• Aucun résultat trouvé

ON THE SHAPE OF A LIQUID-METAL FIELD-ION EMITTER

N/A
N/A
Protected

Academic year: 2021

Partager "ON THE SHAPE OF A LIQUID-METAL FIELD-ION EMITTER"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00224407

https://hal.archives-ouvertes.fr/jpa-00224407

Submitted on 1 Jan 1984

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON THE SHAPE OF A LIQUID-METAL FIELD-ION EMITTER

R. Forbes

To cite this version:

R. Forbes. ON THE SHAPE OF A LIQUID-METAL FIELD-ION EMITTER. Journal de Physique

Colloques, 1984, 45 (C9), pp.C9-161-C9-166. �10.1051/jphyscol:1984927�. �jpa-00224407�

(2)

JOURNAL DE PHYSIQUE

Colloque C9, supplément au n°12, Tome 45, décembre 1984 page C9-161

ON THE SHAPE OF A L I Q U I D - M E T A L F I E L D - 1 ON EMITTER

R.G. F o r b e s

University of Surrey, Department of Electronic and Electrical Engineering, Guildford, Surrey GU2 5XH, U.K.

Résumé - Une source d'ions à métal liquide en fonctionnement a la forme d'une protubérance sur un cône. Les raisons possibles de cette géométrie sont discu- tées et les difficultés associées' à la théorie de la stabilité électromécanique des liquides conducteurs sont présentées.

Abstract - An operating liquid-metal field-ion source has the shape of a cusp on a cone. Possible reasons for this are discussed, and difficulties with the theory of the electromechanical stability of conducting liquids are displayed.

The experimental observations of Zeleny / I / , Taylor / 2 / , and others on electrified fluids showed the presence of cusps and/or jets at the apex of the conical liquid body formed in the presence of a high electric field. Taylor's theory / 2 / success- fully explained the half-angle of the underlying cone, and his theoretically predicted shape has come to be known as the Taylor cone.

The shape of the apex of an operating liquid-metal field-ion source (LMFIS) is of current interest, isomer's theory of LMFIS operation / 3 / assumed this would be a rounded Taylor cone. Electron microscope observations by Clampitt and coworkers /4,5/ had, in fact, already shown that an operating caesium LMFIS had the shape of a cusp on a cone, and it was subsequently shown by Gaubi et al. / 6 / that an operating gold source also had this shape. There are also theoretical reasons for thinking this shape plausible for an operating LMFIS: it has been shown /7-10/

that a rounded Taylor cone could not reasonably support observed emission currents at the fields necessary to sustain field evaporation at its apex.

Thus, although there may be smaller-scale microprotrusions on the rounded cusp apex /8,ll,l2/, it can be assumed that an operating LMFIS has the basic shape of a cusp on a cone. The precise physical reasons for this, however, remain to be agreed. The intentions of this paper are to summarise the possibilities, and look again at some of the relevant theory.

I - BASIC THEORY

(1). First consider the elementary arguments associated with surface tension. In fig.l suppose that an area of surface 6A is created by "pulling sideways", with force T per unit length. The work w done is TySx. If y denotes the surface energy per unit area (in the absence of any field), then clearly:

w = Ty6x = T6A = y6A (1) Surface tension T is equal to the (chemical) surface energy per unit area, y.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1984927

(3)

C9-162 JOURNAL DE PHYSIQUE

( 2 ) . N e x t consider t h e p r e s s u r e d i f f e r e n c e a c r o s s a curved s u r f a c e i n local equilib- rium. I suarmarise Gibbs' d e r i v a t i o n /13/. Suppose t h a t a s m a l l element ( o f a r e a S ) o f a curved l i q u i d s u r f a c e expands forward t o a new p o s i t i o n , as shown i n f i g . 2 . Let t h e p r i n c i p a l c u r v a t u r e s o f t h e o r i g i n a l s u r f a c e be c l and c l , and suppose t h a t every p o r t i o n o f t h e s u r f a c e moves outwards along its l o c a l normal by d i s t a n c e 6n.

me volume 6v through which the s u r f a c e h a s moved is approximately s6n; and t h e i n c r e a s e 6 s i n a r e a is ( ( c l + c 2 ) s 613).

I f hp denotes t h e mechanical p r e s s u r e d i f f e r e n c e between t h e two s i d e s o f t h e s u r f a c e ( w i t h Ap p o s i t i v e if t h e p r e s s u r e "inside" is t h e g r e a t e r ) then t h e change 6E i n system f r e e energy a s s o c i a t e d with t h e movement of t h e s u r f a c e element S is:

For t h e element t o be i n equilibrium, we must have aE/an = 0 ; hence we g e t t h e elementary formula f o r p r e s s u r e d i f f e r e n c e a c r o s s a s u r f a c e i n equilibrium:

I FIGURES: These schematic diagrams illustrate arguments in the text

1.

r

2.

s+Ss

curvatures Cl ,C2

3. Length

T = y

4* I P ~ E ~ F = ~ A

X

sina A

T 5P T

r (r si nc(12x Ap

(4)

( 3 ) . I n t h e case of a sphere o f r a d i u s R, we o b t a i n Ap = 2y/R. T h i s r e s u l t can a l s o be obtained by t r e a t i n g t h e s u r f a c e t e n s i o n as a f o r c e , and considering the e q u i l i b r i u m o f a hemisphere as shown i n f i g . 3 .

( 4 ) . NOW consider how t o introduce e l e c t r i c a l e f f e c t s , assuming a conducting l i q u i d . The s i m p l e s t approach, followed by Zeleny, Taylor and o t h e r s , is t o note t h a t on every s m a l l a r e a o f s u r f a c e t h e r e is an outwards p r e s s u r e ( 1 / 2 ) e O ~ 2 (where F is t h e l o c a l f i e l d s t r e n g t h ) , and t o assume t h a t t h e new formula f o r t h e equilibrium mechanical p r e s s u r e d i f f e r e n c e is:

( 5 ) . Now consider t h e mechanical s t a b i l i t y o f a Taylor cone, as i l l u s t r a t e d i n f i g . 4 . From e l e c t r o s t a t i c a n a l y s i s , Taylor showed t h a t t h e f i e l d a t t h e cone s u r f a c e would be p r o p o r t i o n a l t o r-112 i f t h e half-angle a had a s p e c i f i c v a l u e c l o s e t o 49.30, and t h e surrounding e l e c t r o d e had t h e shape o f one o f the r e l e v a n t family o f e q u i p o t e n t i a l s . L e t T a y l o r ' s f i e l d d i s t r i b u t i o n be FT = ~ ~ 1 1 2 . Two approaches are now p o s s i b l e , analogous t o the approximations I and I1 used by Taylor i n h i s a n a l y s i s o f spheroidal-drop s t a b i l i t y . Approach I, used i n T a y l o r ' s cone a n a l y s i s /2/, i s t o assume t h a t e q . ( 4 ) g i v e s t h e equilibrium p r e s s u r e

d i f f e r e n c e a c r o s s t h e curved cone s u r f a c e . This y i e l d s :

Approach I1 balances t h e f o r c e s shown i n f i g . 4 . W e assume that p r e s s u r e is uniform i n space o u t s i d e t h e cone, and t h a t w i t h i n t h e cone t h e p r e s s u r e is uniform i n any plane normal t o t h e axis. Ap is t h u s t h e mechanical p r e s s u r e d i f f e r e n c e between an i n t e r n a l p o i n t i n t h e plane shown and any e x t e r n a l p o i n t . I n t e g r a t i n g t h e outwards e l e c t r i c a l l y - i n d u c e d f o r c e s g i v e s a r e s u l t a n t f o r c e p a r a l l e l t o t h e cone a x i s o f 2 r ~ r s i n 2 a . Force balance parallel t o t h e a x i s t h e n y i e l d s :

The d i f f e r e n c e between eqns ( 5 ) and ( 6 ) is a new r e s u l t .

T a y l o r ' s r e s u l t is now obtained as follows. P r e s s u r e i s uniform ( i n p r a c t i c e z e r o ) i n space o u t s i d e t h e cone; t h u s t h e cone as a whole w i l l not be i n e q u i l i b r i u m u n l e s s Ap i s independent o f r. W e f o r c e this by t a k i n g t h e parameter T t o be c o n s t a n t ( e q u a l t o y ) , and s e t t i n g t h e expression i n square b r a c k e t s e q u a l t o z e r o , t h u s making Ap z e r o f o r all r. This g i v e s a value f o r B, and hence /2/ a necessary ( i f e q u i l i b r i u m is t o e x i s t ) value f o r the v o l t a g e VT between t h e l i q u i d cone and h i s surrounding e l e c t r o d e .

I1 - POSSIBLE REASONS FOR CUSP FORMATION

We can now d i s c u s s reasons f o r t h e formation o f a cusp on a cone r a t h e r t h a n a e x a c t Taylor cone. Several p o s s i b i l i t i e s e x i s t . To consider t h e first two it is easiest t o assume t h a t t h e exact Taylor cone is a s t a t i c equilibrium configuration a t a c e r t a i n v o l t a g e VT. (Really, t h i s r e q u i r e s t h a t t h e system e l e c t r o d e s have t h e a p p r o p r i a t e shape, b u t t h i s p o i n t is not important h e r e . )

1 ) W e r v o l t i n g . Take a Taylor cone and suppose t h a t t h e a p p l i e d v o l t a g e is increased s l i g h t l y from VT. The f i e l d a t each p o i n t on t h e cone w i l l be increased by a s m a l l amount 6F t h a t v a r i e s from p o i n t t o p o i n t , and a t each p o i n t is such t h a t ~ F / F T = ~V/VT = r) , where r) is a s m a l l c o n s t a n t . The excess p r e s s u r e i n s i d e t h e cone a t d i s t a n c e r from t h e apex is now given by:

(5)

C9-164 JOURNAL DE PHYSIQUE

C l e a r l y t h e p r e s s u r e d e c r e a s e s as we approach t h e cone apex. Liquid would tend t o move towards t h e apex. Thus we would expect a cusp t o form and grow as voltage is increased f r o m t h e v a l u e VT. Even i f a Taylor cone is n o t t h e e x a c t e q u i l i b r i u m shape a t any v o l t a g e , one might expect a cusp o f s i z e i n c r e a s i n g w i t h v o l t a g e , due t o dynamic e f f e c t s . Kingham and Swanson have modelled t h i s /10/.

2 ) I n s t a b i l i t y coupled with dynamic overshoot. A l t e r n a t i v e l y , suppose t h a t t h e v o l t a g e is such t h a t a Taylor cone would be i n equilibrium, b u t t h a t the cone h a s t o be formed by the d i s t o r t i o n o f a l i q u i d f i l m i n i t i a l l y adhering t o t h e s u r f a c e o f an underlying needle. As the l i q u i d d i s t o r t s , it w i l l p i c k up k i n e t i c energy.

Thompson and Prewett have modelled this process /14/. Even i f t h e l i q u i d t e n d s i n t o t h e shape o f a cone, i t w i l l overshoot. The q u e s t i o n is whether a cusp, once formed, would continue t o grow,

-

o r whether it would c o l l a p s e back i n t o a Taylor cone. I f it would continue t o grow, then t h e cone is u n s t a b l e with r e s p e c t t o cusp formation, and we should not r e a l l y expect t o observe the e x a c t Taylor cone. The q u e s t i o n f o r t h i s hypothesis is: Is t h e Taylor cone an u n s t a b l e equilibrium 7 3 ) Inadequacy i n surface-tension theory. A more r a d i c a l hypothesis, r a i s e d by C u t l e r and coworkers /15/, i s t h a t T a y l o r ' s approach t o surface-tension theory i s not f u l l y c o r r e c t , and t h a t e q . ( 4 ) does n o t c o r r e c t l y g i v e t h e e q u i l i b r i u m mechan- i c a l p r e s s u r e d i f f e r e n c e a c r o s s a curved s u r f a c e when t h a t s u r f a c e is h i g h l y charged. I n t h i s c a s e t h e Taylor-cone c o n f i g u r a t i o n i s presumed n o t to be an e q u i l i b r i u m shape, and hence would b e expected t o d i s t o r t . This suggestion i s d i s t i n c t from t h e discrepancy between eqns ( 5 ) and ( 6 ), which a l s o might be thought t o i n d i c a t e some inadequacy i n t h e theory.

A l l the p h y s i c a l i n f l u e n c e s mentioned might c o n t r i b u t e t o observed LMFIS shapes, and p o s s i b l y o t h e r f a c t o r s t o o . However, w e now look more c l o s e l y a t t h e t h i r d hypothesis above, because i t h a s i m p l i c a t i o n s f o r all t h e o r i e s o f LME'IS shape.

111

-

ANO!PIER LOOK AT TEE SUFFAC5: TENSION OF CaARGED LIQUIDS

The work o f Rayleigh /16,17/ on charged d r o p l e t s is g e n e r a l l y h e l d t o be c o r r e c t i n p r i n c i p l e . From t h i s it is clear t h a t one p o s s i b l e approach is t o i n c l u d e a potential-energy term r e l a t i n g t o t h e e l e c t r i c a l f r e e energy o f t h e system.

I n o u r case t h e l i q u i d e l e c t r o d e is held by a b a t t e r y a t a constant v o l t a g e V r e l a t i v e t o its surroundings. I f a change i n shape o f t h e l i q u i d electrode

i n c r e k s e s its e l e c t r i c a l capacitance, r e l a t i v e t o t h e surroundings, then a charge 6Q flows through t h e b a t t e r y and two energy changes r e s u l t . The p o t e n t i a l energy s t o r e d i n t h e c a p a c i t o r c o n s t i t u t e d by t h e l i q u i d e l e c t r o d e and its surroundings i n c r e a s e s by (1/2)V6Q; and t h e p o t e n t i a l energy o f t h e b a t t e r y decreases by VSQ.

The n e t change i n t h e e l e c t r i c a l f r e e energy o f t h e system is -(1/2)V6Q.

Now c o n s i d e r a p l a n a r arrangement as i l l u s t r a t e d i n f i g . 5 , with t h e l i q u i d elec- trode c o n s t i t u t i n g t h e upper e l e c t r o d e , and being of f i n i t e s i z e . By analogy w i t h t h e argument used earlier, consider a new a r e a o f surface c r e a t e d i n t h e middle s e c t i o n o f t h e l i q u i d e l e c t r o d e by " p u l l i n g sideways" with a f o r c e T p e r u n i t l e n g t h . There are now two energy terms a s s o c i a t e d w i t h t h e a r e a 6A o f new s u r f a c e c r e a t e d : a n i n c r e a s e i n energy y6A as before, associated with t h e breaking o f bonds between atoms as t h e surface is formed; and t h e e l e c t r i c a l term discussed above. I f we may assume t h a t t h e i n c r e a s e i n capacitance is €06A/b, where d is t h e e l e c t r o d e s e p a r a t i o n , then - i f P is t h e f i e l d i n t h e c e n t r e o f t h e region between t h e e l e c t r o d e s

-

simple a l g e b r a l e a d s t o t h e r e s u l t :

It is clear from f i g . 5 t h a t t h e r e is an downwards pressure o f ( 1 / 2 ) e O ~ 2 on t h e charged l i q u i d e l e c t r o d e , due t o the "pull" o f the lower e l e c t r o d e ' s charge. So it seems t h a t , i n t h i s quasi-planar c o n f i g u r a t i o n , two e l e c t r i c a l e f f e c t s exist: the outwards p r e s s u r e on t h e s u r f a c e ,

and

a r e d u c t i o n i n t h e s u r f a c e t e n s i o n T.

(6)

A t t h i s s t a g e it c l e a r l y becomes necessary t o ask whether Taylor was c o r r e c t i n assuming t h a t e q . ( 4 ) would g i v e t h e equilibrium p r e s s u r e d i f f e r e n c e a c r o s s a charged s u r f a c e , o r whether it w a s c o r r e c t i n e q . ( 6 ) t o set T = y. The main a l t e r n a t i v e is t o t a k e T as a non-constant quantity, which would be c o n s i s t e n t with t h e d i s c u s s i o n leading t o eq.(8) and with t h e arguments of C u t l e r and coworkers.

Currently, I do not know what approach is c o r r e c t . Discussion continues below, b u t f i r s t look at p o s s i b l e consequences of t a k i n g T as non-constant i n t h e context of e q . ( 6 ) . Suppose T has t h e form:

where t i s a correction, presumed p o s i t i v e , t h a t depends on f i e l d , voltage and p o s s i b l y o t h e r f a c t o r s . We cannot reasonably assume t h a t t h a s the same form f o r a cone as f o r t h e Eig.5 geometry, b u t i t seem reasonable t o assume t h a t i t decreases i n s i z e with decrease i n l o c a l f i e l d . I n t h i s case t would become negligible i n comparison with y a t s u f f i c i e n t l y l a r g e d i s t a n c e r, and we should expect t h e d i s t a n t p a r t s of t h e l i q u i d body t o have t h e Taylor configuration. On t h e o t h e r hand, l a r g e t might be p r e d i c t e d near t h e apex o f a Taylor cone, making T s m a l l o r negative t h e r e . The Taylor cone could not then be i n s t a t i c equilibrium near the apex: dynamic e f f e c t s , and divergence from c o n i c a l geometry, might be expected.

For argument, suppose t h a t T f o r a Taylor cone w e r e given by e q . ( 8 ) . It is r e a d i l y shown t h a t t h e d i s t a n c e r a t which T would become z e r o i s given by:

Voltages i n t h e range 5-10 kV lead, f o r t y p i c a l y-values (-1 N/m), t o r-values o f o r d e r 100-500 m. But t h e r e s u l t s o f Gaubi e t al. /6/ show t h a t i n t h e l i m i t o f low LMFIS emission c u r r e n t , c o n i c a l geometry is w e l l e s t a b l i s h e d a t d i s t a n c e s o f a t most a few p n from t h e geometrical t i p apex. The experiments would seem t o confirm that, even i f eq. ( 9 ) be q u a l i t a t i v e l y c o r r e c t , eq. ( 8 ) is not a p p l i c a b l e t o a cone.

I t is, of course, conceivable t h a t i n t h e above arguments t h e concept of surface t e n s i o n is being used i n v a l i d l y , and t h a t t h i s is responsible f o r t h e discrepancy between eqns ( 5 ) and ( 6 )

.

(Though t h i s assumption would a l s o raise doubts about t h e v a l i d i t y of T a y l o r ' s approximation I1 i n h i s spheroidal drop a n a l y s i s . ) On the o t h e r hand, it s e e m s clear t h a t T a y l o r ' s argument is incomplete and t h a t t h e v a l i d i t y o f eq. ( 4 ) ought t o be proved. Let us attempt t o do t h i s by incorporating a Raleigh-type electrical term i n t o t h e Cibbs-type argument used earlier.

IV

-

AN EZECTRICAL VERSION OF THE GIBES APPROACH

I f q i s t h e s u r f a c e charge a s s o c i a t e d with element of a r e a S, and 6 q i s t h e i n c r e a s e i n s u r f a c e charge when t h e element moves forward by a d i s t a n c e 6n. then equation ( 2 ) i s replaced by:

Proceding as before would give a term involving aq/an. A l t e r n a t i v e l y , w e may write q=us, where U is t h e s u r f a c e charge d e n s i t y on t h e l i q u i d e l e c t r o d e . P u t t i n g 6q=u6s+s6u, and r e q u i r i n g t h a t aE/an be zero, w e o b t a i n a f t e r some manipulation:

The f i r s t r h s term c l e a r l y involves t h e "reduced s u r f a c e tension" t h a t appears i n e q . ( 8 ) , b u t t h e r e i s now an e x t r a term. Evaluation o f eq.(12) can be done i n the two simple cases, giving:

(7)

C9-166 JOURNAL DE PHYSIQUE

p a r a l l e l p l a t e s : &p =

-

(1/2

OF^

( 1 3 )

sphere : AP = 2y/R

-

(1/2 )€OF' ( 1 4 )

These r e s u l t s are t h e same as assumed i n elementary theory. B u t i n more general cases t h e second term i n eq.(12) i s very d i f f i c u l t t o e v a l u a t e , because t h e q u a n t i t y aF/an seems not t o be well-defined. aF/an seems t o depend, not only on what i s happening t o t h e l o c a l small element o f s u r f a c e , b u t a l s o on how t h e rest of t h e s u r f a c e behaves.

I t is important t o note t h a t both terms i n e q . ( l 2 ) h a v e combined t o g i v e t h e F2 term i n e q . ( 1 4 ) . So it i s not g e n e r a l l y p o s s i b l e t o i n t e r p r e t t h e second term i n eq.(12) as a simple "hydrostatic pressure" term. This i s c o n s i s t e n t with t h e supposition i n t h e previous s e c t i o n , t h a t T i n e q . ( 6 ) is not given by e q . ( 9 ) . B u t n e i t h e r have I been a b l e t o prove t h a t t h e two e l e c t r i c a l t e r m i n e q . ( l l ) , taken together, i n g e n e r a l produce t h e F2 term t h a t appears i n eq. ( 4 ) . The implication is t h a t , as of now, I am unable t o prove Taylor c o r r e c t .

V

-

CONCLUSIONS

From t h i s work I draw two main conclusions:

(1) There is no d i f f i c u l t y i n accounting f o r t h e observed cusp-on-a-cone shape o f an o p e r a t i n g -1s.

( 2 ) There s e e m t o be unresolved o b s c u r i t i e s i n t h e t h e o r y o f t h e s u r f a c e t e n s i o n of charged l i q u i d s , and derived phenomena. I n p a r t i c u l a r , t h e discrepancy between eqns ( 5 ) and ( 6 ) remains t o be f u l l y explained, and I am c u r r e n t l y unable t o prove t h a t t h e basic equation ( 4 ) , assumed a - p r i o r i by Taylor i n h i s cone a n a l y s i s , is t h e correct equilibrium condition f o r a charged l i q u i d s u r f a c e . Worse, I am unable t o prove t h a t any well-defined equilibrium condition i n f a c t e x i s t s f o r shapes o t h e r than t h e sphere o r p a r a l l e l - p l a t e configuration. Conceivably t h e r e is some flaw i n t h e thermodynamic arguments i n s e c t i o n IV; b u t perhaps we should at least contemplate t h e hypothesis t h a t charged-liquid shapes s u b s t a n t i a l l y d i f f e r e n t from t h e t w o simple cases may not be able t o exist i n static equilibrium.

I warmly acknowledge many s t i m u l a t i n g d i s c u s s i o n s with D r Graeme L R Mair.

REFERENCES

ZELENY, J . , Proc. Camb. Phys. Soc. 18 (1915) 71.

TAYLOR, G . I . , Proc. Roy. Soc. A 2 2 5 9 6 4 ) 383.

GOMER, R., Appl. Phys. 19 ( 1979) 365.

AITKEN, K.L., Proc. F i e l d Emission Day, Noordwijk (Noordwijk: European Space Agency: 1976) p23.

CLAMPITl?, R., JEFFERIES, D.K., Nucl. I n s t r . m t h .

149

(1978) 734.

GAUBI, H., SUDRAUD, P., TENCE, M., VAN DE VALLE, J., Proc. 29th I n t e r n . F i e l d Emission symp. (Stockholm: Almqvist and Wiskell: 1982) p357.

WARD, J.w., SELIW, R.L., J. Vac. S c i . Tech.

19

(1981) 1186.

FORBES, R.G., m I R , G.L.R., J. Phys. D: Appl. Phys. 15 (1982) L153.

KANG, N.K., SWANSON, L.W., Appl. PhyS. A? (1983 ) 9 5 7 KINGHAM, D.R., SWANSON, L.W., Appl. Phys. ( t o be published).

WEINSTEIN, B.W., PhD Thesis, University of I l l i n o i s at Urbana-champaign, 1975 PREWETl', P.D., JEFFERKES, D.K., J. PhyS. D. 13 (1980) 1747.

GIBBS, J.w., Trans. Connecticut Acad. 111 (1575) 108; The S c i e n t i f i c Papers of

J.

Willard Gibbs, Vol.1. Thermodynamiis (New York: Dover: 1961).

THOMPSON, s.P., P,- P.D., J. Phys. D: Appl. Phys. ( t o be published).

SUJATHA, N., -R, P.H., KAZES, E., J.P.8 MISKOVSKYr N.M., ApPl.

Phys. A32 ( 1983) 55.

R A Y L E I ~ Lord, P h i l . Mag.

14

(1882) 184.

RAYLEIGEI, Lord, P h i l . Hag.

31

(1916 ) 177.

Références

Documents relatifs

Liquid metal ion sources (MIS) of high melting nonmetals may be achieved by selection of a low melting eutectic alloy and a suitable substrate material.. The choice of the

Auger analysis of the molten droplet surface at temperatures near the alloy melting point revealed large surface concentrations of C (and often N). It was frequently possible

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

A gold LMIS has been used in the charged droplet emission mode with a single lens focusing column operating at 20 kV beam voltage to achieve a deposit size at the target of 2.3

tail and doubly charged B" ions were hardly observed because of their large evaporation field. Lower energy ion tails are likely explained by charge transfer collision

The mass spectrum of Pd-Ni-As-B LMI source shows that the ion flux ratio (B/As)ion is smaller than the ratio expected from the atom flux ratio (B/As)atom. A probable reason

ANGULAR RESOLVED ENERGY ANALYSIS OF 69Ga+ IONS FROM A GALLIUM LIQUID METAL ION

Ignoring the pressure inside the capillary - something that would not be justifiable for high flow impedance "needle" ion sources - one can integrate to obtain the