• Aucun résultat trouvé

Bridging the gap between striatal plasticity and learning

N/A
N/A
Protected

Academic year: 2021

Partager "Bridging the gap between striatal plasticity and learning"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-02055666

https://hal.sorbonne-universite.fr/hal-02055666

Submitted on 4 Mar 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Bridging the gap between striatal plasticity and learning

Elodie Perrin, Laurent Venance

To cite this version:

Elodie Perrin, Laurent Venance. Bridging the gap between striatal plasticity and learning. Current

Opinion in Neurobiology, Elsevier, 2019, 54, pp.104-112. �10.1016/j.conb.2018.09.007�. �hal-02055666�

(2)

Bridging

the

gap

between

striatal

plasticity

and

learning

Elodie

Perrin

1,2

and

Laurent

Venance

1,2

Thestriatum,themaininputnucleusofthebasalganglia, controlsgoal-directed behaviorandprocedurallearning. Striatalprojectionneuronsintegrateglutamatergicinputs fromcortexandthalamustogetherwithneuromodulatory systems,andaresubjectedtoplasticity.Striatalprojection neuronsexhibitbidirectionalplasticity(LTPandLTD)when exposedtoHebbianparadigms.Importantly,correlativeand evencausallinksbetweenprocedurallearningandstriatal plasticityhaverecentlybeenshown.Thisshortreview summarizesthecurrentviewonstriatalplasticity(witha focusonspike-timing-dependentplasticity),recentstudies aimingatbridginginvivoskill acquisitionandstriatal plasticity,thetemporalcredit-assignmentproblem,andthe gapsthatremaintobefilled.

Addresses

1CenterforInterdisciplinaryResearchinBiology,Colle`gedeFrance, INSERMU1050,CNRSUMR7241,LabexMemolife,75005Paris,France 2

Universite´ PierreetMarieCurie,ED158,Paris,France Correspondingauthor:Venance,Laurent

(laurent.venance@college-de-france.fr)

CurrentOpinioninNeurobiology2019,54:104–112

ThisreviewcomesfromathemedissueonNeurobiologyoflearning andplasticity

EditedbyScottWaddellandJesperSjo¨stro¨m ForacompleteoverviewseetheIssueandtheEditorial Availableonline12thOctober2018

https://doi.org/10.1016/j.conb.2018.09.007

0959-4388/ã2018TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBYlicense(http://creativecommons. org/licenses/by/4.0/).

Introduction

The striatum receives topographic glutamatergic

affer-entsfromallcorticalareasandfromsomethalamicnuclei [1](Figure1).Itisanimportantsitefor actionselection

andproceduralmemoryformation[2].Sincethe

demon-strationbyYinandcoll.[3]ofstriatalplasticityfollowing

acquisition of a procedural skill, several studies have

extendedthispioneeringworkbyassessingstriatal plas-ticityacross various learningtasks. This review aimsat givingthecurrentviewonexvivostriatalplasticityinthe

light of recent studies evidencing correlative or causal

linkbetweeninvivolearning andstriatalplasticity,ina physiologicalcontext.Here,‘exvivo’referstobrainslice

recordings from animals subjected to training or

treat-ment, as opposed to studies in which brain slices are

examined in naı¨ve animals to reveal plasticity

mechanisms. Striatal plasticityhas been a controversial

fieldforatleasttwodecadesbecauseofitsgreatvarietyof results(reviewedinRefs.[4–8])andtheriseof

back-and-forthinvestigations betweeninvivoand exvivo bringa

uniqueopportunityforabetterunderstandingofstriatal

plasticity, and most importantly for bridging the gap

betweenlearning andstriatalplasticity.

Striatal

complexity

Threemain reasons account for the diversityof results

concerning striatal plasticity: the induction protocols

(rate-coded versus time-coded and Hebbian versus

non-Hebbian),thestriatalheterogeneity,andsome

tech-nicalissues.Somecriticaltechnicalissuesaretheageof theanimals,thesliceorientation(coronalversussagittal versushorizontal), thelocation of thestimulation elec-trode(cortexversuscorpuscallosumversusstriatum)and therateoftheextracellularandintracellularcomponent

washout(LTPbeingoptimallyobservedundersufficient

ratesofsuperfusionandhighresistancewhole-cell

record-ings). Intermingled anatomo-functional compartments

and neuronal units constitute the basis of the striatal

heterogeneity: dorsolateral and dorsomedial striatum

(DLS and DMS), and direct and indirect trans-striatal

pathways,justtocitethemainoneswhichcanbeassessed

during recordings (Figure 1). DMS and DLS receive

inputs from associative and sensorimotor cortices and

encodefor goal-directed behavior and skill acquisition,

respectively[3,9].Inrodents,striatalprojectionneurons (SPNs)belongeithertothedirect(d-SPNs)orindirect

(i-SPNs)trans-striatalpathwaysandshowdistinct

dopami-nergicreceptorexpression,D1-class andD2-class

recep-tors,respectively[10].Recentstudiesshowthatd-SPNs

andi-SPNsareengagedinacomplementaryand

coordi-natedmannerforactioninitiationandexecution[11–13].

DMS/DLSand d-SPNs/i-SPNsaredistinguished inthe

majorityoftheplasticitystudies.Nevertheless,thethird

level of striatal structuration, the striosomes (patch)/

matrixcompartments[14],remainstobemore

documen-ted for striatal plasticity expression. Another

compart-ment has been recently added, the annular

compart-ments, surrounding the striosomes [15] (Figure 1).

Functionally, substance P increases dopamine release

within the striosomes but decreases it in the annular

compartment, and leaves dopamine unmodified in the

matrix [15,16] suggesting distinct neuromodulation of

striatalplasticityamongthesecompartments.

Here,insteadofrecapitulatingtheplasticityobservedin brainsliceswiththesignalingpathwaysatplay(reviewed inRefs.[4,6–8]),weoptforanotherangle:wefirstpresent recentinvivostudiesestablishingcorrelativeandcausal

(3)

links between learning and striatal plasticity, and then

from these studies we discuss the conditions of

emer-gence ofbidirectionalstriatalplasticity.

From

learning

to

striatal

plasticity

Striatalplasticityhasbeenassessedduringgoal-directed

behavior,and across theearlyand latephases of

proce-durallearning.Theanalysisofvariousparameters,usedas proxiesforsynapticplasticity,hasbeenachievedeitherin vivoduringbehavioraltasks(analysisofthefiringrateand activity coherence [9,13,17,18,19,20]; measurement of

opto-induced LFP [21]), or ex vivo after behavioral

training (NMDAR/AMPAR ratio [3,22,23];

spontane-ous-EPSCs: [24]; saturation/occlusion plasticity tests

[25,26]) (Figure 2). The link between theacquisition/ consolidationofprocedurallearningandstriatalplasticity wasfirstshownbythecombinedanalysisofinvivofiring

rate andexvivoNMDAR/AMPARratio frommice

sub-jected to an accelerating rotarod [3]. In vivo analysis

showsthatDMS,butnotDLS,displaysincreasedactivity

during the earlyphases of skillacquisition whereas the

reverse picture is obtained during the consolidation

phases,thatisDLSdisplaysincreasedfiringactivitywhile

DMS is back to naı¨ve levels. Interestingly, NMDAR/

AMPAR ratio variesonly in DLS for the consolidation

phase [3], pointing to the non-NMDAR natureof the

corticostriatalplasticityin DMSfortheearlyphases.Ex

vivo saturation/occlusion experiments after extended

trainingshowLTPati-SPNsbutnotatd-SPNs,

suggest-ingthatLTPisinducedatd-SPNsfortheconsolidation

phase [3]. Ex vivo AMPAR/NMDAR ratio analysis

revealed that during T-maze task, LTP is engaged

(but not LTD)in DMSin theearlyphase while LTD

(but notLTP)isinvolvedin thelatephase, whereasin

DLS,LTDisinvolvedonlyinthelatephase(butLTPin

DLS wasnotexplored)[25].After habitlearningusing

thelever-pressing task(correspondingtothelate phase

described in [3,25]), ex vivo spontaneous-EPSC are

specifically decreased in DLS i-SPNs (indicative of a

postsynaptic LTD)[24].In aserial order task, learning BridgingthegapbetweenstriatalplasticityandlearningPerrinandVenance 105

Figure1

Sensorimotor cortices

Associative

cortices cortices Limbic

D2-SPN SNr SNc GPe D1-SPN Corpus callosum Late phase of skill acqquisition / habits Early phase of skill acquisition / goal directed STN EP Striatum Striosomes Dorsomedial striatum Dorsolateral striatum Direct pathway Indirect pathway

Current Opinion in Neurobiology

Schematicrepresentationofthestriatalheterogeneityandtheanatomo-functionalcompartmentsofthedorsalstriatum.

Schematicrepresentationofthedirectandindirecttrans-striatalpathwaysofthebasalganglia.Striosomesareshownwithblackdotsdistributed betweenthedorsolateralstriatum(blue)andthedorsomedialstriatum(orange).Groupedblackdotsrepresentstriosomessurroundedbythe annularcompartment(redline,[15]),whereasisolatedblackdotsillustratetheexo-patch[14].StriosomalSPNsmainlyprojecttoSNcwhereas SPNsfromthematrixbelongtothedirectorindirectpathway,identifiedrespectivelybytheexpressionofD1andD2receptors.Thedirectand indirectpathwaysarerepresented,respectively,ingreenandpurple.GPe,externalsegmentoftheglobuspallidus;EP,entopeduncularnucleus; STN:subthalamicnucleus;SNr,substantianigraparsreticulata;SNc,substantianigraparscompacta.

(4)

ofaprecisesequencedependsond-SPNsintheDLSand

inducesanincreaseoftheAMPAR/NMDARratioattheir

synapses(butnotati-SPNs)[23].Inagoal-directedtask,

exvivoAMPAR/NMDARratioanalysisrevealsopposing

plasticity in d-SPNs and i-SPNs in DMS, while no

modificationisobservedinDLS[22].Duringthe

learn-ingofasensorydiscriminationtask,LTPisdetectedin

vivoandexvivoin theauditorystriatum[21].

Learningabstractroutines,suchasneuroprostheticskills, requires corticostriatal plasticity as revealed by in vivo

firing coherence between motor cortex and DLS

[9,19,20].FiringrateinDLSandcoherenceinthetheta

bandbetweenmotor (M1)cortexandDLS increases in

the late phase of volitional modulation of M1 activity

[9,19];thesephenomenaareNMDAR-mediatedsince

nochangeoccursin NMDAR-knock-outmice[19].In

addition, firing activity patterns of neuronal ensembles

thattriggermaximaldopaminereleasealongtrialsofthe

neuroprosthetic task are selected and progressively

shapedforoptimizedreinforcementlearning[20].

It remains to get the full picture of the plasticities

successively engaged in d-SPNs and i-SPNs in DLS

andDMSfromgoal-directedto habitformation.

From

striatal

plasticity

to

learning

A reverse strategy consists in triggering LTP or LTD

duringabehavioraltasktoinvestigatecausalitybetween

synapticplasticityandbehavioralmodifications.

NMDAR-LTPandendocannabinoid-LTDwereinducedby

presyn-apticoptogenetic-stimulationassociatedwithoptogenetic

SPNdepolarizationinDMSinoperantalcohol

self-admin-istration[27].LTPandLTDinductionpromote respec-tivelyalong-lastingincreaseanddecreasein

alcohol-seek-ing behavior [27]. This demonstrates a causal link

betweenthepolarityofaninducedplasticityanditseffect

on behavior. Moreover, this strategy allows to test the

plasticitiesidentifiedinbrainslicesinSPNsor

interneur-ons, and to investigate theirin vivo impact onsynaptic

transmission[21]orbehavior[27].

Emergence

of

bidirectional

striatal

plasticity:

Hebbian

mode

is

the

key

TheobservationthatLTPcanbeinducedinvivousinga

Hebbian paradigm changed the view of a LTD

domi-nance in the striatum [28–30]. Since then, numerous

studieshavereportedLTP(aswellasLTD)depending

onthestimulationprotocol(forreviewsseeRefs.[4–8]).

Nevertheless,striatalLTPstill appearsmore capricious

to induce than LTD. Interestingly, following in vivo

learning tasks, LTP is systematically detected

[3,21,23,25,26].Obviously,theinductionphase

mat-tersandLTPappearsmorelikelyinduceduponHebbian

protocols. Hebbianplasticity relies on the

quasi-coinci-dent activity on either side of the synapse and

spike-timing dependent-plasticity (STDP) protocols aim at

mimickingsuchaHebbianmodebypairingpresynaptic

stimulations with postsynaptic back-propagating action

potentials [31,32]. Most of the striatal STDP studies

report bidirectional (LTP and LTD) plasticity [33–

39,40,41–44](Figure 3).Note thatinrate-coded

proto-cols,theremovalofexternalmagnesiumorpostsynaptic

depolarization for inducing LTP aims at mimicking a

Naive Goal-directed behavior Habit formation Extracellular recordings: - firing rate - coherence - opto-LFP Two-photon imaging: - neuronal maps - structural plasticity In vivo continuous recordings in behaving rodents Ex vivo discontinuous recordings in brain slices Patch-clamp:

- intrinsic membrane properties - AMPAR/NMDAR ratio - plasticity saturation / occlusion

Two-photon imaging: - structural plasticity

Patch-clamp GRIN lens imaging

Fiber photometry

Current Opinion in Neurobiology

Strategiesusedforevaluatingstriatalplasticityduringlearning.

Illustrationoftheanalyticalmethodsandparametersusedtoassesssynapticandstructuralstriatalplasticityduringprocedurallearning.Invivo electrophysiologicalextracellularrecordings,two-photonimaging,GRINlensimagingandfiberphotometryallowcollectingdataallalongthe learningphasesofbehavioraltasks(continuousrecordingsschematizedbythehorizontalpinkarrow).Attimepointsofinterestduringthe behavioraltasks(discontinuousrecordingsschematizedbythebluedots),exvivopatch-clampandtwo-photonimagingonacutebrainslicescan beusedtotestwhethervariousformsofstriatalplasticitywereinducedinvivo.Examplesofinvivoandexvivorecordingsforstriatalplasticity assessmentduringprocedurallearningcanbefoundin[9,13,17,18,19,20,21,68]and[3,22,23,24,25,26],respectively.

(5)

back-propagatingactionpotential[4,5].Similarly, manip-ulating dopamine levels(or activityof D1/D2Rs) allows

adjusting the cellular excitability, which brings striatal

neurons more prone to displayHebbianplasticity. The

importanceoftheHebbianmodeforinducingLTPhas

beenfurtherdemonstratedinDMSsinceHebbian

high-frequencystimulation(i.e.stimulationcoupledwith

opto-genetic postsynaptic depolarization) induces

NMDAR-LTP, whereasnon-Hebbianhigh-frequencystimulation

inducesendocannabinoid-LTD[3,9].

Therefore, we focus here on striatal STDP [33–

39,40,41–46], which is a typical Hebbian paradigm.

Bidirectional plasticity has been observed following

STDP,thatisLTDandLTPwereobserveddepending

ontheorderofpairings[33–36,38,39,41,43,47].

Interest-ingly,byvaryingthenumberand/orfrequencyofSTDP

pairingsacomplexplasticitylandscapeisobtained:from

the‘classical’bidirectionalNMDAR-LTPand

endocan-nabinoid-LTDfor 100pairings[34,36],to

endocanna-binoid-LTP for a lower number (10–15) of pairings

[39,40,44,47] (Figure 3). It remains to determine the

role of endocannabinoid-LTP in vivo and how it

com-bineswith NMDAR-LTP.

Itshouldbenotedthattheplasticities observedinvitro (brainslices)andinvivorelatetodistinctphases.Studies

using brain slices investigate plasticity up to one hour

post-protocol, thus referring to the early plasticity,

whereas AMPA/NMDAR ratio and occlusion/saturation

analysis are performed 1–3days after thelearning task,

corresponding to the long-lasting phase of plasticity.

Therefore, conclusions drawn from in vitro and ex vivo

/invivoplasticityarenotstraightforward,anditremains

to determine whether similar signaling pathways are

engagedduringearlyandlateplasticityphases.

InHebbianplasticity,theassociationoftwofactors

con-trols the synaptic strength, that is two inputs (and/or

activity patterns) on the presynaptic and postsynaptic

elements,withtheadditionofathirdfactormodulating

plasticity [48]. Here, recent studies concerning GABA

and dopamine acting as third factors for striatal STDP

helpto clarifytheplasticity debate.

The conflictingobservationsofHebbian[34,35]or anti-HebbianstriatalSTDP(inbrainslices[33,36,39,41,45]or invivo[37])areexplained bytheuse(or lackof use)of

GABA antagonists [38,43]. The appearance of tonic

GABAergic signaling during development gates STDP

polarity, promoting anti-Hebbian STDP in the adult

striatum [43]. It remains to investigate pathological

effects of tonicGABAergic transmissionin striatal

plas-ticityandprocedurallearning.

BridgingthegapbetweenstriatalplasticityandlearningPerrinandVenance 107

Figure3 LTP LTD STDP experiments Model 0 25 50 75 100 30 15 0 -15 -30 100 200 50 100 250 100 200 0 100 Number of pairings (#) Δ tSTDP (ms) 50 0 50 100 Wtotal (%) Wtotal (%) W total (%) NMDAR-LTP eCB-LTD eCB-LTP 1 2 3 1 3 2 Number of pairings (#)

Current Opinion in Neurobiology

Endocannabinoid-mediatedandNMDAR-mediatedLTPandLTDareinduceddependingonthenumberofpairingsinaHebbianparadigm (STDP).

Changesofthesynapticweight(Wtotal)whenthenumberofpairingsandtherelativetimingbetweenpresynapticandpostsynaptictiming(DtSTDP) werevaried.Thecolor-mapdepictsthesynapticplasticitypredictedbyamathematicalmodel(from[36]andconfirmedbyexperiments(illustrated bythecolor-codedpoints)(adaptedfrom[35and36]).Asmallnumberofpost-prepairings(10–15)producesendocannabinoid-LTP(eCB-LTP), whereasalargernumberofpairings(>75)inducedNMDAR-LTP;forpre-postpairings,endocannabinoid-LTD(eCB-LTD)isinducedfrom 50pairings.Thecolorbarindicatesthecolorcode.Intherightpanels,theblacklinesrepresentthesimulationresultsandtheblackcircles illustrateexperimentalresults.

(6)

learning [49]. StriatalHebbian plasticityrequires dopa-mine(brainslices[34,35,50];invivo[37,42]).Adendritic

spineenlargementandanincreaseofcalciumoccurwhen

dopamineisreleasedconcomitantlyorafter(1s)

gluta-mate [51] allowing in vivo STDP [37,42]. There are

conflicting results concerning the involvement of D1R

versusD2RinSTDP(post-preLTDandpre-postLTP

requires D1R-activation but not D2R-activation [35];

LTPin d-SPNs is D1R-mediated and LTD in i-SPNs

is D2R-mediated [34];reviewed in Refs. [6–8]). In the

absenceofdopamine(andwithGABAantagonists),

D1-SPNsshowLTDinsteadofLTPwithpre-postpairings,

whereasD2-SPNsdisplayLTPforbothpost-preand

pre-postpairings[34].Methodologicaldifferencessuchasthe locationofthestimulationelectrode(leadingtodifferent dopaminerelease[52])orthenumberandfrequencyof pairedstimulationscouldaccountfor differential activa-tionofD1RandD2Randspecific-regulationofthe

back-propagatingactionpotential[5].Thisisparticularly

illus-trated by the fact that LTP induced by theta burst

optogenetic stimulation is dependent on presynaptic

NMDARandBDNF[53]butnotondopamine,whereas

LTPinducedwithelectricalhigh-frequencystimulation

isgenerallydopamine-dependent(reviewedinRefs.[4–

8]).

In future studies it will be crucial to investigate in

behavinganimalstheactionofthirdfactors[48]in

Heb-bian learning, like for the eligibility traces (see next

chapter).

Solving

the

temporal

credit-assignment

problem

with

eligibility

traces

and

striatal

plasticity

The temporalcredit-assignment problem questions the

temporal link between the reward and the preceding

action to allow reinforcement learning [49]. The

exis-tenceofeligibilitytraces,originallybroughtby computa-tionalmodels[54–56],helpstosolvethetemporal

credit-assignment problem. Eligibility tracesare synaptic tags

induced by Hebbian learning and are transformed into

synapticplasticitybytheretroactiveeffectof neuromo-dulators.Theoretically,eligibilitytracesallow tokeepa

synaptic trace from the learning sequence, but not to

promoteplasticityperse,unlesstherewardsignaloccurs beforeextinctionof eligibilitytraces(Figure 4).

There-fore, eligibility traces temporally link the learning

sequence with the reward allowing the induction of

reinforcement learning via striatal plasticity. Structural plasticity,used as aproxyfor synaptic plasticity,occurs

exclusivelywhendopaminereleasehappens0.3–2safter

anSTDPparadigm[51](Figure4).D1Randdendritic

PKAactivationallowtobridgetheaction(glutamatergic

inputs) and the subsequent reward (dopamine); PKA

activationisshort-lived becauseofthehigh

phosphodi-esterase-10Aactivityindistaldendrites[51].Dopamine

exerts also retroactive effects of on existing plasticity sincedopaminedelivered2saftercell-conditioning

pro-tocol (and importantly not before or during protocol)

convertsLTDinLTP[42,52].

Therefore, the expression of eligibility traces and the

delivering of a distal reward allow the expression of

plasticity [51] or even the conversion of a form of

plasticityintoanother[42,52].

Future

directions

Amongthestriatalcompartments,thestriosomeandthe

matrix remain the less documented in terms of

Eligibility trace 3 1 2 4 Pyramidal cell Plasticity Striatal projection neuron Learning sequence Temporal credit- assignment Reinforcement learning Eligibility trace

Teaching signal (reward)

Dopamine Synaptic weight Dopa-minergic neuron Hebbian paradigm Dopamine Eligibility trace Synaptic weight

Current Opinion in Neurobiology

Eligibilitytracesbridgethegapbetweenlearningsequenceand subsequentrewardtopromotereinforcementlearning. Illustrationofreinforcementlearningallowedbyshort-livedeligibility tracesatcorticostriatalsynapses.Eligibilitytracesaretriggered followingHebbiansequence,whichpersedoesnotinduceplasticity (illustratedherebytheflatgreylinecodingforthesynapticweight). Theseeligibilitytraces(constitutedbyPKAactivitycontrolledby phosphodiesterase-10Aind-SPNs,asreportedby[45])canbe transformedbeforetheirextinctionintoplasticity,iftheteachingsignal (dopamineinstriatum)isdeliveredduringthemaintenancephase(3) oftheeligibilitytraces;Noplasticityisinducedifdopamineisreleased eitherbefore(1),duringthebuild-up(2)orafter(4)eligibilitytraces (verticalbarsillustratetheneuronalfiring).

(7)

physiological role in striatal function. Thanks to new

markers[14],invivotwo-photonmonitoringduringtask

performance showed overlapping responses of neurons

belongingtothestriosomeandthematrix,with

differen-tial firing activity for reward coding [57]. Because of

striosome/matrix differential inputs and outputs [14],

dopaminergic [15,16] and endocannabinoid [58] regula-tion,specific-plasticitieswithdifferentialmodulationare

expected tooccur.

AlthoughdifferentialpolarityofSTDPinGABAergicand

cholinergic interneurons has been shown [59], the full

pictureoftheinterplayofplasticitiesatstriatalcircuitsis

just beginning to be understood. It remains to further

investigatetheunderlyingmechanismsoftheplasticities

occurring at the lateral connections [60,61] such as

interneuron–interneuron,interneurons–SPNsandSPN–

SPNs. Forexample,astudyshowinganLTDat

inhibi-tory synapses between SPN–SPNs and fast-spiking

interneuron–SPNsdemonstratesthatdistinct

endocanna-binoid signaling pathways are engaged depending on

membranepotentials(upversusdownstates)[62].

Addi-tionally,withthediscoveryoflong-rangeprojecting

cor-ticostriatalGABAergicneuronsmodulatingmotoractivity

viadifferentialactionond-SPNsandi-SPNs[63],itwill

be important to take into account the fact that cortical

activationleadstothedirectreleasenotonlyofglutamate

but also of GABA into the striatum. This changes our

view on the striatal excitation-inhibition balance, and

begs the question of whether plasticity, if any, occurs

betweentheselong-rangeGABAergicneuronsandthe

d-SPNsandi-SPNs.

Determining the conditions of emergence of plasticity

helps to better understand the striatal capability for

storage and recallofinformation. Noisy STDPpairings

showsthatplasticityrobustnessdependsonthesignaling

pathways:NMDAR-LTP is more fragilethan

endocan-nabinoid-plasticity [44]. Interestingly, resistance of

NMDAR-tLTPtonoisypatternsisincreasedwithhigher

frequency or numberof pairings.Invivo Hebbian

plas-ticity appears as a multivariate function of the number

and frequencyof pairings,but alsothevariability ofthe spiketiming.In-vivo-likeconditionsforstriatalplasticity, usingnaturalisticfiringpatternsof

cortical/thalamic/stria-tal neurons recorded in learning tasks still need to be

explored. Although STDPaims at mimicking Hebbian

learning,reservationswereexpressedaboutits physiolog-icalvalidity[64].Input-timing-dependentplasticity

con-stitutesaHebbianupgradeofSTDP.Itconsistsinpaired

activation of presynaptic inputs (distinct cortical areas

and/or thalamic nuclei, for example), leading to

sub-threshold or suprathreshold activity in the postsynaptic

neuron,asperformedrecentlyinavianbasalganglia[65].

Calciumimagingofi-SPNsandd-SPNsrecordedexvivo

just after different phases of an operant lever-pressing

taskrevealedthati-SPNsfiredbefored-SPNsinthe

goal-directed phase, whereas thereversepictureisobserved

during thehabitual phase[13].GABAergic fast-spiking

interneuronsbecomemoreexcitableinhabitualbehavior

[66,67]andcouldaccountforthereversetemporalorder

of firing between d-SPNs and i-SPNs. It remains to

examineplasticityinDLSacrossgoal-directedtohabitual

behavioratd-SPNsandi-SPNs,andalso inGABAergic

interneurons. Also, most of the studies focused on the

involvementofNMDAR-LTPinlearning.Basedonthe

diversityofplasticitiesrevealedbystudiesinbrainslices (Figure 3),one needs to evaluate therole of the endo-cannabinoid-LTDand-LTP[39,40,47]acrosslearning.

Supporting thisview,arecent studyshowedthat

endo-cannabinoidssetthetransitionbetweengoal-directedand habit formationvia the control of cortico(orbital frontal cortex)-striatal synaptic weight [68]; the nature of the

endocannabinoid plasticity at play at these synapses

allowing the shift between goal-directed behavior to

habitsremainsto bedetermined.

Attempts are made to link the complexity of striatal

STDPandgoal-directedbehaviorbyelaborating

compu-tational models (for recent examples see [42,69]). In

futurestudies,itwillbenecessarytoupgradethemodels withrecentexperimentalfindings,suchas,tonameafew, thelateral connections[60,61],thenew facesof striatal STDP[39,40,44,47],thekeyroleofstriatalGABAergic interneuronsinprocedurallearning[66,67]aswellasthe eligibilitytracesfeatures[42,51,52].

Awaytoapproachinvivostriatalplasticityduringlearning istoanalyzethecortico-striatalsynchronousoscillations.

However,becauseoftheabsenceofalaminar

organiza-tion of the striatum, these oscillations can be

contami-natedbyvolume-conductedsignals[70]leadingto

inac-curate interpretation. To overcome this, an elegant

strategy consists in the specific-expression of

channel-rhodopsin incorticostriatal pyramidalcells andthus the

uniquepossibilitytoestimatestriatalopto-LFPchanges

invivoduringskilllearning[21].Anotherstrategyisthe

use of fiberphotometry tomonitor upstreamactivityin

cortical inputs arising from distinct cortices [71] (

Fig-ure 2). In vivo patch-clamp recordings in awake and

behaving(head-fixed)rodentsallowsasingle-cell

resolu-tion and the datacollection of subthreshold and

supra-thresholdevents [72]. Thisapproach hasbeen usedfor

theanalysisofthemembranepotentialdynamicsduring

goal-directed behaviorin d-SPNsandi-SPNs[73].

Although cortico-striatal and thalamo-striatal afferents

equallycontactSPNs[1,74],thethalamo-striatal

plastic-ity has been the focus of a limited number of studies

[1,75–78],despitetheexistenceofabrainslice prepara-tion preserving both cortico-striataland thalamo-striatal

connections [79]. Cortical and thalamic (parafascicular

nucleus) inputs target evenly d-SPNs and i-SPNs

(8)

observed in d-SPNs and i-SPNs [75–77]. Major differ-encesbetweencortico-striatal and thalamo-striatal plas-ticityare expectedbecauseofdifferentorganizations of

glutamatergic and dopaminergic synapses on

cortico-striatalandthalamo-striatalpathways[74].Thus, charac-terizing thethalamo-striatal plasticityrepertoire and its putative interactions with cortico-striatal plasticity is of

crucial importance to fully understand the role of the

striatumin goal-directedandprocedurallearning.

Thefield of striatalplasticityhascometo anew agein which theinvestigation of intrinsic, synaptic and struc-tural plasticity at play across procedural learning (from goal-directed behavior to habits) and across the striatal

anatomo-functional complexity has become possible in

behavingrodents.Anewperiodof(constructive)debates

isexpectedsince variousformsofplasticityshouldarise dependingnotonlyonthestriatalcomplexitybutalsoon thebehavioraltaskandtherelatedlearningphase(early versuslate).

Conflict

of

interest

statement

Nothingdeclared.

Acknowledgements

WethankSe´bastienValverdeforcommentsonthemanuscript.Thiswork wassupportedbythe,theAgenceNationalepourlaRecherche (ANR-CRCNSDopaciumcityandANRMopla),Inserm,CNRSandtheColle`ge deFrance.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest ofoutstandinginterest

1. HunnicuttBJ,JongbloetsBC,BirdsongWT,GertzKJ,ZhongH, MaoT:Acomprehensiveexcitatoryinputmapofthestriatum revealsnovelfunctionalorganization.eLife2016,5.

2. GraybielAM,GraftonST:Thestriatum:whereskillsandhabits meet.ColdSpringHarbPerspectBiol2015,7.

3.

 YinHanssonHH,MulcareAC,LovingerSP,Hila´rioDM,MRF,CostaClouseRM:DynamicE,HollowayreorganizationT,DavisMI, ofstriatalcircuitsduringtheacquisitionandconsolidationofa skill.NatNeurosci2009,12:333-341.

Inthisseminalarticle,theauthorsprovidethefirstevidencethatsynaptic plasticity (via AMPA/NMDAR ratio analysis and saturation plasticity experiments) can be detected in DLS following procedural learning (acceleratingrotarod).

4. DiFilippoM,PicconiB,TantucciM,GhiglieriV,BagettaV, SgobioC,TozziA,ParnettiL,CalabresiP:Short-termand long-termplasticityatcorticostriatalsynapses:implicationsfor learningandmemory.BehavBrainRes2009,199:108-118. 5. SurmeierDJ,PlotkinJ,ShenW:Synapticplasticityindorsal

striatalcircuitscontrollingynapticactionselection.CurrOpin Neurobiol2009,19:621.

6. LovingerDM:Neurotransmitterrolesinsynapticmodulation, plasticityandlearninginthedorsalstriatum.

Neuropharmacology2010,58:951-961.

7. LernerTN,KreitzerAC:Neuromodulatorycontrolofstriatal plasticityandbehavior.CurrOpinNeurobiol2011,21:322-327.

thestriatum.NeurobiolLearnMem2013,105:63-80.

9. KoralekAC,CostaRM,CarmenaJM:Temporallyprecise cell-specificcoherencedevelopsincorticostriatalnetworks duringlearning.Neuron2013,79:865-872.

10. CalabresiP,PicconiB,TozziA,GhiglieriV,FilippoMD:Directand indirectpathwaysofbasalganglia:acriticalreappraisal.Nat Neurosci2014,17:1022-1030.

11. CuiG,JunSB,JinX,PhamMD,VogelSS,LovingerDM,CostaRM: Concurrentactivationofstriataldirectandindirectpathways duringactioninitiation.Nature2013,494:238-242.

12. TecuapetlaF,JinX,LimaSQ,CostaRM:Complementary contributionsofstriatalprojectionpathwaystoaction initiationandexecution.Cell2016,166:703-715.

13. O’HareJK,AdeKK,SukharnikovaT,VanHooserSD,PalmeriML, YinHH,CalakosN:Pathway-specificstriatalsubstratesfor habitualbehavior.Neuron2016,89:472-479.

14. SmithJB,KlugJR,RossDL,HowardCD,HollonNG,KoVI, HoffmanH,CallawayEM,GerfenCR,JinX:Genetic-based dissectionunveilstheinputsandoutputsofstriatalpatchand matrixcompartments.Neuron2016,91:1069-1084.

15. BrimblecombeKR,CraggSJ:SubstancePweightsstriatal dopaminetransmissiondifferentlywithinthe striosome-matrixaxis.JNeurosci2015,35:9017-9023.

16. SalinasAG,DavisMI,LovingerDM,MateoY:Dopamine dynamicsandcocainesensitivitydifferbetweenstriosome andmatrixcompartmentsofthestriatum.Neuropharmacology 2016,108:275-283.

17. ThornCA,GraybielAM:Differentialentrainmentand learning-relateddynamicsofspikeandlocalfieldpotentialactivityin thesensorimotorandassociativestriatum.JNeurosci2014, 34:2845-2859.

18. BarnesTD,MaoJ-B,HuD,KubotaY,DreyerAA,StamoulisC, BrownEN,GraybielAM:Advancecueingproducesenhanced action-boundarypatternsofspikeactivityinthesensorimotor striatum.JNeurophysiol2011,105:1861-1878.

19.

 KoralekCorticostriatalAC,JinplasticityX,LongJD,isnecessaryCostaRM,forCarmenalearningJM:intentional neuroprostheticskills.Nature2012,483:331-335.

Building-upontheir seminalpublication (Yinetal.,2009),Costa’s lab demonstratetheinvolvementofdorsalstriatumandofstriatalsynaptic plasticityinanabstractskilllearningtaskusingneuroprostheticactionin behavingrodents,thatisvolitionalmodulationofM1neuralactivityusing auditoryfeedback.Usingthisnewgoal-directedbehavioraltask,they identifiedanincreasedcoherenceofthespikingactivityinthethetaband betweenthemotorcortexand thestriatumduringthelatephaseof learning,accompaniedbyanexvivomodificationoftheNMDAR/AMPA ratio.

20. AthalyeVR,SantosFJ,CarmenaJM,CostaRM:Evidencefora neurallawofeffect.Science2018,359:1024-1029.

21.

 XiongplasticityQ,ZnamenskiyduringacquisitionP,ZadorofAM:anauditorySelectivediscriminationcorticostriataltask. Nature2015,521:348-351.

Theauthorsshowthespecific-engagementofstriatalsynapticplasticity instriatalneuronscodingforloworhighfrequencyintheacquisitionofan auditoryfrequencydiscriminationtask.Theyset-upaneleganttechnique toassesssynapticefficacychangesinbehavinganimalsbyestimating opto-LFP(withtheexpressionofChR2inauditorycortex).Thisstudy pavedthewayforfutureworkstoassesssynapticplasticityinbehaving animalsduringalearningtask.

22.

 ShandirectedQ,GeactionsM,ChristiegeneratesMJ,BalleineopposingBW:Theplasticityacquisitionindirectofgoal-and indirectpathwaysindorsomedialstriatum.JNeurosci2014, 34:9196-9201.

During learning of a goal-directed behavior, the authors show that opposingAMPA/NMDARratiomodificationsoccurinidentifiedd-SPNs andi-SPNsinheDMSwhereasthereisnochangeintheDLS.AMPA/ NMDARratiochangessuggestthatLTPandLTDareexpressedin d-SPNS and i-SPNs, respectively (if both LTP and LTD are NMDAR-mediated).

(9)

23. RothwellPE,HaytonSJ,SunGL,FuccilloMV,LimBK, MalenkaRC:Input-andoutput-specificregulationofserial orderperformancebycorticostriatalcircuits.Neuron2015, 88:345-356.

24. ShanQ,ChristieMJ,BalleineBW:Plasticityinstriatopallidal projectionneuronsmediatestheacquisitionofhabitual actions.EurJNeurosci2015,42:2097-2104.

25.

 HawesBlackwellSL,KT:EvansMultimodalRC,UnruhplasticityBA,BenkertindorsalEE,GillanistriatumF,DumaswhileTC, learningalateralizednavigationtask.JNeurosci2015, 35:10535-10549.

Theauthorsexploretheengagementofsynaptic,intrinsicandstructural plasticityinDLSandDMSduringlearninginaT-mazetask.Thisvery impressivebody ofworkshows region(DLSversusDMS)-and hemi-sphere(ipsi versuscontralateral)-specific-synapticmodifications corre-latedwiththelearnedturningdirectionandthelearningstages(fromnaı¨ve to overtrained rats). Importantly, the authors do not only show the engagementofLTPbutalsothatofLTD(occurringmainlyinthelate phasesoflearning).

26. GiordanoN,IemoloA,ManciniM,CacaceF,DeRisiM, LatagliataEC,GhiglieriV,BellenchiGC,Puglisi-AllegraS, CalabresiPetal.:Motorlearningandmetaplasticityinstriatal neurons:relevanceforParkinson’sdisease.BrainJNeurol 2018,141:505-520.

27.

 MaWeiT,X-Y,ChengJiJ-Y,Y,WangHellardJ:ER,BidirectionalWangX,LuandJ,Gaolong-lastingX,HuangcontrolCCY, ofalcohol-seekingbehaviorbycorticostriatalLTPandLTD. NatNeurosci2018,21:373-383.

Thisworkconstitutesthefirstcausaldemonstrationofstriatalsynaptic plasticity(ind-SPNsinDMS)inanoperanttask.Theauthorsappliedin vivoHebbianbidirectionalplasticityandshowthatLTPandLTDhavean opposingeffectonalcohol-seekingbehavior.Moreover,theyshowex vivothatthesamestimulation(presynapticHFS)induceseither endo-cannabinoid-LTD or NMDAR-LTP depending on thenon-Hebbian or Hebbianmode.

28. CalabresiP,PisaniA,MercuriNB,BernardiG:Thecorticostriatal projection:fromsynapticplasticitytodysfunctionsofthe basalganglia.TrendsNeurosci1996,19:19-24.

29. LovingerDM,PartridgeJG,K-CTang:Plasticcontrolofstriatal glutamatergictransmissionbyensembleactionsofseveral neurotransmittersandtargetsfordrugsofabuse.AnnNY AcadSci2003,1003:226-240.

30. MahonS,DeniauJ-M,CharpierS:Corticostriatalplasticity:life afterthedepression.TrendsNeurosci2004,27:460-467. 31. FinoE,VenanceL:Spike-timingdependentplasticityinthe

striatum.FrontSynapticNeurosci2010,2.

32. FeldmanDE:Thespiketimingdependenceofplasticity.Neuron 2012,75:556-571.

33. FinoE,GlowinskiJ,VenanceL:Bidirectionalactivity-dependent plasticityatcorticostriatalsynapses.JNeurosci2005, 25:11279-11287.

34. ShenW,FlajoletM,GreengardP,SurmeierDJ:Dichotomous dopaminergiccontrolofstriatalsynapticplasticity.Science 2008,321:848-851.

35. PawlakV,KerrJND:Dopaminereceptoractivationisrequired forcorticostriatalspike-timing-dependentplasticity.J NeurosciOffJSocNeurosci2008,28:2435-2446.

36. FinoE,PailleV,CuiY,Morera-HerrerasT,DeniauJ-M,VenanceL: Distinctcoincidencedetectorsgovernthecorticostriatal spiketiming-dependentplasticity.JPhysiol2010, 588:3045-3062.

37. SchulzJM,RedgraveP,ReynoldsJNJ:Cortico-striatal spike-timingdependentplasticityafteractivationofsubcortical pathways.FrontSynapticNeurosci2010,2.

38. PailleV,FinoE,DuK,Morera-HerrerasT,PerezS,KotaleskiJH, VenanceL:GABAergiccircuitscontrol spike-timing-dependentplasticity.JNeurosci2013,33:9353-9363. 39. CuiY,Paille´ V,XuH,GenetS,DelordB,FinoE,BerryH,VenanceL:

Endocannabinoidsmediatebidirectionalstriatal spike-timing-dependentplasticity.JPhysiol2015,593:2833-2849.

40.

 EndocannabinoidCuiY,ProkinI,XuH,dynamicsDelordB,gateGenetspike-timingS,VenancedependentL,BerryH: depressionandpotentiation.eLife2016,5.

Inthisstudy(andinCuietal.,2015,andXuetal.,2018),theauthorsreport thatalownumberofpairedcorticostriatalstimulationsinducedanew form ofsynaptic plasticityat d-SPNsand i-SPNsinDLS,that isan endocannabinoid-LTP.ThisLTPiscontrolledbydopamineandis depen-dentonthepresynapticPKA.Endocannabinoid-LTPmaybeinvolvedin quicksynapticadaptationsduringrapidlearning.

41. ValtchevaS,VenanceL:AstrocytesgateHebbiansynaptic plasticityinthestriatum.NatCommun2016,7.

42. FisherSD,RobertsonPB,BlackMJ,RedgraveP,SagarMA, AbrahamWC,ReynoldsJNJ:Reinforcementdeterminesthe timingdependenceofcorticostriatalsynapticplasticityin vivo.NatCommun2017,8.

43. ValtchevaS,Paille´ V,DembitskayaY,PerezS,GangarossaG, FinoE,VenanceL:Developmentalcontrolof spike-timing-dependentplasticitybytonicGABAergicsignalinginstriatum. Neuropharmacology2017,121:261-277.

44. CuiY,ProkinI,MendesA,BerryH,VenanceL:Robustnessof STDPtospiketimingjitter.SciRep2018,8:8139.

45. ShindouT,Ochi-ShindouM,WickensJR:ACa2+thresholdfor inductionofspike-timing-dependentdepressioninthemouse striatum.JNeurosci2011,31:13015-13022.

46. HawesSL,GillaniF,EvansRC,BenkertEA,BlackwellKT: Sensitivitytotheta-bursttimingpermitsLTPindorsalstriatal adultbrainslice.JNeurophysiol2013,110:2027-2036. 47. XuH,PerezS,CornilA,CuiY,BerryH,VenanceL:

Endocannabinoid-dopamineinteractionsmediate spike-timingdependentpotentiationinthestriatum.NatCommun 2018,9:4118http://dx.doi.org/10.1038/s41467-018-06409-5. 48. FoncelleA,MendesA,Je˛drzejewska-SzmekJ,ValtchevaS,

BerryH,BlackwellKT,VenanceL:Modulationofspike-timing dependentplasticity:towardstheinclusionofathirdfactorin computationalmodels.FrontComputNeurosci2018,12. 49. SchultzW:Neuronalrewardanddecisionsignals:from

theoriestodata.PhysiolRev2015,95:853-951.

50. KreitzerAC,MalenkaRC:Dopaminemodulationof state-dependentendocannabinoidreleaseandlong-term depressioninthestriatum.JNeurosci2005,25:10537-10545. 51.

 IshiiYagishitaS,KasaiS,Hayashi-TakagiH:AcriticaltimeA,windowEllis-DaviesfordopamineGCR,UrakuboactionsH,on thestructuralplasticityofdendriticspines.Science2014, 345:1616-1620.

Yagishitaetal.experimentallyelucidatethetemporalcredit-assignment problemby showingthatdopamine (reward)releasedupto2safter glutamatergicinput(theactiontoberewarded)allowstheexpressionof structural plasticity (spine enlargement). This mechanism is D1R-mediated and thus would occur at d-SPNs. Theauthors foundthat eligibilitytraceswerekeptshort-livedbecauseofthehigh phosphodies-terase-10Aactivity inthedistaldendrites limitingPKAactivation ina narrowtimewindow.

52.

 ShindoutraceenablesT,Shindoudopamine-dependentM,WatanabeS,WickenssynapticJ:Aplasticitysilenteligibilityfor reinforcementlearninginthemousestriatum.EurJNeurosci 2018http://dx.doi.org/10.1111/ejn.13921.

Using STDPparadigminbrain slices, theauthorsshowthat caged-dopaminedelivered2-4secondsafterglutamatergicinputsallowsthe conversionofLTDintoLTPatcorticostriatalsynapses ontod-SPNs. Importantly,therewasnoshiftofthepolarityofplasticitywhendopamine wasreleasedbeforeorconcomitantlywithglutamate.

53. ParkH,PopescuA,PooM:EssentialroleofpresynapticNMDA receptorsinactivity-dependentBDNFsecretionand corticostriatalLTP.Neuron2014,84:1009-1022.

54. IzhikevichEM:Solvingthedistalrewardproblemthrough linkageofSTDPanddopaminesignaling.CerebCortex2007, 17:2443-2452.

55. GerstnerW,LehmannM,LiakoniV,CorneilD,BreaJ:Eligibility tracesandplasticityonbehavioraltimescales:experimental supportofneoHebbianthree-factorlearningrules.Front. NeuralCircuits2018,12.

(10)

57. BloemB,HudaR,SurM,GraybielAM:Two-photonimagingin miceshowsstriosomesandmatrixhaveoverlappingbut differentialreinforcement-relatedresponses.eLife2017,6. 58. DavisMI,CrittendenJR,FengAY,KupferschmidtDA,

NaydenovA,StellaN,GraybielAM,LovingerDM:The cannabinoid-1receptorisabundantlyexpressedinstriatal striosomesandstriosome-dendronbouquetsofthe substantianigra.PLoSOne2018,13.

59. FinoE,VenanceL:Spike-timingdependentplasticityinstriatal interneurons.Neuropharmacology2011,60:780-788.

60. SilberbergG,BolamJP:Localandafferentsynapticpathways inthestriatalmicrocircuitry.CurrOpinNeurobiol2015, 33:182-187.

61. BurkeDA,RotsteinHG,AlvarezVA:Striatallocalcircuitry:anew frameworkforlateralinhibition.Neuron2017,96:267-284. 62. MathurBN,TanahiraC,TamamakiN,LovingerDM:Voltage drivesdiverseendocannabinoidsignalstomediatestriatal microcircuit-specificplasticity.NatNeurosci2013, 16:1275-1283.

63. MelzerS,GilM,KoserDE,MichaelM,HuangKW,MonyerH: Distinctcorticostriatalgabaergicneuronsmodulatestriatal outputneuronsandmotoractivity.CellRep2017, 19:1045-1055.

64. LismanJ,SprustonN:QuestionsaboutSTDPasageneral modelofsynapticplasticity.FrontSynapticNeurosci2010,2. 65. MehaffeyWH,DoupeAJ:Naturalisticstimulationdrives

opposingheterosynapticplasticityattwoinputstosongbird cortex.NatNeurosci2015,18:1272-1280.

66. O’HareJK,LiH,KimN,GaidisE,AdeK,BeckJ,YinH,CalakosN: Striatalfast-spikinginterneuronsselectivelymodulatecircuit outputandarerequiredforhabitualbehavior.eLife2017,6. 67. OwenSF,BerkeJD,KreitzerAC:Fast-spikinginterneurons

supplyfeedforwardcontrolofbursting,calcium,andplasticity forefficientlearning.Cell2018,172:683-695e15.

68. GremelCM,ChanceyJ,AtwoodB,LuoG,NeveR, RamakrishnanC,DeisserothK,LovingerDM,CostaRM: Endocannabinoidmodulationoforbitostriatalcircuitsgates habitformation.Neuron2016,90:1312-1324.

69. GurneyKN,HumphriesMD,RedgraveP:Anewframeworkfor cortico-striatalplasticity:behaviouraltheorymeetsinvitro

70. LallaL,RuedaOrozcoPE,Jurado-ParrasM-T,BrovelliA, RobbeD:Localornotlocal:investigatingthenatureofstriatal thetaoscillationsinbehavingrats.eNeuro2017,4.

71. KupferschmidtDA,JuczewskiK,CuiG,JohnsonKA,LovingerDM: Parallel,butdissociable,processingindiscretecorticostriatal inputsencodesskilllearning.Neuron2017,96:476-489e5. 72. PetersenCCH:Whole-cellrecordingofneuronalmembrane

potentialduringbehavior.Neuron2017,95:1266-1281. 73. SippyT,LaprayD,CrochetS,PetersenCCH:Cell-type-specific

sensorimotorprocessinginstriatalprojectionneuronsduring goal-directedbehavior.Neuron2015,88:298-305.

74. SmithY,GalvanA,EllenderTJ,DoigN,VillalbaRM, Huerta-OcampoI,WichmannT,BolamJP:Thethalamostriatalsystem innormalanddiseasedstates.FrontSystNeurosci2014,8. 75. DingJ,PetersonJD,SurmeierDJ:Corticostriataland

thalamostriatalsynapseshavedistinctiveproperties.J NeurosciOffJSocNeurosci2008,28:6483-6492. 76. EllenderTJ,HarwoodJ,KosilloP,CapognaM,BolamJP:

Heterogeneouspropertiesofcentrallateraland

parafascicularthalamicsynapsesinthestriatum.JPhysiol 2013,591:257-272.

77. WuY-W,KimJ-I,TawfikVL,LalchandaniRR,ScherrerG,DingJB: Input-andcelltype-specificendocannabinoid-dependent LTDinthestriatum.CellRep2015,10:75-87.

78. CavacciniA,GrittiM,GiorgiA,LocarnoA,HeckN,MigliariniS, BerteroA,MereuM,MargianiG,TruselMetal.:Serotonergic signalingcontrolsinput-specificsynapticplasticityatstriatal circuits.Neuron2018,98:801-816e7.

79. SmealRM,GasparRC,KeefeKA,WilcoxKS:Aratbrainslice preparationforcharacterizingboththalamostriataland corticostriatalafferents.JNeurosciMethods2007, 159:224-235.

80. DoigNM,MossJ,BolamJP:Corticalandthalamicinnervation ofdirectandindirectpathwaymedium-sizedspinyneuronsin mousestriatum.JNeurosci2010,30:14610-14618.

81. LeiW,DengY,LiuB,MuS,GuleyNM,WongT,ReinerA:Confocal laserscanningmicroscopyandultrastructuralstudyof VGLUT2thalamicinputtostriatalprojectionneuronsinrats.J CompNeurol2013,521:1354-1377.

Figure

Figure 1 Sensorimotor cortices  Associative cortices  Limbic  cortices   D2-SPN SNr SNc  GPeD1-SPNCorpus callosum  Late phase of  skill acqquisition / habits Early phase of skill acquisition/ goal directed  STNEPStriatumStriosomes Dorsomedial striatumDorso
Illustration of the analytical methods and parameters used to assess synaptic and structural striatal plasticity during procedural learning
Figure 3 LTP LTD STDP experimentsModel025507510030150-15-30100200501002501002000100Number of pairings (#)ΔtSTDP(ms) 50050100Wtotal (%) Wtotal (%) Wtotal (%) NMDAR-LTPeCB-LTDeCB-LTP132132Number of pairings (#)
Illustration of reinforcement learning allowed by short-lived eligibility traces at corticostriatal synapses

Références

Documents relatifs

Our results show that while the mutant condition was associated to a similar BDNF immunoreactivity in FS interneurons and MS neurons, due to increased colocalization with PV,

Ainsi, les unités verbales qui s’inscrivent dans la structuration linguistique du chemin représentent pour l’essentiel le déplacement d’une entité à localiser

An alternative proxy would be the languages spoken at home.(25) Approximately 7% of women participating in the ELFE cohort reported using at least 2 languages in their household,

Objectives: Because medical, midwifery and law students in Ghana constitute the next generation of health care and legal practitioners, this study aimed to evaluate their

The coordinated shortest hop algorithm works in successive iterations, with the beginning of each iteration synchronized by the destination node. On the ith iteration, the

5 cycles massed (0 min interval between each cycles) or spaced (20 min interval between each cycles) -0.1 0 0.1 0.2 0 1 3 5 Reactivation cycle M e m o ry s c o re 0.1 0.2 M e m o ry

roux und Jakob von Vitry auf die familiäre Verbundenheit ihrer männlichen Adressaten ab, wenn sie darauf hinweisen, dass ein wahrer Kreuzfahrer sich für. Gott und gegen Ehefrau

We then investigated the receptors involved in the synaptic plasticity induced under transient EAAT2 blockade. We first investigated the receptors involved in the LTD observed