• Aucun résultat trouvé

Bayesian inference

N/A
N/A
Protected

Academic year: 2021

Partager "Bayesian inference"

Copied!
70
0
0

Texte intégral

(1)
(2)

Bayesian inference

Primer

(3)
(4)
(5)
(6)
(7)
(8)
(9)

Likelihood Posterior

Prior

(10)

⇡(x) ⇡(y |x)

⇡(x |y)

(11)

⇡(x) ⇡(y |x)

⇡(x |y)

Bayes’ theorem

posterior = prior ⇥ likelihood evidence

prior

posterior likelihood

(12)

Bayes’ theorem

Parameter identification: Bayesian approach

(13)

Bayes’ theorem

Descriptive formula

Parameter identification: Bayesian approach

(14)

A discrete example of Bayes’ theorem

(15)
(16)

This is our prior information for the probability of each face: 1/6

(17)

P=1/6

(18)

Assume that after throwing the dice, you see the above evidence

(19)

Goal: determine the probability of this evidence for each face of the dice

(20)

a

(21)

b

(22)

c

(23)

d

(24)

a b

c

d

(25)

a b

c

d

(26)

a b

c d

One would never see a dot at the star positions for this face


The probability of the evidence is zero

(27)
(28)

a b

c d

Two possibilities (a,c) and (b,d)

a b

c

d

(29)
(30)

Also two possibilities (a,c) and (b,d)

a b

c d

a b

c

d

(31)

a b

c

d

(32)

a b

c

d

(33)

a

b c

d

(34)

a

b c

d

(35)

a b

c d

(36)

a b

c d

a

b c

d

a b

c d

a

b c

d

(37)

a b

c d

a

b c

d

a b

c d

a

b c

d

Four possibilities

(38)

Four possibilities

a b

c

d

(39)

Four possibilities

a b

c

d

(40)

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

0

2 2

4 4 4

(41)

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

a b

c d

0

2 2

4 4 4

(42)

Probability that this was the face of the dice knowing

(43)

P=0

P=⅛

P=¼

(44)

P=0 P=⅛ P=¼

P=1/6

(45)

Stress-strain data

(46)

Identify the parameters

(47)

Model

observations=f(parameters, error)

Construct the likelihood function

(48)

Additive noise model

Noise model

(49)

Likelihood function for additive model

Likelihood function

(50)

Constitutive model

Observed data

Constitutive law: linear elasticity

(51)

Prior information on Young’s modulus

(52)

Error model (noise)

(53)

Likelihood function

Likelihood function

(54)

Bayes’ theorem: calculate the posterior

posterior = prior ⇥ likelihood

evidence

(55)

⇡(x)

Bayes’ theorem: calculate the posterior

posterior = prior ⇥ likelihood evidence

prior

(56)

⇡(x) ⇡(y |x)

Bayes’ theorem: calculate the posterior

posterior = prior ⇥ likelihood evidence

prior

⇡(y |x) = N(y x✏, 0.0001)

⇡(y |x) = ⇡(!) = ⇡(y f (x))

likelihood

(57)

⇡(x)

⇡(x |y)

Bayes’ theorem: calculate the posterior

posterior = prior ⇥ likelihood evidence

prior

posterior

⇡(y |x) = N(y x✏, 0.0001)

⇡(y |x) = ⇡(!) = ⇡(y f (x))

⇡(y |x)

likelihood

(58)

Posterior probability

⇡(x |y) = R ⇡(x)⇡(y |x)

⌦ ⇡(x)⇡(y |x)dx

⇡(x)

⇡(y |x)

(59)

The 99.73% rule: observations

(60)

Propagation of the uncertainty to the constitutive model

(61)

Perfect plasticity

(62)

Perfect plasticity

Constitutive model

x(2)

(63)

Observed data

Modified form for constitutive model

Perfect plasticity

(64)

Perfect plasticity: contour plot of prior in parameter space

parameter 1 parameter 2

“wider” prior for yield stress -> more info needed

“narrow” prior for E y0

E

(65)

Posterior probability

Perfect plasticity

(66)

Posterior probability

Perfect plasticity

likelihood for each 
 observation

1/ 2

(x µ) 2

(67)

Posterior probability

Perfect plasticity

likelihood for each 
 observation

stress model stress measurement

1/ 2

(x µ) 2

(68)

Posterior probability

Perfect plasticity

likelihood for each 
 observation

stress model stress measurement

1/ 2

f (x |µ, ) = 1

p 2⇡ e (x 2 2 µ)2 (x µ) 2

Difficult to compute the evidence probability: use MCMC

(69)

Markov-Chain Monte Carlo (MCMC) method: parameter space

too small adequate

too large too large

(70)

Perfect plasticity: amplitude plot

Références

Documents relatifs

Keywords Bayesian statistics · Density dependence · Distance sampling · External covariates · Hierarchical modeling · Line transect · Mark-recapture · Random effects · Reversible

Table 3 presents the results for these cases with an a priori spectral index equal to the real value α = 1.1 (case IIIa), and without any a priori value on any parameter (case IIIb)

Comparison between MLE (CATS) and a Bayesian Monte Carlo Markov Chain method, which estimates simultaneously all parameters and their uncertainties.. Noise in GPS Position Time

– MCMC yields Up component velocity uncertainties which are around [1.7,4.6] times larger than from CATS, and within the millimetre per year range

Key words: Curve Resolution, Factor analysis, Bayesian estimation, non-negativity, statistical independence, sparsity, Gamma distribution, Markov Chain Monte Carlo (MCMC)..

le concerne son caractère très empirique.. Mais les auteurs indiquent que leur ' démarcbe ne permet pas encore de con- clure, puisqu'el le nécessite encore des

Mais, c’est l’édification de la ville qui, deux siècles plus tard, révèle la fragilité du milieu.. En effet, la fin du XVIII e siècle marque une rupture,