• Aucun résultat trouvé

Uniqueness of solutions for the non-cutoff Boltzmann Equation with soft potential

N/A
N/A
Protected

Academic year: 2021

Partager "Uniqueness of solutions for the non-cutoff Boltzmann Equation with soft potential"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: hal-00602975

https://hal.archives-ouvertes.fr/hal-00602975

Submitted on 23 Jun 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Uniqueness of solutions for the non-cutoff Boltzmann Equation with soft potential

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang

To cite this version:

Radjesvarane Alexandre, Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Uniqueness of

solutions for the non-cutoff Boltzmann Equation with soft potential. Kinetic and Related Models ,

AIMS, 2011, 4, pp.17-4. �hal-00602975�

(2)

FOR THE NON-CUTOFF BOLTZMANN EQUATION WITH SOFT POTENTIAL

R. ALEXANDRE, Y. MORIMOTO, S. UKAI, C.-J. XU, AND T. YANG

Abstract. In this paper, we consider the Cauchy problem for the non-cutoff Boltzmann equation in the soft potential case. By using a singular change of velocity variables before and after collision, we prove the uniqueness of weak solutions to the Cauchy problem in the space of functions with polynomial decay in the velocity variable.

1. Introduction

Consider the Cauchy problem for the spatially inhomogeneous Boltzmann equa- tion,

(1.1) ∂

t

f + v · ∇

x

f = Q(f, f ), f (0, x, v) = f

0

(x, v),

where f = f (t, x, v) is the density distribution function of particles with position x ∈ R

3

and velocity v ∈ R

3

at time t. The right hand side of (1.1) is given by the Boltzmann bilinear collision operator

Q(g, f) = Z

R3

Z

S2

B (v − v

, σ) { g(v

)f (v

) − g(v

)f (v) } dσdv

,

which is well-defined for suitable functions f and g specified later. Notice that the collision operator Q( · , · ) acts only on the velocity variable v ∈ R

3

. In the following discussion, we will use the σ − representation, that is, for σ ∈ S

2

,

v

= v + v

2 + | v − v

|

2 σ, v

= v + v

2 − | v − v

| 2 σ,

which give the relations between pre- and post- collisional velocities. The non- negative cross section B(z, σ) depends only on | z | and the scalar product

|z|z

· σ.

As in our previous works, we assume that it takes the form B( | v − v

| , cos θ) = Φ( | v − v

| )b(cos θ), cos θ = v − v

| v − v

| · σ , 0 ≤ θ ≤ π 2 , where

(1.2) Φ( | z | ) = Φ

γ

( | z | ) = | z |

γ

, b(cos θ)θ

2+2s

→ K when θ → 0+,

for some γ > − 3, 0 < s < 1 and K > 0. The angle θ is the deviation angle, i.e., the angle between pre- and post- collisional velocities. The range of θ is a full

2000Mathematics Subject Classification. 35A05, 35B65, 35D10, 35H20, 76P05, 84C40.

Key words and phrases. Boltzmann equation, singular change of velocity variables, uniqueness of solution.

1

(3)

interval [0, π], but it is customary [20] to restrict it to [0, π/2], replacing b(cos θ) by its “symmetrized” version

[b(cos θ) + b(cos(π − θ))]1

0≤θ≤π/2

,

which is possible due to the invariance of the product f (v

)f (v

) in the collision operator Q(f, f ) under the change of variables σ → − σ.

We will use the following weighted function spaces: For p ≥ 1 and β ∈ R , we set k f k

Lpβ

=

Z

R3

|h v i

β

f (v) |

p

dv

1/p

, and for m ∈ R

k f k

Hβm(R3v)

= Z

R3

|h D

v

i

m

h v i

β

f (v)

|

2

dv

1/2

, where h v i = (1 + | v |

2

)

1/2

and h D

v

i = (1 − △

v

)

1/2

.

f (t, x, v) is called a weak solution of the Cauchy problem (1.1), if f ∈ C( R

+

; S

( R

6x,v

)) ∩ L

1

([0, T ]; L

( R

3x

, L

12+γ+

( R

3v

))), and it satisfies (1.1) in the following weak sense:

Z

R6

f (t, x, v)η(t, x, v)dxdv − Z

R6

f

0

(x, v)η(0, x, v)dxdv

− Z

t

0

dτ Z

R6

f (τ, x, v)(∂

τ

+ v · ∇

x

)η(τ, x, v)dxdv (1.3)

= Z

t

0

dτ Z

R6

Q(f, f)(τ, x, v)η(τ, x, v)dxdv,

where η ∈ C

1

( R ; C

0

( R

6

)). Here, the right hand side of the last integral can be defined by

Z

R3

Q(f, g)(v)η(v)dv = Z

R6

Z

S2

B f (v

)g(v)(η(v

) − η(v))dvdv

dσ.

For the uniqueness of weak solutions, we consider the function space with poly- nomial decay in the velocity variable. More precisely, for m ∈ R , ℓ ≥ 0 and T > 0, set

P

m

([0, T ] × R

6x,v

) = n

f ∈ C

0

([0, T ]; S

( R

6x,v

));

s.t. f ∈ L

([0, T ] × R

3x

; H

m

( R

3v

)) o .

Our theorem is concerned with the uniqueness of solutions for the case when γ ≤ 0 in the cross-section that includes the soft potential and Maxwell molecule for the inverse power law.

Theorem 1.1. For 0 < s < 1 and max {− 3, − 3/2 − 2s } < γ ≤ 0, suppose that the Cauchy problem (1.1) admits two weak solutions f

1

(t), f

2

(t) ∈ P

2s0

([0, T ] × R

6

x,v

) with 0 < T < + ∞ and ℓ

0

≥ 14 having the same initial datum f

0

∈ L

( R

3x

; H

2s0

( R

3v

)). If one solution is non-negative, then f

1

(t) ≡ f

2

(t).

Remark 1.2. The above result holds true for the spatially homogeneous Boltzmann

equation. Moreover, according to the proof of the above theorem, the uniqueness

holds also true for the cutoff Boltzmann equation in the function space P

00

([0, T ] ×

R

6x,v

).

(4)

Let us now review the previous results on the cutoff spatially inhomogeneous Boltzmann equation. First of all, there is an extensive literature on the existence of classical and weak solutions, which is verified basically in two settings, that is, as a small perturbation of a profile or a global Maxwellian and as a large per- turbation of vacuum. For the small perturbation problem, the uniqueness usually follows from the construction of the solutions, cf. [12, 15, 18] and references therein.

Here, we would like to mention that the weak perturbation solution in L

β

∩ L

2

around a global Maxwellian was proved to be unique by the fixed point theorem, [19]. However, for large perturbation solutions, even though the uniqueness of clas- sical solution can be well justified, the uniqueness for weak solutions, such as the renormalized solutions introduced by [11], remains unsolved as a challenging open problem in this area. A preliminary result is found in [14, 16] that if the Cauchy problem (1.1) has one renormalized solution and one classical solution, then they should coincide.

On the other hand, for the Boltzmann equation without angular cutoff, the uniqueness problem was studied in our joint works [3, 4, 7] for solutions with ex- ponential decay in the velocity variable. Therefore, the uniqueness result proved in this paper for solutions with polynomial decay in the velocity variable can be viewed as one step forward in the study on the uniqueness for the weak solutions.

Finally, we would like to mention that there are also some interesting results on the uniqueness for the spatially homogeneous Boltzmann equation, for example, for the Maxweillian case in [17] for entropy solution; and for the mild singularity, that is, 0 < s <

12

, in [10] in the function space W

1,1

.

Throughout this paper, we will use the following notation: f . g means that there exists a generic positive constant C such that f ≤ C g.

The rest of the paper will be arranged as follows. In the next section, we will give the strategy in the proof. Some basic properties of the weight function in (x, v) will be given in Section 3. The two main estimates, one on the commutator of the weight function between the collision operator and another one on the upper bound of the collision operator with weight, will be given in the last section. These two main estimates lead to the completion of the proof of our uniqueness Theorem 1.1.

2. Outline of the proof of Theorem 1.1

Set F = f

1

− f

2

. Then it follows from (1.1), in the weak sense of (1.3), that (2.1)

F

t

+ v · ∇

x

F = Q(f

1

, F ) + Q(F, f

2

) , F |

t=0

= 0,

which is equivalent to, for any t, t

∈ [0, T ], Z

R6

F (t, x, v)η(x, v)dxdv − Z

R6

F (t

, x, v)η(x, v)dxdv

− Z

t

t

dτ Z

R6

F (τ, x, v)(v · ∇

x

)η(x, v)dxdv (2.2)

= Z

t

t

dτ Z

R6

Q(f

1

, F) + Q(F, f

2

)

(τ, x, v)η(x, v)dxdv,

where the test function η is chosen to be independent of t.

(5)

Now we choose a mollification of the function F and take it as a test function.

Let S(τ) ∈ C

0

( R ) satisfy 0 ≤ S ≤ 1 and

S(τ) = 1, | τ | ≤ 1 ; S(τ ) = 0, | τ | ≥ 2.

Then, for any N ∈ N and any m ∈ R , we have

S

N

(D

x

) = S(2

−2N

| D

x

|

2

) : H

m

( R

3

) → H

( R

3

), and for any f ∈ H

m

,

N→∞

lim k S

N

(D

x

)f − f k

Hm

= 0.

For ℓ ∈ R , we set also ϕ(v, x) = 1 + | v |

2

+ | x |

2

and W

(v) = h v i

, W

ϕ,ℓ

= W

(v)

ϕ(v, x) = (1 + | v |

2

)

ℓ/2

1 + | v |

2

+ | x |

2

.

Then for F = f

1

− f

2

, with f

1

and f

2

given as in the statement of Theorem 1.1, we have

η(t, x, v) = W

ϕ,ℓ

S

N

(D

x

)

2

W

ϕ,ℓ

F ∈ L

([0, T ]; H

( R

3x

; H

2s0−2ℓ

( R

3v

))) . Similarly to Lemma 4.3 of [9], by taking η(¯ t, x, v), for a fixed ¯ t, as a test function in (2.2), we can prove that

S

N

(D

x

)W

ϕ,ℓ

F ∈ Lip([0, T ]; H

( R

3x

; L

20−2ℓ

( R

3v

))) . Hence, for any 0 < t < T , we have

k S

N

(D

x

)W

ϕ,ℓ

F (t) k

2L2(R6)

= 2 Z

t

0

n v · ∇

x

−1

)W

F (τ), S

N2

(D

x

)W

ϕ,ℓ

F (τ)

L2(R6)

+

W

ϕ,ℓ

Q(f

1

(τ), F (τ)) + W

ϕ,ℓ

Q(F (τ), f

2

(τ)) , S

N2

(D

x

)W

ϕ,ℓ

F (τ)

L2(R6)

o dτ, because

v · ∇

x

S

N

(D

x

)W

ϕ,ℓ

F (τ )

, S

N

(D

x

)W

ϕ,ℓ

F(τ)

L2(R6)

= 0 . Taking the limit N → ∞ , we get that, for any 0 < t < T ,

k W

ϕ,ℓ

F (t) k

2L2(R6)

= 2 Z

t

0

n (v · ∇

x

−1

)W

F(τ), W

ϕ,ℓ

F (τ))

L2(R6)

(2.3)

+ W

ϕ,ℓ

Q(f

1

(τ), F (τ)) + W

ϕ,ℓ

Q(F(τ), f

2

(τ)) , W

ϕ,ℓ

F (τ)

L2(R6)

o dτ.

The first term on the right hand side is estimated by k W

ϕ,ℓ

F k

2L2(R6)

because

| v · ∇

x

−1

) | . ϕ

−1

. If we admit the following two estimates

W

ϕ,ℓ

Q(f

1

, F ) , W

ϕ,ℓ

F

L2(R6)

. k f

1

k

L(R3

x,H2ℓ+3/2+ε2s (R3

v))

k W

ϕ,ℓ

F k

2L2(R6)

, (2.4)

and

W

ϕ,ℓ

Q(F, f

2

) , W

ϕ,ℓ

F

L2(R6)

. k f

2

k

L(R3x,H2sℓ+2s(R3v))

k W

ϕ,ℓ

F (t) k

2L2(R6)

, (2.5)

we can obtain

(2.6) k W

ϕ,ℓ

F (t) k

2L2(R6)

≤ B Z

t

0

k W

ϕ,ℓ

F(τ) k

2L2(R6)

dτ ,

(6)

with

B = C

k f

1

k

L([0,T]×R3

x,H2ℓ+3/2+ε2s (R3

v))

+ k f

2

k

L([0,T]×R3

x,Hℓ+2s2s (R3 v))

, which concludes the proof of Theorem 1.1.

It remains to prove the two estimates (2.4) and (2.5). Set D (f, h) =

Z Z Z

B(v − v

, σ)f

(h − h

)

2

dvdv

dσ .

From here and now on, we will use the notations f = f (v), f

= f (v

), f

= f (v

) and f

= f (v

). The estimate (2.4) is a consequence of the following two propositions.

Proposition 2.1. Let 0 < s < 1 and 0 ≥ γ > max {− 3, − 2s − 3/2 } . Then we have Q(f, h), h

L2(R6)

≤ − 1 2 Z

D (f, h)dx + C k f k

L(R3

x,H3/2+ε2s (R3

v))

k h k

2L2(R6)

, where s

≥ 0 satisfies γ + 2s

> − 3/2 and s

< min { s,

34

} .

Proof. Regarding x as a parameter we have Q(f, h), h

L2(R3 v)

= 1

2

− D (f, h) + Z Z Z

Bf

(h

′2

− h

2

)dvdv

= 1 2

− D (f, h) + R(f, h) . It follows from the cancellation lemma [2] that

| R(f, h) | . Z Z Z

| v − v

|

γ

| f

|| h |

2

dvdv

. Z Z Z

{|v−v|>1}

| f

|| h |

2

dvdv

+ Z Z

{|v−v|≤1}

| v − v

|

γ

| f

|| h |

2

dvdv

. k f k

L1(R3

v)

k h k

2L2(R3 v)

+ Z Z

{|v−v|≤1}

| v − v

|

2(γ+2s)

dv

1/2

Z

| f

|

2

| v − v

|

4s

dv

1/2

| h |

2

dv . k f k

L23/2+ε(R3

v)

k h k

2L2(R3

v)

+ k f k

H2s(R3

v)

k h k

2L2(R3 v)

,

where we have used Hardy inequality.

Remark that if 0 ≥ γ > − 3/2, then we can get (2.7)

Q(f, h), h

L2(R6)

≤ − 1 2

Z

D (f, h)dx + C k f k

L(R3

x,L23/2+ε(R3

v))

k h k

2L2(R6)

. The next result takes care of commutator’s estimates.

Proposition 2.2. Let ℓ ≥ 6. If max {− 3, − 2s − 3/2 } < γ ≤ 0 and 0 < s < 1, then

W

ϕ,ℓ

Q(f, g) − Q(f, W

ϕ,ℓ

g) , h

L2(R6)

(2.8)

. k f k

L(R3x;H3/2+ε(2s1)+(R3v))

k h k

L2(R6)

k W

ϕ,ℓ

g k

L2(R6)

+ Z

D ( | f | , h)dx

1/2

k f k

1/2L(R3

x;L22ℓ+3/2+ε(R3

v))

k W

ϕ,ℓ

g k

L2(R6)

.

(7)

Remark 2.3. If 0 < s < 1/2, we have

W

ϕ,ℓ

Q(f, g) − Q(f, W

ϕ,ℓ

g) , h

L2(R6)

.

k f k

L(R3

x;L23+3/2+ε(R3

v))

k W

ϕ,ℓ

g k

L2(R6)

+ k f k

L(R3 x;L2(R3

v))

k W

ϕ,3/2+ε

g k

L2(R6)

k h k

L2(R6)

.

When f

1

is non-negative, the combination of (2.7) and (2.8) gives (2.4) by using the Cauchy-Schwarz inequality.

Together with the last result, the estimate (2.5) will be a consequence of the following proposition.

Proposition 2.4. If max {− 3, − 2s − 3/2 } < γ ≤ 0 and 0 < s < 1, then for ℓ ≥ 6, we have

W

ϕ,ℓ

Q(f, g) , h

L2(R3

v)

. k g k

Hℓ+2s2s (R3

v))

k W

ϕ,ℓ

f k

L2(R3

v)

k h k

L2(R3 v)

. Thus we obtain (2.6) with ℓ = 6 if

f

1

, f

2

∈ L

([0, T ] × R

3x

; H

142s

( R

3v

)).

The rest of this paper is devoted to the proof of the above two Propositions 2.2 and 2.4.

3. Preliminary lemmas

For the estimation on the commutator between the collision operator and the weight function W

ϕ,ℓ

, we prepare some technical lemmas.

Lemma 3.1. For ℓ ≥ 4, we have (3.1) | W

ϕ,ℓ

(v) − W

ϕ,ℓ

(v

) | . sin

θ 2

W

(v) + W

(v

)

ϕ(v, x) . θ W

ϕ,ℓ

(v)W

(v

), and

| W

ϕ,ℓ

(v) − W

ϕ,ℓ

(v

) | ≤ C sin(θ/2)

W

(v) + W

ℓ−3

(v)W

3

(v

)

ϕ(v

, x) + sin

ℓ−3

(θ/2)W

ϕ,ℓ

(v

)

. θ W

(v)W

ϕ,3

(v

) + θ

ℓ−2

W

ϕ,ℓ

(v

) . (3.2)

Remark 3.2. Remark that we can improve (3.2) to

(3.3) | W

ϕ,ℓ

(v) − W

ϕ,ℓ

(v

) | . θ W

(v)W

3

(v

) + θ

ℓ−2

W

(v

) 1 + | v |

2

+ | v

|

2

+ | x |

2

. Proof. For k ≥ 0, a ≥ 0, set

F

k

(λ) = λ

k

λ + a , λ ∈ [1, ∞ [.

Then, for j = 1, 2, we have

djj

F

k

(λ) ≥ 0 if k ≥ j. Thus if k ≥ 2, it follows from the mean value theorem that for λ, λ

≥ 1

| F

k

(λ) − F

k

) | ≤ d

dλ F

k

(λ + | λ − λ

| ) | λ − λ

| ,

(8)

because

d

F

k

(λ) is positive and increasing on [1, ∞ [ for k ≥ 2. Setting λ = h v i

2

, λ

= h v

i

2

, then

|h v i

2

− h v

i

2

| ≤ 2 | v − v

|| v | + | v − v

|

2

≤ | v |

2

+ 2 | v − v

|

2

. So that we have

| F

k

( h v i

2

) − F

k

( h v

i

2

) | ≤ d

dλ F

k

2( h v i

2

+ | v − v

|

2

)

2 | v | + | v − v

|

| v − v

|

≤ 2kF

k−1/2

2( h v i

2

+ | v − v

|

2

)

| v − v

| , because √

λ

d

F

k

(λ) ≤ kF

k−1/2

(λ). Therefore, choosing a = | x |

2

and k =

2

≥ 2, we get

| W

ϕ,ℓ

(v) − W

ϕ,ℓ

(v

) | .

h v i

ℓ−1

| v − v

|

h v i

2

+ | v − v

|

2

+ | x |

2

+ | v − v

|

h v i

2

+ | v − v

|

2

+ | x |

2

. | v − v

|h v i

ℓ−3

F

1

( h v i

2

) + | v − v

|

h v i

2

+ | v − v

|

2

+ | x |

2

(3.4)

= B

1

+ B

2

.

Note that h v i

2

≤ 2 h v

i

2

+ 2 | v − v

|

2

. Then the increasing property of F

1

implies B

1

. | v − v

|h v i

l−3

h v

i

2

+ | v − v

|

2

h v

i

2

+ | v − v

|

2

+ | x |

2

. sin

θ 2

W

(v) + W

ℓ−3

(v)W

3

(v

)

| v |

2

+ ϕ(v

, x) , where we have used | v − v

|

2

12

| v |

2

− | v

|

2

and

| v − v

|

2

= sin

2

θ

2

| v − v

|

2

. This implies also

B

2

. | v − v

|

sin

θ2

1 + 1 − sin

2 θ2

| v |

2

+

12

sin

2 θ2

| v

|

2

+ | x |

2

. sin

ℓ−2

θ 2

W

+ W

ℓ,∗

| v |

2

+ ϕ(v

, x) .

Hence, we get the desired estimate (3.1), (3.2) and (3.3) . When the change of variables is singular (see below), we need also a high order moment estimate.

Lemma 3.3. For l ≥ 6, we have

W

ϕ,ℓ

(v) − W

ϕ,ℓ

(v

) −

v

W

ϕ,ℓ

(v

) · (v − v

)

=

Z

1

0

(1 − τ) ∇

2

W

ϕ,ℓ

v

+ τ(v − v

)

dτ(v − v

)

2

. sin

2

θ

2

W

(v) + W

ℓ−4

(v)W

4

(v

)

ϕ(v

, x) + sin

ℓ−2

θ

2

W

ϕ,ℓ

(v

) (3.5)

. θ

2

W

(v)W

ϕ,4

(v

) + θ

ℓ−2

W

ϕ,ℓ

(v

),

(9)

and

n ∇

v

W

ϕ,ℓ

(v) −

v

W

ϕ,ℓ

(v

) o

· (v − v

)

. sin

2

θ

2

W

(v) + W

ℓ−4

(v)W

4

(v

)

ϕ(v

, x) + sin

l−2

θ

2

W

ϕ,ℓ

(v

) (3.6)

. θ

2

W

(v)W

ϕ,4

(v

) + θ

ℓ−2

W

ϕ,ℓ

(v

).

We also have

W

ϕ,ℓ

(v

) − W

ϕ,ℓ

(v) −

v

W

ϕ,ℓ

(v) · (v

− v)

. sin

2

θ

2

ϕ(v, x)

−1

n

(W

(v) + W

(v

))1

{|v−v|≥1}

(3.7)

+ (W

ℓ−2

(v) + W

ℓ−2

(v

)) | v − v

|

2

1

{|v−v|<1}

o . θ

2

W

(v

)W

ϕ,ℓ

(v) 1

{|v−v|≥1}

+ | v − v

|

2

1

{|v−v|<1}

. Proof. As for (3.5), we use the Taylor expansion of second order

W

ϕ,ℓ

(v) − W

ϕ,ℓ

(v

) − ( ∇ W

ϕ,ℓ

)(v

) · (v − v

)

= Z

1

0

(1 − τ)( ∇

2

W

ϕ,ℓ

)(v

+ τ(v − v

))dτ (v − v

)

2

= I

2

(v, v

) . We have with v

τ

= v

+ τ(v − v

)

| I

2

(v, v

) | . | v − v

|

2

Z

1

0

F

ℓ/2

( h v

τ

i

2

) + h v

τ

i

2

F

ℓ/2′′

( h v

τ

i

2

) dτ

. | v − v

|

2

F

ℓ/2−1

(2( h v i

2

+ | v

− v |

2

)) . h v i

ℓ−2

| v

− v |

2

+ | v

− v |

h v i

2

+ | v

− v |

2

+ | x |

2

, (3.8)

because F

k

(λ), F

k′′

(λ) are positive in [1, ∞ ), and F

k

≤ CF

k−1

, F

k′′

≤ CF

k−2

and F

k−1

is increasing there, if k = ℓ/2 ≥ 3. Here we have used the fact that h v

τ

i

2

≤ 2 h v i + 2 | v

− v |

2

. Noticing again that h v i

2

≤ 2 h v

i

2

+ 2 | v − v

|

2

and F

1

is increasing, we have

| I

2

(v, v

) | . | v − v

|

2

sin

2

(θ/2) h v i

ℓ−4

F

1

( h v i

2

) + B

2

. sin

2

(θ/2) W

(v) + W

ℓ−4

(v)W

4

(v

)

ϕ(v

, x) + sin

ℓ−2

(θ/2)W

ϕ,ℓ

(v

) , which yields (3.5). The proof of (3.6) is similar. The last inequality (3.7) follows

easily from (3.8).

4. Proofs of Propositions 2.2 and 2.4 In this section, we regard (t, x) as a parameter.

Proof of Proposition 2.2 :

(10)

First of all, we have

W

ϕ,ℓ

Q(f, g) − Q(f, W

ϕ,ℓ

g) , h

L2(R3 v)

= Z

B W

ϕ,ℓ

− W

ϕ,ℓ

f

gh

dvdv

= Z

B W

ϕ,ℓ

− W

ϕ,ℓ

f

g(h

− h)dvdv

+ Z

B

v

W

ϕ,ℓ

(v) · (v

− v)f

ghdvdv

dσ +

Z B

W

ϕ,ℓ

− W

ϕ,ℓ

− ∇

v

W

ϕ,ℓ

(v) · (v

− v)

f

g h dvdv

= D

1

+ D

2

+ D

3

.

By the Cauchy-Schwarz inequality, we get in view of (3.1),

| D

1

| .

D ( | f | , h)

1/2

Z Z Z

B | W

ϕ,l

− W

ϕ,ℓ

|

2

| f

| g

2

dvdv

1/2

.

D ( | f | , h)

1/2

k f k

1/2L1

2ℓ

k W

ϕ,ℓ

g k

L2(R3 v)

.

D ( | f | , h)

1/2

k f k

1/2L2

2ℓ+3/2+ε

k W

ϕ,ℓ

g k

L2(R3 v)

. Using (3.7) gives

| D

3

| . Z Z Z

B θ

2

W

ℓ,∗

W

ϕ,ℓ

1

|v−v|≥1

+ | v − v

|

2

1

|v−v|<1

| f

gh | dvdv

dσ .

Z Z

| (W

f )

| (W

ϕ,ℓ

g)h | dvdv

+ Z Z

1

|v−v|<1

| v − v

|

γ+2

| (W

f )

(W

ϕ,ℓ

g)h | dvdv

. k f k

L1l(R3

v)

k W

ϕ,ℓ

g k

L2(R3

v)

k h k

L2(R3 v)

+ Z Z

|v−v|<1

| v − v

|

2(γ+2)

dv

1/2

k W

f k

L2l(R3 v)

(W

ϕ,ℓ

g)h | dv . k f k

L2ℓ+3/2+ε(R3

v)

k W

ϕ,ℓ

g k

L2(R3

v)

k h k

L2(R3 v)

.

We now consider the estimate of the term D

2

by first noticing that v

− v = 1

2 (v

− v)(1 − k · σ) + 1

2 | v

− v | σ − ( k · σ)σ , where k = (v − v

)/ | v − v

| . It follows from the symmetry on σ that

Z

S2

b(k · σ) σ − (k · σ)σ dσ = 0.

Hence, (1 − k · σ) = 2 sin

2

(θ/2) implies

| D

2

| = 1 2 Z

B

v

W

ϕ,ℓ

(v) · (v

− v)(1 − k · σ)f

g h dvdv

. Z

b θ

2

v

W

ϕ,ℓ

(v) | v

− v |

γ+1

| f

g h | dvdv

dσ . Since

v

W

ϕ,ℓ

| v

− v |

γ+1

. W

ϕ,ℓ

W

1,∗

1

{|v−v|≥1}

+ W

ϕ,ℓ−1

| v

− v |

γ+1

1

{|v−v|<1}

,

(11)

we get

| D

2

| . Z Z

| (W

f )

| (W

ϕ,ℓ

g)h | dvdv

+ Z Z

1

{|v−v|<1}

| v − v

|

γ+1

| (W

f )

(W

ϕ,ℓ

g)h | dvdv

. k f k

L1l(R3

v)

k W

ϕ,ℓ

g k

L2(R3

v)

k h k

L2(R3 v)

+ Z Z

|v−v|<1

| v − v

|

2(γ+2s)

dv

1/2

Z (W

f )

2

| v − v

|

2(2s−1)

dv

1/2

| (W

ϕ,ℓ

g)h | dv . k f k

L2ℓ+3/2+ε(R3

v)

k W

ϕ,ℓ

g k

L2(R3

v)

k h k

L2(R3 v)

+ k f k

H(2s1)+

(R3

v)

k W

ϕ,ℓ

g k

L2(R3v)

k h k

L2(R3v)

.

By summing up the above estimates and integrating with respect to x, we finish the proof of Proposition 2.2.

We now turn to

Proof of Proposition 2.4 :

Here we need to use the mollification of the function. In the estimate stated in Proposition 2.4, we put the weight on the first function in the collision operator.

To estimate this, we need a singular change of the variables between the pre and post collision velocities as follows:

v

7→ v

= v + v

2 + | v − v

| 2 σ , where the Jacobian is

∂v

∂v

= 8

I − k ⊗ σ

= 8

| 1 − k · σ | = 4

sin

2

(θ/2) , θ ∈ [0, π/2],

where again k = (v − v

)/ | v − v

| . Note that this change of variables is singular when θ = 0. After this change of variables, k = (v − v

)/ | v − v

| is a function of v, v

, σ, so that θ no longer plays the role as the polar angle. In fact, “pole k”

moves with σ and hence the measure dσ is no longer given by sin θdθdφ. Hence, we need to choose a new pole which is independent of σ. Choose k

′′

= (v

− v)/ | v

− v | , then the polar angle ψ defined by cos ψ = k

′′

· σ satisfies,

ψ = π 2 − θ

2 , dσ = sin ψdψdφ, ψ ∈ [ π 4 , π

2 ].

Note that now the angular singularity in b(cos θ)dσ becomes θ

−2−2−2s

, which is stronger than (1.2) where it is of order θ

−1−2s

.

On the other hand, there is another singularity in the kinetic factor of the cross section for soft potential. To study this, we decompose the kinetic factor of collision operator Φ

γ

(v − v

) = | v − v

|

γ

in two part by using a cutoff function. Let 0 ≤ φ(z) ≤ 1 be a smooth radial function with value 1 for z close to 0, and 0 for large values of z. Set

Φ

γ

(z) = Φ

γ

(z)φ(z) + Φ

γ

(z)(1 − φ(z)) = Φ

sing

(z) + Φ

reg

(z).

Then we write

Q(f, g) = Q

sing

(f, g) + Q

reg

(f, g),

where the kinetic factor in the collision operator is defined according to the decom-

position respectively. We consider firstly the regular part.

(12)

Since Φ

reg

(z) is smooth, and Φ

reg

(z) ≤ Φ ˜

γ

(z) = (1 + | z |

2

)

γ/2

, Q

reg

(f, g) has similar upper bound and commutator estimates as for Q

Φ˜γ

(f, g).

Let us recall several propositions obtained in [3]. For 0 < s < 1, γ ∈ R , we proved the following upper bound estimate (Theorem 2.1 of [3])

(4.1) | (Q

Φ˜γ

(f, g), h) | . || f ||

L1

α++(γ+2s)+

|| g ||

Hm+s(α+γ+2s)+

k h k

Hs−αm

,

for any m, α ∈ R , and the estimate of commutators with weight (Lemma 2.4 of [3]) (4.2)

W

Q

Φ˜γ

(f, g) − Q

Φ˜γ

(f, W

g), h

. k f k

L1

ℓ+(2s1)++γ+

k g k

H(2s1+ǫ)+

ℓ+(2s1)+ +γ+

k h k

L2

. It also follows from Lemma 2.8 of [4] that

(4.3)

Z Z Z

b | f

| (g

− g)

2

dσdvdv

. k f k

L12s

k g k

2Hss

. We now study the estimate of Proposition 2.4 for the regular part.

Proposition 4.1. Let ℓ ≥ 6. If max {− 3, − 2s − 3/2 } < γ ≤ 0 and 0 < s < 1, then W

ϕ,ℓ

Q

reg

(f, g), h

L2(R3

v)

. k g k

Hℓ+2s2s (R3

v))

k W

ϕ,ℓ

f k

L2(R3

v)

k h k

L2(R3

v)

. Proof. Write

W

ϕ,ℓ

Q

reg

(f, g) , h

L2(R3)

=

Q

reg

(f, W

ϕ,ℓ

g) , h

L2(R3)

+

W

ϕ,ℓ

Q

reg

(f, g) − Q

reg

(f, W

ϕ,ℓ

g) , h

L2(R3)

= A + B . By using the upper bound estimate (4.1) with m = s, α = 0, we have

| A | . k f k

L1

(γ+2s)+(R3

v)

k W

ϕ,ℓ

g k

H2s

(γ+2s)+(R3

v)

k h k

L2(R3 v)

. k ϕ h x i

2

f

ϕ k

L22s+3/2+ε(R3 v)

k h x i

2

ϕ W

g k

H2s

(γ+2s)+(R3

v)

k h k

L2(R3v)

. k W

ϕ,2s+7/2+ε

f k

L2(R3

v)

k g k

Hℓ+2s2s (R3

v)

k h k

L2(R3)

. Here we have used

hxiϕ2

. h v i

2

.

For the term B, we have B =

W

ϕ,ℓ

Q

reg

(f, g) − Q

reg

(f, W

ϕ,ℓ

g), h

L2(R3v)

= Z Z Z

b Φ

reg

W

ϕ,ℓ

− W

ϕ,ℓ

f

g h

dvdv

= Z Z Z

b Φ

reg

v

W

ϕ,ℓ

(v

) · (v

− v)

f

g h

dvdv

dσ +

Z Z Z b Φ

reg

W

ϕ,ℓ

− W

ϕ,ℓ

− ∇

v

W

ϕ,ℓ

(v

) · (v

− v)

f

g h

dvdv

= B

1

+ B

2

.

(13)

By using (3.5), we have

| B

2

| . Z Z Z

b θ

2

| W

ϕ,4

f

|| W

g

|| h

| dvdv

dσ +

Z Z Z

b θ

ℓ−2

W

ϕ,ℓ

f

| gh

| dvdv

dσ (4.4)

=M

1

+ M

2

,

where we have used the fact that γ ≤ 0. By the Cauchy-Schwarz inequality, we get M

12

. Z Z Z

b θ

2

W

ϕ,4

f

W

g

2

dvdv

× Z Z Z b θ

2

W

ϕ,4

f

(h

)

2

dvdv

dσ . k W

ϕ,4

f k

2L1(R3v)

k g k

2L2(R3

v)

k h k

2L2(R3v)

. Here we have used the regular change of variables

v → v

= v + v

2 + | v − v

| 2 σ , whose Jacobian is given by

∂v

∂v

= 8

I + k ⊗ σ

= 8

| 1 + k · σ | = 4/ cos

2

(θ/2) ≤ 8 . On the other hand, by the Cauchy-Schwarz inequality again, we have

M

22

. Z Z Z

b θ

ℓ−7/2

| g | W

ϕ,ℓ

f

2

dv

dvdσ

× Z Z Z

b θ

ℓ−1/2

| g || h

|

2

dv

dvdσ , if we choose ℓ so that

ℓ − 7/2 − (1 + 2s) = ℓ − 1/2 − (2 + 2s+2) > − 1 . Then a direct calculation reduces the first integral to

Z Z Z

b θ

ℓ−2−3/2

| g | W

ϕ,ℓ

f

2

dv

dvdσ . k g k

L1(R3

v)

k W

ϕ,ℓ

f k

2L2(R3 v)

.

For the second integral, we now use the singular change of variables v

→ v

whose Jacobian is

∂v

∂v

= 4 sin

2

(θ/2) . Then, we have

Z Z Z

R3 v×R3

v∗×S2

b(cos θ) θ

ℓ−1/2

| g | | h

|

2

dv

dvdσ

. Z Z

R3 v×R3

v

Z

π/2

0

θ

ℓ−1/2−(2+2s+2)

| g | | h

|

2

dv

dvdθ . k g k

L1(R3

v)

k h k

2L2(R3v)

. Thus,

M

2

. k g k

L1(R3

v)

k W

ϕ,ℓ

f k

L2(R3

v)

k h k

L2(R3 v)

.

(14)

For the term B

1

, we decompose it further into B

1

=

Z Z Z

Φ

reg

b n

v

W

ϕ,ℓ

(v

) −

v

W

ϕ,ℓ

(v) o

· (v − v

)f

gh

dvdv

dσ +

Z Z Z

Φ

reg

b n

v

W

ϕ,ℓ

(v)g(v) −

v

W

ϕ,ℓ

(v

)g(v

) o

· (v − v

)f

h

dvdv

dσ +

Z Z Z

Φ

reg

b f

gh ∇

v

W

ϕ,ℓ

(v

) · (v − v

)dvdv

= B

1(1)

+ B

(2)1

+ B

1(3)

.

It follows from the symmetry of σ variable that B

1(3)

vanishes, see the Figure 1 below.

Figure 1. Symmetry of σ

1

and σ

2

, v

→ v = ψ

σ

(v

)

Since | v − v

| = | v − v

| sin(θ/2) and | Φ

reg

| . 1 for γ ≤ 0, by the Cauchy-Schwarz inequality, we have

| B

1(2)

|

2

. Z Z Z

b | f

|| v − v

|

2

v

W

ϕ,ℓ

(v)g(v) −

v

W

ϕ,ℓ

(v

)g(v

)

2

dvdv

× Z Z Z

b sin

2

(θ/2) | f

|| h

|

2

dvdv

dσ = B

1(2,1)

× B

(2,2)1

. Using the regular change of variables v → v

, we get

B

1(2,2)

. k f k

L1(R3

v)

k h k

2L2(R3v)

. k f k

L23/2+ε(R3v)

k h k

2L2(R3v)

. Putting G =

v

W

ϕ,ℓ

g, in view of | v − v

| . | v

− v

| ≤ h v

i + h v

i we have B

(2,1)1

.

Z Z Z

b |h v

i

2

f

|

G(v) − G(v

)

2

dvdv

dσ +

Z Z Z b | f

|

h v i G(v) − h v

i G(v

)

2

dvdv

dσ +

Z Z Z

b | f

| | h v i − h v

i )G(v) |

2

dvdv

dσ .

(15)

We apply (4.3) to the first two terms. Note that

|h v i − h v

i| . | v − v

| . h v

ih v i sin(θ/2), in the last term. Then we get

B

(2,1)1

. k f k

L12

k W

ϕ,ℓ

g k

2Hss(R2v)

. On account of (3.6), we have

| B

(1)1

| . Z Z Z

b θ

2

| W

ϕ,4

f

|| W

g

|| h

| dvdv

dσ +

Z Z Z

b θ

ℓ−2

W

ϕ,ℓ

f

| gh

| dvdv

dσ ,

which is the same as for B

2

in (4.4). We have proved Proposition 4.1.

We finally turn to the singular part Q

sing

(f, g). As shown in [7], the singular part Q

sing

requires fairly long computations. For our use, we now recall some estimates in [7]. The following upper bound estimate is a consequence of Proposition 2.1 from [7]: for 0 < s < 1, γ > max {− 3, − 2s − 3/2 } and m ∈ [s − 1, s],

(4.5) | (Q

sing

(f, g), h)

L2(R3

v)

| . k f k

L2(R3)

|| g ||

Hs+m(R3)

k h k

Hsm(R3)

.

And the following commutator estimate is implied by Proposition 2.5 of [7]:

letting 0 < s < 1, γ > max {− 3, − 2s − 3/2 } , for any ℓ, β, δ ∈ R , (4.6)

W

Q

sing

(f, g) − Q

sing

(f, W

g), h

. k f k

L2ℓ−1−β−δ

k g k

H(2s−1+ǫ)+

β

|| h ||

L2δ

. For the estimate of singular part with weight introduced in this paper, we now want to prove

Proposition 4.2. Let ℓ ≥ 2. If max {− 3, − 2s − 3/2 } < γ ≤ 0 and 0 < s < 1, then

W

ϕ,ℓ

Q

sing

(f, g) , h

L2(R3)

. k g k

H2s (R3)

k W

ϕ,ℓ

f k

L2(R3)

k h k

L2(R3)

. (4.7)

Proof. Write

W

ϕ,ℓ

Q

sing

(f, g) , h

L2(R3)

= Q

sing

f

h x i

2

, W

g , h x i

2

ϕ(v, x) h

L2(R3 v)

+

W

Q

sing

f h x i

2

, g

− Q

sing

f

h x i

2

, W

g , h x i

2

ϕ(v, x) h

L2(R3 v)

= A

1

+ A

2

.

It follows from (4.5) that with m = s,

| A

1

| . k ϕ(v, x) h x i

2

f

ϕ(v, x) k

L2(R3v)

k W

g k

H2s(R3v)

k h x i

2

ϕ(v, x) h k

L2(R3v)

. k g k

H2s(R3)

k W

ϕ,2

f k

L2(R3)

k h k

L2(R3)

, because h x i

2

≤ ϕ(v, x) ≤ h x i

2

h v i

2

.

Using (4.6) with β = ℓ − 1, δ = 0, we have

| A

2

| . k ϕ(v, x) h x i

2

f

ϕ(v, x) k

L2(R3

v)

k g k

H(2s−1+ε)+

ℓ−1 (R3

v)

k h x i

2

ϕ(v, x) h k

L2(R3 v)

. k g k

H2s(R3)

k W

ϕ,2

f k

L2(R3)

k h k

L2(R3)

.

(16)

The above two estimates complete the proof of Proposition 2.4.

Acknowledgements : The research of the first author was supported in part by the Zhiyuan foundation and Shanghai Jiao Tong University. The research of the second author was supported by Grant-in-Aid for Scientific Research No.22540187, Japan Society of the Promotion of Science. The research of the fourth author was supported partially by “ the Fundamental Research Funds for the Central Univer- sities”. The last author’s research was supported by the General Research Fund of Hong Kong, CityU No.103109, and the Lou Jia Shan Scholarship programme of Wuhan University.

References

[1] R. Alexandre, A review on Boltzmann equation with singular kernels.Kinet. Relat. Models, 2-4(2009) 541-646.

[2] R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long- range interactions.Arch. Rational Mech. Anal.152(2000), 327-355.

[3] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation,Arch. Rational Mech. Anal.,198(2010), 39-123.

[4] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys.,304-2(2011), 513- 581. DOI: 10.1007/s00220-011-1242-9.

[5] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential,to appear in J. Funct.

Anal., Preprint: http://hal.archives-ouvertes.fr/hal-00496950/fr/

[6] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T. Yang, Boltzmann equation without angular cutoff in the whole space: II, global existence for hard potential,Analysis and Ap- plications,9(2011), 113-134. DOI: 10.1142/S0219530511001777.

[7] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang, Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, on lineArch. Rational Mech. Anal., DOI: 10.1007/s00205-011-0432-0 Preprint: http://hal.archives-ouvertes.fr/hal- 00510633/fr/.

[8] R. Alexandre, Y. Morimoto, S. Ukai, C.-J.Xu and T. Yang, Bounded solutions of the Boltzmann equation in the whole space, Kinetic and Related Models. 4 (2011) 17-40, DOI:10.3934/krm.2011.4.17.

[9] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu and T.Yang, Smoothing effect of weak solu- tions for the spatially homogeneous Boltzmann Equation without angular cutoff, Preprint:

http://hal.archives-ouvertes.fr/hal-00589563/fr/.

[10] L. Desvillettes, C. Mouhot, Stability and uniqueness for the spatially homogeneous Boltzmann equation with long-range interactions,Arch. Ration. Mech. Anal.193(2009), no. 2, 227-253.

[11] R. J. DiPerna, P. L. Lions, On the Cauchy problem for Boltzmann equations: global existence and weak stability.Ann. Math.130(1989), 321-366.

[12] Y. Guo, The Boltzmann equation in the whole space.Indiana Univ. Maths. J.,53-4(2004) 1081–1094.

[13] H. Grad, Asymptotic Theory of the Boltzmann Equation II. In: Laurmann J. A. (ed.) Rarefied Gas Dynamics,Vol. 1, 26-59. Academic Press, New York (1963).

[14] P. L. Lions, Compactness in Boltzmann’s equation via Fourier integral operators and appli- cations, I, II, III,J. Math. Kyoto Univ.,34-2(1994), 391-427, 429-461, 539-584.

[15] T.-P. Liu, T. Yang and S.-H. Yu, Energy method for Boltzmann equation. Phys. D,188 (2004), 178-192.

[16] X. Lu, A result on uniqueness of mild solutions of Boltzmann equation.Transport Theory Statist. Phys.,26, 1-2(1997), 209-220.

[17] G. Toscani and C. Villani, Probability metrics and uniqueness of the solution to the Boltz- mann equations for Maxwell gas,J. Statist. Phys.,94(1999), 619-637.

[18] S. Ukai, Solutions of the Boltzmann equation. In: Mimura M., Nishida T. (ed.) Pattern and Waves – Qualitave Analysis of Nonlinear Differential Equations, Studies of Mathematics and Its Applications18, pp37-96. Kinokuniya-North-Holland, Tokyo (1986)

(17)

[19] S. Ukai and T. Yang, The Boltzmann equation in the spaceL2∩Lβ : Global and time-periode solutions,Analysis and Applications,4(2006), 263-310.

[20] C. Villani, A review of mathematical topics in collisional kinetic theory. In: Friedlander S., Serre D. (ed.), Handbook of Fluid Mathematical Fluid Dynamics, Elsevier Science (2002).

R. Alexandre,

Department of Mathematics, Shanghai Jiao Tong University Shanghai, 200240, P. R. China, and

IRENAV Research Institute, French Naval Academy Brest-Lanv´eoc 29290, France E-mail address: radjesvarane.alexandre@ecole-navale.fr

Y. Morimoto, Graduate School of Human and Environmental Studies, Kyoto University

Kyoto, 606-8501, Japan

E-mail address: morimoto@math.h.kyoto-u.ac.jp

S. Ukai, 17-26 Iwasaki-cho, Hodogaya-ku, Yokohama 240-0015, Japan E-mail address: ukai@kurims.kyoto-u.ac.jp

C.-J. Xu, School of Mathematics, Wuhan University 430072, Wuhan, P. R. China and

Universit´e de Rouen, UMR 6085-CNRS, Math´ematiques

Avenue de l’Universit´e, BP.12, 76801 Saint Etienne du Rouvray, France E-mail address: Chao-Jiang.Xu@univ-rouen.fr

T. Yang, Department of mathematics, City University of Hong Kong, Hong Kong, P. R. China

and

School of Mathematics, Wuhan University 430072, Wuhan, P. R. China E-mail address: matyang@cityu.edu.hk

Références

Documents relatifs

If we compare the present work to our similar result for the Kac equation, another difficulty is the fact that we treat the case of soft and Coulomb potentials (γ ∈ [−3, 0)) instead

SOBOLEV REGULARIZING EFFECT FOR KAC’S EQUATION In this section, we prove the regularity in weighted Sobolev spaces of the weak solutions for the Cauchy problem of the Kac’s

The notion of entropy solutions provides a well-posedness theory for the Cauchy problem for the fractional conservation law (1.1); the results are very similar to the ones for

The rest of the paper is arranged as follows: In Section 2, we introduce the spectral ana- lysis of the linear and nonlinear Boltzmann operators, and transform the nonlinear

Based on this estimation, together with Part II [9], we will prove the global existence of classical non-negative solutions to the Boltzmann equation without angular cutoff, for

The main purpose of this paper is to show the smoothing effect of the spatially homogeneous Boltzmann equation, that is, any weak solution to the Cauchy prob- lem (1.1)

Furthermore, we apply the similar analytic technique for the Sobolev space regularity to the nonlinear equation, and prove the smoothing property of solutions for the

For the non cutoff radially symmetric homogeneous Boltzmann equation with Maxwellian molecules, we give the nu- merical solutions using symbolic manipulations and spectral