantum mechanics[9–11] andtothesearchfordarkmatter[12,13] andtootherapplications.

Ontheappliedside,atomicfrequencystandardsarekeytomajorapplicationsofutmostimportanceinmodern science andsociety.ThepracticalrealizationoftheunitoftimeoftheSIsystemisoneofthem,inparticularviatheelaborationof theinternationalatomictimeandoftheuniversalcoordinatetime(TAI/UTC).Anotherexampleisglobalnavigationsatellite

(4)

Fig. 1.Ontheleft:architectureofhighlyaccurateatomicfrequencystandards.Anoscillatorgeneratesamacroscopic,practicallyusableelectromagnetic signal.Afractionofthissignalissplittoprobetheatomictransitionchosenasareference.Theresponseoftheatomicsampleisdetectedtodetermine theprobabilityofexcitingthetransition.Thisinformationisusedtostabilizethefrequencyoftheoscillatortothespectroscopicsignal.Ontheright:

representativespectroscopicsignal.KeyfeaturesofthissignalaretheatomicqualityfactorQat=νat/νandthenoiseinthemeasurementofthetransition probabilityσδP.Thefrequencyν(t)oftheusablesignaldoesnotcoincideexactlywiththeunperturbedatomicfrequencyνat:ν(t)=νat×(1+ε+y(t)), whereεisafractionalfrequencyoffsetandy(t)representsfractionalfrequencyfluctuations.

systems(GNSS)such asGPS, GALILEO,etc.In turn,theserealizations arekey fortelecommunications, transports,finance, digitaleconomy,etc.

Search forultra-low uncertainties in atomicfrequencystandards isa steadydriver forinnovation inmultiple techno- logical areas such as lasers, low-noise electronics,ultra-stable oscillators. Also, it creates knowledge necessary to define trade-offs between performance and other requirements for industrial frequency standards or spaceclocks. This knowl- edgeisoftenapplicable notonlytonovelfrequencystandards,butalsotoother typesofatom-basedinstrumentslike,for example,accelerometersandgyrometersbasedonmatter–waveinterferometryormagnetometers.

Progress in reducing the uncertainty ofatomic frequencystandards leads to novel applications.For instance,because of its much lower uncertainty, the newgeneration of optical frequencystandards enableschronometric geodesy, i.e.the determinationofdifferencesinterrestrialgravitationalpotentialviathemeasurementofEinstein’sgravitationalredshift.

3. Primaryfrequencystandardsbasedonatomicfountains

Thefirstgenerationof133Csprimaryfrequencystandards,whichledtotheadoptionoftheatomictime,wasbasedon thethermalatomicbeamtechnologyandtheseparatedoscillatoryfieldsmethod[14,15].Thedevelopmentoflasercooling ofatomsinthe 1980s [16–18] enablesasecond generationcalledatomicfountains[19–21]. Atomicsampleslaser-cooled totemperaturesnear1μK enable atomicqualityfactorshigherthan1010,a factor100timeshigherthaninatomicbeam standards.Fig.2displaysaschematicofanatomicfountain.Whenanultra-lownoisemicrowavesourceisusedtointerro- gatetheatomictransition,thequantumprojectionnoiselimitisreached[22].Thislimitisthefundamentallimitsetbythe quantummeasurementprocessforunentangledparticles.Thisyieldsshort-termfractionalfrequencyinstabilitiesaslowas 1.6×1014at1 s[23].Nowadays, theaccuracyofthebestatomicfountainsranges between1 and3 partsin1016.This istheresultofrefiningmodels oftheinterrogationanddetectionprocesses,andofstringentlytestingthesemodels with experiments.Such experiments typically requiremanyfrequency measurements withstatisticaluncertainties near1016, whichisreached,intheverybestcase,afterseveralfulldaysofmeasurement.Inotherwords,fountainshavereachedthe situationwherethestabilityimposesapracticallimittostudyingsystematicshiftsandimprovingtheaccuracy.Exampleof effectswhosemodeling improvedsignificantlyincludestheeffectsofphasegradientsintheinterrogationmicrowavecavity [24,25],theeffectsofcoldcollisions[26–28],theeffectsofcollisionswithbackgroundgases[29,30],andtheeffectsofthe microwavefieldonexternalatomicmotion(“microwavelensing”)[31–33].Theimplementationoffountainswithcryogenic interrogationenvironmentenabledanewdirectmeasurementoftheeffectsofthermalradiationshift(“blackbodyradiation shift”) [34–37].Recently, a completeaccuracy budgetwas published forcontinuous fountainatthelevel of1.99×1015 [38].Moredetailsonatomicfountainscanbefound,forinstance,in[39],[23] and[40].

The87Rbground-statehyperfinetransitionisalsousedtorealize atomicfountainfrequencystandards.LNE–SYRTEde- velopeda dualfountainusingRb andCs, whichtruly realizes twostate-of-the-art microwavestandardsina single setup [41,42]. The Rb partof thisfountainhas an uncertaintyof 3.2×1016 similar to the one ofthe best cesium fountains.

Thisdualfountainenableshighlyaccuratecomparisonsofthe87Rband133Cshyperfinefrequencies.Thesecomparisonsfind manyapplications (see sections 6and7 below). Inparticular, they led to theadoption ofthis transitionasa secondary representationoftheSIsecond[42,43].

Agreement betweenfountains is well testedby means ofspecific remote comparisons by satellite methods [44] and recently by optical links between LNE–SYRTE and PTB [45]. Also, the elaboration of TAI provides a vehicle to compare fountainfrequencystandards(seesection4below).

(5)

Fig. 2.Ontheleft:Schematicofanatomicfountainfrequencystandard.Acloudofcoldatomsiscapturedatthecrossingof3pairsofcounter-propagating laserbeams.Itislaunchedupwardsatatypicalspeedof4 m s1andwithtemperatureof1μK.Duringtheballisticflight,atomsarestate-selected withafirstmicrowaveinteractionandapushlaserbeam.Then,theypassupwardanddownwardthroughamicrowavecavitywheretheyinteractwith thesignalfromtheinterrogationoscillator.Theycontinuefallingthroughtwolaserbeamsheetsinthedetectionregion.Ontheright:Top:Energylevelsof 133Csshowingtheground-statehyperfinetransitiondefiningtheSIsecond.Inred,transitionsusedforlaser-coolinganddetection.Bottom:Spectroscopy ofthecesiumhyperfinetransitioninanatomicfountainshowingRamseyfringeswithawidth<1 Hz andanatomicqualityfactorQatof1010.Eachpoint isasinglemeasurementofthetransitionprobabilityatarateof1 persecondwithatypicalnoiseσδP2×104.

4. ElaborationofTAI:accuracyofatomicfountainsdeliveredtousers

One essentialoutcomeoftime andfrequencymetrologyistheconstruction oftheinternationalatomictime (TAI)and oftheuniversalcoordinatetime(UTC).Itisworth notingherethatthe26th CGPMadoptedaresolutiononthedefinition of time scales [8], whichcorrects forthe lack so farof a self-containeddefinition ofTAI. We remind that a meaningful definition and realization of a time scale valid globally in the vicinity of the Earth requires the framework of general relativity,inparticulartoproperlyaccountforEinstein’sgravitationalredshift,whichisabout1016 permeterofelevation at the surface of theEarth. Adescription of theelaboration ofTAI by the BIPM canbe found,for example,in [46] and referencestherein.Bymeansofsatellite-basedcomparisons,datafromabout450continuouslyoperatedcommercialclocks areusedtocomputethefreeatomictimescale(EAL).Thelargenumberofdevicesandlocationsensurethepermanenceof EAL. Datafromamuchsmallernumberofprimaryandsecondaryfrequencystandards(about20)inanevenmorelimited number of institutes are used to calibrate the frequency ofEAL against the 133Cs hyperfine transition, according to the definitionofthe second,andtosteerEALtorealizeTAI.UTC isderivedfromTAIby insertingleap secondsthat maintain agreement withthe universal time (UT1) andthe observed rotationof theEarth. The result ofthisprocess is published by theBIPM in its monthlyCircular T [47]. Thisinformation, inturn, isused by national metrologyinstitutes andother participantstosteertheirlocalphysicalrepresentationofUTC,fromwhichdisseminationsinsocietystartbyvariousmeans.

Circular T andcalculationsdoneattheBIPMalsoyieldanestimationoftheperformanceofTAIandprovideavehicleto compare frequencystandardsworldwide.Differences betweenfrequencystandardsobserved bythismeans areconsistent withuncertainties[48,49].Theaccuracytowhichthescaleintervalisdeterminedwithrespectto133Cshyperfinetransition now reaches2×1016 [46].Inother words,theperformance offrequencystandardsistransferred tothetime scaleand thereby tousers.The2×1016fractional frequencyuncertaintytranslatesintoanerroroflessthan10 ns afteroneyear.

This improvementbya factorof10since 2000isthe resultof thecommitmentofa fewmetrologyinstitutesto provide

(6)

Fig. 3.LocalrealizationsofUTCusingatomicfountaindata.TheplotshowstimedifferencesUTC–UTC(k)asafunctionoftheModifiedJulianDate(MJD) forUTC(USNO),UTC(PTB)andUTC(OP).Dataareshownbetween29October2012and8November2018.

regular calibrations of TAI. Nowadays, aboutfour orfive calibrations by fountains are typically available each month,as canbeseeninsection 3ofCircular T[47].Overthelast15years,LNE–SYRTEmade40%ofallworldwidecalibrationswith fountains.TheadoptionofsecondaryrepresentationsoftheSIsecond(see[43] andsection7below)ledtothepossibilityto calibrateTAIwithotheratomictransitionsthanthe133Cshyperfinetransition.Thiswasdoneforthefirsttimewiththe87Rb hyperfinetransitionbyLNE–SYRTE,whichprovidedcloseto100calibrationsbythismean[42].LNE–SYRTEalsopioneered providing calibrations based onan optical transition. This was done withthe 87Sr1S03P0 transition at698 nm. Regular calibrations ofTAI by optical frequencystandardsare an importantprerequisite for apossible redefinition ofthe second basedonoptical transition(s)[50].The transferoflong-termstability andaccuracyofprimary frequencystandardstoTAI enableshighly accurate SI-traceablefrequencymeasurements without alocalprimary frequency[51,52] and fundamental physicstests[53,54].

Progress in the reliabilityof atomicfountains made itpossible for a few institutesto steer their local realizationsof UTC withfountain data[55–57]. Local realizationofUTC by institutek isdenoted UTC(k). Fig. 3shows time differences betweensuchtimescalesandUTC.Theyarerealizedusinghydrogenmaserswhosefrequencyiscalibratedandsteeredwith atomic fountains,andfor the long term, with thetime difference UTC(k)–UTC provided every month inCircular T. They typicallydeviatefromUTCandfromeachothersbynomorethanafewnanoseconds.Itisworthnotinganothersignificant evolutionintimekeeping,namelytherapidrealizationofUTCbytheBIPM[58]. UTCrimplementsfasterexchangeofdata thanCircular TdoesbetweenparticipatinglaboratoriesandtheBIPM.Itimprovestheleveltowhichagivenlaboratorycan verifythesynchronizationofitsUTC(k)toUTC.Thisisofparticularinterestandsignificanceforlaboratorieswhereresources allocatedtothelocaltimescalearelimited(i.e.toafewcommercialCsbeamstandards).

5. Anewgenerationofopticalatomicfrequencystandards

Opticalfrequencymetrologyisadvancing athighpace, inparticularsincethe introductionofopticalfrequencycombs [59,60].Optical frequencystandardsrefer to atomicstandardsrelying on transitionswhosefrequency corresponds tothe opticaldomainoftheelectromagneticspectrum.Theirfrequencyisby104to105higherthanthe133Cshyperfinefrequency and their potential atomic quality factor can exceed 1016 instead of 1010 for atomic fountain standards. To date, both neutralatomsandionsarestudied withtheaimtoobtain thelowestpossible uncertainties.Fig. 4explainstheprinciple ofoperation ofthesetwotypes ofstandards.Optical frequencystandardsachieve fractionalfrequency uncertaintiesclose to 1018 [61–68].Forexample,reference[61] reports anuncertaintyof 1.4×1018 foran 171Yboptical latticestandard.

References[64] and[62] reportuncertaintiesof2.1×1018and4.8×1018,respectively,for87Sropticallatticestandards.

Reference[63] reportsanuncertaintyof3.2×1018fora171Yb+ionstandard.Manyphysicaleffectshadtobeunderstood and controlled at an even lower level individually. Some notable ones are frequency shifts due to black-body radiation [64–71] andtoelectricfields[72],shiftsinducedbythelatticelight[73,74],shiftsinducedbyinteractions[75],light-shifts inducedbyprobelight[76].Thislistofexamplesmustnotbeconsideredascompleteeitherintermsofeffectsorinterms ofreferences.Comparisonsbetweenopticalfrequencystandardsusingthesametransitionwereperformedwithimproving uncertainties [65,77–80], down to below1018 for the mostrecent work [61]. A recentand morecomplete account on opticalfrequencystandardscanbefoundin[81].Fig.5showsarecentmeasurementofthestabilityofa87Sropticallattice frequencystandardfromLNE–SYRTE.

Références

Documents relatifs

(Color online) Images obtained using our algorithm: (a) target images, (b) encrypted and compressed image using two keys (a digital fingerprint at the input plane and a phase random

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Here we demonstrate a fiber network operated with Multi-branch Laser Stations MLSs which enable coherent dissemination of an ultra-stable signal from one point to multiple users

This is illustrated in figure 4 where we plot, for a typical clock con figuration, the Allan standard deviation of the fractional frequency difference between the mercury atomic

(a) Phase evolution of the local two-way comparison and that of the two major phase error sources when there is no fiber-length-mismatch at remote site ( φ remote = 0 ),

Chapitre B. Bourguignon et al., IEEE Transactions on Signal Processing, 2016.. BOURGUIGNON et al.: EXACT SPARSE APPROXIMATION PROBLEMS via MIXED-INTEGER PROGRAMMING 1409. 1)