• Aucun résultat trouvé

DYNAMIQUE DES FLUCTUATIONS ET PHÉNOMÈNES DE TRANSPORT PRÈS DU POINT CRITIQUECRITICAL PHENOMENA IN ANISOTROPIC MAGNETIC SYSTEMS

N/A
N/A
Protected

Academic year: 2021

Partager "DYNAMIQUE DES FLUCTUATIONS ET PHÉNOMÈNES DE TRANSPORT PRÈS DU POINT CRITIQUECRITICAL PHENOMENA IN ANISOTROPIC MAGNETIC SYSTEMS"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00213995

https://hal.archives-ouvertes.fr/jpa-00213995

Submitted on 1 Jan 1971

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DYNAMIQUE DES FLUCTUATIONS ET

PHÉNOMÈNES DE TRANSPORT PRÈS DU POINT CRITIQUECRITICAL PHENOMENA IN

ANISOTROPIC MAGNETIC SYSTEMS

F. Wegner

To cite this version:

F. Wegner. DYNAMIQUE DES FLUCTUATIONS ET PHÉNOMÈNES DE TRANSPORT PRÈS DU POINT CRITIQUECRITICAL PHENOMENA IN ANISOTROPIC MAGNETIC SYSTEMS. Journal de Physique Colloques, 1971, 32 (C1), pp.C1-519-C1-520. �10.1051/jphyscol:19711173�. �jpa-00213995�

(2)

DYNAMIQUE DES FLUCTUATIONS ET PHENOMENES

DE TRANSPORT PRES DU POINT CRITIQUE - .

CRITICAL PHENOMENA IN ANISOTROPIC MAGNETIC SYSTEMS

F. WEGNER

Institut Laue-Langevin, 8046 Garching bei Miinchen, Germany, and E. Riedel, LASSP, Cornell University, Ithaca, N. Y., 14850, U. S. A.

Résumé. — En introduisant l'anisotropie comme une autre variable critique une loi d'échelle universelle existe pour les susceptibilités et les temps de relaxation dans des systèmes anisotropes magnétiques. L'état critique se divise en régimes à comportement critique différent, et des lois de puissance sont valables dans ces régimes. Le comportement dans les régimes intermédiaires ne peut pas être décrit par des lois de puissance. En utilisant l'approximation des modes couplés nous avons calculé les relaxations critiques. Nous trouvons un bon accord avec des expériences récentes.

Abstract. — Introducing the anisotropy as a further critical variable a universal scaling law for the susceptibilities and relaxation rates in anisotropic magnetic systems exists. The critical state splits into regions of different critical behavior.

In these regions power laws apply. The behavior in the cross over regions cannot be described by power laws. Using lowest order mode-mode approximation we calculated numerically critical spin relaxations. We find good agreement with recent experiments.

I. Introduction. — Static and dynamic critical phe- nomena depend strongly on the symmetry of the system under consideration, dynamic phenomena also on the conservation laws. For small deviations from a certain symmetry point the critical state of the system can split into regions of different critical behavior.

Here we review scaling laws and limiting behaviors of the static [1] and dynamic [2, 3] spin correlations in weakly anisotropic ferromagnets and antiferromagnets in the paramagnetic state.

As a basis we take a Heisenberg model with the Hamiltonian

& = - i £ I(r - r 0 (1 - Ax) S*(r) Sx(f) (1.1)

Z AIT'

describing an anisotropic coupling between the A-components of the spins. The Hamiltonian then describes an uniaxial magnet when

0 = Az < Ax = Ay = A ,

a magnet with an easy plane of magnetization when 0 = Az = Ax < Ay = A and an isotropic magnet when 0 = Az = Ax = Ay = A. The parameter A measures the degree of anisotropy of the system.

II. Critical statics : susceptibilities. — In a molecu- lar field-like approximation the static susceptibilities Xx(l) become for ferromagnets

KJjCD + « KfCD + K2A + q2

denoting spin components parallel and perpendicular to the easy axis/axes of magnetization by || and L.

K|| is the longitudinal inverse correlation length 7c|( oc (T - rc)v a for T-* Tc and KA = K±(TC). The susceptibilities % are homogeneous functions of q, K^

and Kj. Generalizing this result we postulate for the static susceptibility the homogeneity property [1]

• Xx(qh K|| /, KA I) = I"2*"Xx{q, Kp KA) . (2.2) Now we consider the behavior of x m different regions of the (K||, q) plane (Fig. 1). a) The cross-over region K\ + q1 « KA separates the plane into the

FIG. 1. — Regions I to IV in the (fey, q) plane.

isotropic regime (III, IV) K\\ + q2 > KA where both susceptibilities are approximately equal to that of the isotropic system, thus they are independent of A, and into the anisotropic regime (I, IJ) K2 + q2 <^ KA where

#H diverges and Xi. remains finite, showing different scaling behavior for fixed A, b) The cross-over region K|| at q separates the (K\\, q) plane into a critical .regime (II, III) Kg <^ q where the susceptibilities do not depend essentially on K^(T) and a hydrodynamic regime (I, IV) K1( ^> q where the susceptibilities do not depend essentially on q. Therefore, the (K^, q) plane splits into four regions I to IV separated by cross- over regions. The static susceptibilities show different limiting behavior in these regions which can be expres- sed by power laws [1]. The behavior in the cross-over regions cannot be described by power laws.

III. Critical dynamics : relaxation rates. — Now we consider how the homogeneity property and the different limiting behavior of the static susceptibility are reflected in the behavior of the relaxation rate (inverse relaxation time) r. Applying lowest order

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19711173

(3)

C 1 - 520 F. WEGNER mode-mode approximation [3, 41 and assuming an exponential decay we obtain for ferromagnets

where V are renormalized strongly temperature depen- dent coupling constants

and el,, denotes the completely antisymmetric tensor.

In antiferromagnets similar eq. for the linewidths rsn(q) = r'(qS + Q) and r o ~ ( q ) = r d q ) of the stag- gered and the homogeneous spin components couple.

From the scaling law for the static susceptibilities (2.2) the solutions of eq. (3.1) and (3.2) satisfy the universal dynamic scaling law [2, 31

with $/v = (5 - q)/2 for ferromagnets and 312 for antiferromagnets valid for all q, rcli and rc, small in comparison to the inverse lattice spacing. Each T, can be split into a product of material constants QU$'"

times a universal scaling function kn

The scaling functions pn are independent of the exchange parameters and completely determined by the symmetry and spin conservation laws of the system.

Introducing the logarithmic derivatives

a log r a log r a log r

Pq = ,,,,,,P~~ = elo'a= p. (3.5) pA

Eq. (3.3) reduces to

Now we consider the different regimes :

a) In the hydrodynamic regime (I, IVb) p, = 2 d,,,,, since r oc qzd~0.n where d,,, = 1 if n is a conserved spin component, otherwise 0.

b) In the anisotropic regime (I, II) pq f ,011 = dl/a/~a,

since a scaling law for fixed A, analogous to eq. (3.3) holds [2, 31.

c) In the critical regime (11, IIT) pll = 0, since r

does not depend essentially on the temperature there.

Refe [I] RIEDEL (E.), WEGNER (F.), Z. Phys., 1969, 225, 195.

[Z] RIEDEL (E.), WEGNER (F.), Phys. Rev. Let., 1970, 24, 730, 930 E.

[3] RIEDEL (E.), WEGNER (I?.), Phys. Rev. (to be published).

[4] KAWASAKI (K.), J. Phys. Chem. Sol., 1967, 28, 1277.

RESIBOIS (P.), DE LEENER (M.), Phys. Rev., 1966, 152,

qne JVJ.

WEGNER (I?.), Z. Phys., 1968, 216, 433.

4 In the anisotropic regime (111, IVa) p, = 0, since

r does not depend essentially on the anisotropy there.

e) In the region (IV) p,

+

(vlrp) PA = 2 do,,, since in this region contributions to r proportional to q2 and A 2 for homogeneous components ( d o , = 1) occur, whereas for staggered ones (do,, = 0) r depends neither on q nor on A. The factor v/cp occurs, since

~c, cc dV/Q where rp is a new scaling index of the order of y [I]. From measurements of the relaxation rates of homogeneous not-conserved spin components for rcll(T) 4 K , one may deduce rp experimentally, since

r P. K\:-~'~". This violation of the conservation law

is still apparent in the cc isotropic >> region IV and

9 I v e / ~ - 1 divides it into two parts separated by q = KA /rcjl

In each regime, eq. (3.6) and two other eq. for p apply. Hence inside any regime the derivatives p are constants yielding power laws

where K and p are numbers depending on the compo- nent n and on the regime r.

IV. Calculations of linewidths. - We calculated approximately the coefficients K [3, 51. Using

Q = 2.18 meV

and icA = 0.054 f 0.01 A-I we found for the stag- gered linewidths at g = 0 for the uniaxial antiferro- magnet MnF, Tsll = (29 $ 2.5) ici, I',, = 0.27

+

0.07

for IC~!(T) 4 red and rsII = I'sL = 8.9

74.'

for

xll(T) p K,. These estimates are in good agreement with recent neutron scattering results of Schulhof and al. 161. The cross-over temperature TA, separating the anisotropic and the isotropic region at q = 0 is given by xll (TA) = rc,. We estimated the relative temperature difference (TA - TN)/TN, obtaining 0.034

+

0.01 for

MnF, and 0.25 for FeF,. Thus we expect no difficulties in finding anisotropic behavior in the linewidths for FeF,. For NMR linewidths the theory predicts for MnF, and FeF2 dv, K (T - T,)-'~~ in the anisotropic region and 6v, cc (T - TN)-1/3 in the isotropic region. Gottlieb [7] observed the 213 power law for (T - TN)/TN < 0.13.

V. Conclusion. - Discussing the effect of aniso- tropy to the critical magnetic state we obtained a universal scaling law for the susceptibility and one for the relaxation rates valid in the whole critical state. The critical state splits into regimes where different power laws apply. The actual material para- meters provide appropriate scales for the characteristic times of the system. This fact was used for an easy quantitative evaluation of critical spin relaxation rates.

eences

KADANOFF (L. P.), SWIFT (J.), Phys. Rev., 1968, 166, 89.

[5] RIEDEL (E.), WEGNER (F.), Phys. Let., 1970, 32 A, 273.

[61 SCHULHOF (M. P.), HELLER (P.), NATHANS (R.), LINZ (A.). Phvs. . -. ? Rev., 1970, B 1. 2304.

[7] GOT~LIEB (A: M.), ~ h . D. Thesis, Brandeis U., 1970 (unpublished).

Références

Documents relatifs

L’histoire des vins d’appellations n’est donc pas réduite à celle des institutions du contrôle de la production tel que l’Institut national des appellations

The instrument can be subdivided into four main sections: the casemate section containing most of the optical and beam conditioning components; collimation comprising a 12.8 m

Studying the two component vec- tor model with cubic symmetry in the framework of Landau theory, Galam and Birman have shown that including sixth-and eighth degree

Nel documento di politica di promozione delle pari oppor- tunità del 1997, la DSC si era impegnata a promuovere la donna ponendosi precisi obiet- tivi: una rappresentanza

Ceci doit nous permettre d'une part de surface diffère du spectre des fluctuations d'un d'approcher plus près du point critique, d'autre part de oscillateur

Scc, most recently discussed by Bhatia and Thorn- ton [I], carries quite a bit of information on the ten- dencies toward compound formation (or chemical reaction)

et l’importance données à l’érection de la chapelle sont envisagées pour les bénédictins s’implantant entre Suisse et Tyrol (H. Sennhauser) ; l’environnement laïque