• Aucun résultat trouvé

Representation Theory of Hecke algebras & connections with Cherednik algebras

N/A
N/A
Protected

Academic year: 2022

Partager "Representation Theory of Hecke algebras & connections with Cherednik algebras"

Copied!
13
0
0

Texte intégral

(1)

Representation Theory of Hecke algebras

& connections with Cherednik algebras

Cohomology in Lie Theory, Oxford Maria Chlouveraki

Universit´e de Versailles - St Quentin

(2)

Iwahori-Hecke algebras

Let (W,S) be a finite Coxeter system, W =hS | s2= 1, ststst. . .

| {z }

mst

=tststs. . .

| {z }

mst

∀s,t ∈S i.

Sn=

s1,s2, . . . ,sn−1

si2= 1,sisi+1si=si+1sisi+1,sisj =sjsi if |i−j|>1 LetL:S →Zbe a function such thatL(s) =L(t) whenevers andt are conjugate inW. Letq be an indeterminate.

Hq(W)=h(Ts)s∈S|TsTtTs. . .

| {z }

mst

=TtTsTt. . .

| {z }

mst

,(Ts−qL(s))(Ts+q−L(s)) = 0∀s,ti.

Hq(Sn) =

*

T1,T2, . . . ,Tn−1

TiTi+1Ti =Ti+1TiTi+1, TiTj=TjTi if|i−j|>1, (Ti−qK)(Ti+q−K) = 0

+

where K :=L(s1) =· · ·=L(sn−1).

(3)

The a-function

Letw ∈W. Letw =si1si2. . .sir be areduced expressionforw. Set

Tw:=Tsi1Tsi2. . .Tsir. The algebraHq(W) is a freeC[q,q−1]-module with basis (Tw)w∈W.

Letτ :Hq(W)→C[q,q−1] be the linear map defined byτ(T1) = 1 and

τ(Tw) = 0 ifw 6= 1. The map τ is asymmetrising trace. By extension of scalars toC(q), we have

τ= X

V∈Irr(C(q)Hq(W))

1 sV

χV

for some sV ∈C[q,q−1] (Schur elements).

The algebraC(q)Hq(W) is (split) semisimple, hence Irr(W) ↔ Irr(C(q)Hq(W))

E 7→ VE

.

LetE ∈Irr(W). We set

a(E) :=−valuation(sVE) and A(E) :=−degree(sVE).

(4)

Canonical basic sets

Letθ:C[q,q−1]→C, q7→ξbe a ring homomorphism such that ξ∈C×. The algebraCHξ(W) is not necessarily semisimple. We obtain adecomposition matrix

Dξ = ([VE :M])E∈Irr(W),M∈Irr(CHξ(W)). Acanonical basic set forHξ(W) is a subsetBξ ofIrr(W) such that

1 Irr(CHξ(W))↔ Bξ, M 7→EM ;

2 [VEM :M] = 1 for allM∈Irr(CHξ(W)) ;

3 if [VE :M]6= 0 for someE ∈Irr(W), then eitherEM =E ora(EM)<a(E).

Dξ =

1 0 · · · 0

∗ 1 · · · 0 ... ... . .. ...

∗ ∗ · · · 1

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

| {z }

Irr(CHξ(W))





 Bξ

















 Irr(W)

(5)

Theorem [Geck, Rouquier, Jacon, C.]

Canonical basic sets exist for finite Coxeter groups.

It is well-known that Irr(Sn)↔

(

λ= (λ1≥ · · · ≥λr ≥1) :

r

X

i=1

λi =n )

.

Letξ be a primitive root of unity of ordere>1. Then we have Bξ ={λ|λise-regular} ifK >0 and

Bξ={λ|λise-restricted} ifK <0 where K :=L(s1) =· · ·=L(sn−1).

(6)

Cellular structure

Under Lusztig’s conjectures (P1)–(P15), Iwahori-Hecke algebras are cellular: Cell modules M(E)E∈Irr(W).

Symmetric bilinear formh, ion cell modules.

Theorem [Graham-Lehrer]

Set D(E) :=M(E)/radh,iM(E). We have that

1 D(E) is either 0 or a simpleCHξ(W)-module.

2 {D(E)|D(E)6= 0}=Irr(CHξ(W)) .

We have

{D(E)|D(E)6= 0}={D(E)|E ∈ Bξ}.

(7)

Rational Cherednik algebras

Lethbe the reflection representation ofW, and letV =h⊕h. We denote byS the set of all reflections inW. Fors∈S, take

αs∈h : basis ofIm(s−idv)|h. αs ∈h: basis ofIm(s−idv)|h.

Letc:S→Cbe a function such that c(s) =c(t) whenevers andtare conjugate inW.

Hc(W)= TVoW

[x,x0] = 0,[y,y0] = 0,[y,x] =x(y)−P

s∈Sc(s)αs(y)x(αs)s forx,x0 ∈h andy,y0∈h.

W =Sn,S={sij = (i j)}, (x1, . . . ,xn) basis ofh, (y1, . . . ,yn) basis ofh.

σ·xi =xσ(i)·σ, σ·yi =yσ(i)·σ, ∀σ∈Sn.

Takeαij:=xi−xjij :=yi−yj, for 1≤i<j ≤n, andc∈C. Then the commutation relations inHc(W) are:

[xi,xj] = 0, [yi,yj] = 0, [yi,xi] = 1−cP

j6=isij and [yi,xj] =csij fori6=j.

(8)

The category O

O= the category of finitely generatedHc(W)-modules locally nilpotent for the action ofh.

Standard modules ∆(E) =IndHc(W)

C[h]oW(E), E∈Irr(W).

Simple modulesL(E) =Head(∆(E)), E ∈Irr(W).

Decomposition matrix DO = ([∆(F) :L(E)])E,F∈Irr(W). [∆(E) :L(E)] = 1, for allE ∈Irr(W).

There exists an ordering <on the standard modules (and consequently on Irr(W)) such that if [∆(F) :L(E)]6= 0, then eitherE =F orE <F.

A famous ordering on the categoryO is the following:

E<F if and only ifc(F)−c(E)∈Z>0

where c(E) is the scalar with which theEuler element∈Z(CW) acts onE.

(9)

The KZ functor

There exists an exact functor

KZ:O −→ Hξ(W)−mod where ξ=exp(2πic(s)/L(s)). We have:

1 KZ(L(E)) is either 0 or a simpleHξ(W)-module.

2 {KZ(L(E))|KZ(L(E))6= 0}=Irr(CHξ(W)).

3 IfKZ(L(E))6= 0, then [∆(F) :L(E)] = [KZ(∆(F)) :KZ(L(E))]. Thus,

I [KZ(∆(E)) :KZ(L(E))] = 1 ;

I If [KZ(∆(F)) :KZ(L(E))]6= 0, then eitherE =F orE <F.

Proposition [C-Gordon-Griffeth]

For allE ∈Irr(W), we have

c(E) =a(E) +A(E).

(10)

Main result

Theorem [C-Gordon-Griffeth]

Thea-function is an ordering on the categoryO. This in turn implies that

1 there exists a canonical basic setBξ forHξ(W) ;

2 KZ(L(E))6= 0 if and only ifE ∈ Bξ.

Moreover, we haveKZ(∆(E))∼=M(E) (cell module) for allE ∈Irr(W).

Remark: The above theorem holds for the complex reflection group G(`,1,n)∼= (Z/`Z)noSn (without the use of Ariki’s theorem).

(11)

The case of G (`, 1, n)

Lete∈Z>0and (s0,s1, . . . ,s`−1)∈Z`. We consider the specialised Ariki-Koike algebra defined by

generators : T0,T1, . . . ,Tn−1

relations : Tt0 4 Tt1 Tt2 · · · Ttn−1

. (T0−ζes0)(T0−ζes1)· · ·(T0−ζes`−1) = 0

(Ti−ζe)(Ti+ 1) = 0, for alli= 1, . . . ,n−1.

We setmj :=`sj−je andm:= (mj)0≤j`−1. We consider the cyclotomic Ariki-Koike algebraHq,mwith relations:

(T0−qm0)(T0−ζ`qm1)· · ·(T0−ζ``−1qm`−1) = 0 (Ti−q`)(Ti+ 1) = 0, for alli= 1, . . . ,n−1

θ:q7→ζe`.

(12)

Π`n={`-partitions of n} ↔ Irr(G(`,1,n)) ↔ Irr(Hq,m) λ= (λ(0), . . . , λ(`−1)) 7→ Eλ

Theorem [Geck-Jacon]

Canonical basic set ↔ {Uglov`-partitions}.

[λ] :={γ= (a,b,c)|0≤c≤`−1,a≥1,1≤b≤λ(c)a }.

cont(γ) :=b(γ)−a(γ) and ϑ(γ) :=cont(γ) +sc.

Theorem [Dunkl-Griffeth]

Letλ, λ0∈Π`n. If [∆(Eλ) :L(Eλ0)]6= 0, then there exist orderings on the nodes γ1, γ2, . . . , γn andγ10, γ20, . . . , γn0 ofλandλ0 respectively, and integers

µ1, µ2, . . . , µn∈Z≥0such that, for all 1≤i ≤n,

µi ≡c(γi)−c(γ0i)mod` and µi =c(γi)−c(γi0) + `

e(ϑ(γ0i)−ϑ(γi)).

(13)

Theorem [C-Gordon-Griffeth]

Letλ, λ0∈Π`n. If [∆(Eλ) :L(Eλ0)]6= 0, then eitherλ0=λora(Eλ0)<a(Eλ).

Proof: Letγ andγ0 be nodes of `-partitions. We write γ≺γ0 if we have ϑ(γ)< ϑ(γ0) or ϑ(γ) =ϑ(γ0) and c(γ)>c(γ0).

Using the result by Dunkl and Griffeth, we can order the nodesγ1, γ2, . . . , γnet γ10, γ20, . . . , γn0 ofλandλ0 respectively such that, for all 1≤i≤n,

γi ≺γ0i or γii0. Then we can prove that either λ0 =λora(Eλ0)<a(Eλ).

Références

Documents relatifs

We prove that cyclotomic Yokonuma–Hecke algebras of type A are cyclotomic quiver Hecke algebras and we give an explicit isomorphism with its inverse, using a similar result of

We close this section by making some remarks on the relation between the cohomology of M.(n} and the cohomology of maximal nilpotent subalgebras of semisimple Lie algebras. Hence

In this paragraph we shall relate the local moduli of isolated hypersurface singularities to the local moduli of Lie algebras.. Consider an isolated

maximal and minimal) on more specialised classes of Lie algebras, with particular regard to locally nilpotent Lie algebras.. Application

The only general description of q-characters of simple U q (Lg)-modules, due to Ginzburg and Vasserot for type A [30] and to Nakajima in general [49], uses intersection cohomology

— The category of conilpotent dg P ¡ -coalgebras admits a model category structure, Quillen equivalent to that of dg P-algebras, in which every object is cofibrant and in which

The analytic arguments used to prove the Hodge theorem in complex geometry becomes completely algebraic in the setting of relative Lie algebra cohomology.. Change notation: let π be

In Sections 2 and 3, we briefly review the required material on Coxeter groups, Hecke algebras, and Hecke group algebras, as well as on the central theme of this article: the level