• Aucun résultat trouvé

The effects of the diffusive inclusions in the bidomain model: theoretical and numerical study. Application to the rat heart.

N/A
N/A
Protected

Academic year: 2021

Partager "The effects of the diffusive inclusions in the bidomain model: theoretical and numerical study. Application to the rat heart."

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01418706

https://hal.inria.fr/hal-01418706

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The effects of the diffusive inclusions in the bidomain model: theoretical and numerical study. Application to

the rat heart.

Anđela Davidović, Yves Coudière, Clair Poignard

To cite this version:

Anđela Davidović, Yves Coudière, Clair Poignard. The effects of the diffusive inclusions in the bido-main model: theoretical and numerical study. Application to the rat heart.. 2nd Scientific Workshop IHU-Liryc, Nov 2016, Bordeaux, France. �hal-01418706�

(2)

The effects of the diffusive inclusions in the bidomain model:

theoretical and numerical study. Application to the rat heart.

Anđela Davidović

1, 2, 3, 4

, Yves Coudière

1, 2, 3, 4

, Clair Poignard

1, 2, 4

1

INRIA Bordeaux Sud-Ouest,

2

University of Bordeaux,

3

IHU Liryc,

4

CNRS, IMB

Cardiac Electrophysiology: Multiscale

Modelling

CELL SCALE – Ionic models

dvm

dt

= −I

ion

(v

m

, h) − I

stim

dh

dt

= −g(v

m

, h)

v

m

= u

i

− u

e

TISSUE SCALE - Bidomain model

t

h + g(v

m

, h) =

0

t

v

m

+ I

ion

(v

m

, h) = ∇ · (σ

i

∇u

i

)

t

v

m

+ I

ion

(v

m

, h) = −∇ · (σ

e

∇u

e

)

Main Factors

Nonlinear ionic currents

MICROSTRUCTURE

Gap Junctions

QUESTIONS: scars, fibrosis, etc.

Figure : The infarct border zone.(Rutherford, 2012)

Figure : Normal vs myocardial infarction in human.

METHOD: HOMOGENISATION OF THE

MESOSCALE MODEL

t

h

ε

+ g(v

ε

, h

ε

) =0,

in Ω

Bε

,

t

v

ε

+ I

ion

(v

ε

, h

ε

) =∇ · (σ

εi

∇u

iε

),

in Ω

Bε

,

t

v

ε

+ I

ion

(v

ε

, h

ε

) = − ∇ · (σ

εe

∇u

eε

),

in Ω

Bε

.

∇ · (σ

εd

∇u

dε

) = 0,

in Ω

Dε

.

ε

Bε

Dε

Σ

ε

∂Ω

Y

Y

D

Y

B

Γ

1

Assumptions

Periodic inclusions of size ε.

Isotropic conductivity in the inclusions.

No cells in the inclusions - passive conductors.

Theoretical Result: MODIFIED BIDOMAIN MODEL

Limit macroscale model

t

h + g(v

m

, h) =0,

|Y

B

|

(∂

t

v

m

+ I

ion

(v

m

, h)) =∇ · (

σ

˜

i

∇u

i

),

σ

˜

i

=

σ

i

|Y

B

| + A

i

i

, w

i

)

,

|Y

B

|

(∂

t

v

m

+ I

ion

(v

m

, h)) = − ∇ · (

σ

˜

e

∇u),

σ

˜

e

=

σ

e

|Y

B

| + σ

d

|Y

D

| + A(σ

e

, σ

d

, w)

.

A

i

, A matrices obtained by solving the cell problems on Y for w

i

and w.

UPDATED CONDUCTIVITIES - depend on the volume fraction AND geometry.

Numerical results: study of the effects in 2D

(a) Shape 1: effects on the values of the conductivity tensors and on the anisotropy ratio.

(b) Shape 2: effect on the

eigenvalues of the conductivity

tensors and on the anisotropy ratios.

(c) Simulation of the circular wave propagation. Up –

standard model, center – modified model with inclusion of the shape 1, down – modified model with inclusion of the shape 2. We observe the difference in speed and

alternation in the principle direction of the propagation.

Application of the model to the real HD-MRI of the rat heart.

(a) HD-MR Images of the rat heart. (b) Segmentation (c) Inclusion detection

(d) Mesh (e) Volume fraction (f) Fibers

Figure : Data from Giblert et al. (2012), provided by IHU-Lyric, Bordeaux. The size of the image 256 × 256 × 512. Image analysis steps to obtain the required parameters for the simulation. Software used: SEG3D, SCIRun, MATLAB, Perl.

Figure : Simulation on the slab of the rat heart, up – standard model, down – modified model. Times: 20ms, 40ms, 60ms.

Acknowledgements: This work has been done with help of Yves Bourgault, Univ. Ottawa, Canada and Stephen H.

Références

Documents relatifs

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion