• Aucun résultat trouvé

Épreuve écrite de Mathématiques 2 heures

N/A
N/A
Protected

Academic year: 2022

Partager "Épreuve écrite de Mathématiques 2 heures"

Copied!
4
0
0

Texte intégral

(1)

Juin 2019

Épreuve écrite de Mathématiques

2 heures

Les documents et calculatrices sont interdits.

La qualité de la rédaction est un élément important pour l’évaluation.

Exercice 1 Soit I un intervalle deR.

Q. 1.1 Soit (fn)n∈N une suite de fonctions continues de I dans R. On suppose que la suite (fn)n∈Nconverge uniformément vers une fonctionf : IR. Montrer que f est continue sur I.

Q. 1.2 Donner un exemple d’intervalle J et de suite de fonctions continues sur J qui converge simplement vers une fonction f, avecf non-continue sur J.

Q. 1.3 Soientg : IR+une fonction intégrable sur tout compact de I et (fn)n∈N une suite de fonctions de C1(I,R) telle que|fn(t)| ≤g(t) pour toutnet toutt∈I. On suppose de plus que la suite (fn)n∈Nconverge simplement vers une fonctionf. Montrer que f est continue sur I.

Exercice 2 Soit P un polynôme à coefficients réels, PR[X]. On suppose que P=Xn−a1Xn−1−a2Xn−2. . .−an1X−an

avecai 0 pour touti {1, . . . ,n−1} etan>0.

Q. 2.1 Montrer que P admet une unique racineαsurR+.

Q. 2.2 Soitzune racine (réelle ou complexe) de P. Montrer que|z| ≤α. Q. 2.3 On suppose quez̸=α. Montrer que|z| ≤α.

1

(2)

Exercice 3 Pour une suite de complexesa=(an)non pose A(a)={r0/(|an|rn)nest majorée}

B(a)={r0/ lim

n→+∞anrn=0}

C(a)={r0/∑

n

anrnest convergente}

Q. 3.1 Justifier les inclusions C(a) B(a) A(a). Montrer que ces inclusions peuvent être strictes.

Q. 3.2 Montrer que, dansR=R{−∞,+∞}, on a sup A(a)=sup B(a)=sup C(a).

On rappelle que le rayon de convergence d’une série entière∑

nanzncorrespond à la borne supérieure de l’ensemble A(a)={r0/(|an|rn)nest majorée} dansR.

Q. 3.3 Déterminer le rayon de convergence des séries entières a) ∑

n

1+i

n zn2, b) ∑

n

2(1)nnzn, c) ∑

n

cos(2n)zn.

Exercice 4 Dans l’espace de probabilité (Ω, ,F,P), X et Y désignent deux variables aléatoires discrètes à valeurs dansNet indépendantes.

Q. 4.1 Montrer que

P(X=Y)=+∞

k=0

P(X=k)×P(Y=k)

On suppose à partir de maintenant que X suit une loi de Poisson de paramètreλ>0 et qu’il existep∈]0, 1[ tel que∀k∈N,P(Y=k)=p×(1−p)k.

On considère la matrice aléatoire A= (

X X+Y

0 Y

) .

Q. 4.2 Calculer la probabilité que A ne soit pas inversible.

Q. 4.3 Préciser la loi de la variable aléatoire rang (A) ainsi que son espérance.

Q. 4.4 Donner une condition nécessaire et suffisante sura,betcpour qu’une matrice deM2(R), de la forme

(a c 0 b )

soit diagonalisable.

Q. 4.5 Calculer la probabilité que A soit diagonalisable.

2

(3)

June 2019

Written test - Mathematics 2 hours

A standard -non scientific- language dictionary is authorized. Please make sure to have it checked by the staff. Documents, electronic devices and

calculators are not allowed.

The quality of the justifications will be taken into account in the mark.

Exercise 1 Let I be an interval ofR.

Q. 1.1 Let (fn)n∈Nbe a sequence of continuous functions from I toR. We assume that (fn)n∈N converges uniformly to a function f : IR. Show thatf is continuous over I.

Q. 1.2 Give an example of an interval J and of a sequence of continuous functions over J that converges simply to a functionf, withf a non continuous function over J.

Q. 1.3 Letg : IR+be an integrable function over all compacts of I and (fn)n∈Na sequence of functions of C1(I,R)tsuch that|fn(t)| ≤g(t)for allnand allt∈I. Assume moreover that the sequence (fn)n∈Nconverges simply to a function f. Show that f is continuous over I.

Exercise 2 Let P be a polynomial with real coefficients, PR[X]. Assume that P=Xn−a1Xn−1−a2Xn−2. . .−an−1X−an

withai0 for alli∈{1, . . . ,n−1} andan>0.

Q. 2.1 Show that, on (0,+∞), P has a unique rootα.

Q. 2.2 Letzbe a (real or complex) root of P. Show that|z| ≤α.

Q. 2.3 Assumez̸=α. Show that|z| ≤α.

1/2

(4)

Exercise 3 Q. 3.1 Justify the inclusions C(a)B(a)A(a). Show that C(a)̸=B(a)and B(a)̸=

A(a).

Q. 3.2 Show that, inR=R{−∞,+∞}, sup A(a)=sup B(a)=sup C(a). Recall that, for any subset E ofR, sup E is the unique element ofRsuch that for allr∈E,r≤Rand for allε>0, there existsr∈Esuch thatr+ε>R.

Recall that the radius of convergence R of the power series∑

nanzn is the supremum sup A(a) of the set A(a) inR.

Q. 3.3 Determine the radius of convergence of the following power series a) ∑

n

1+i

n zn2, b) ∑

n

2(1)nnzn, c) ∑

n

cos(2n)zn.

Exercise 4 In the probability space (Ω,F,P), let X and Y be two independent non-negative integer-valued random variables.

Q. 4.1 Show that

P(X=Y)=+∞

k=0

P(X=k)×P(Y=k)

Assume from now on that the distribution of X is a Poisson distribution of parameterλ>0 and that there existsp∈]0, 1[ such that∀k∈N,P(Y=k)=p×(1−p)k.

For anyωΩ, we consider the matrix A(ω)=

(X(ω) X(ω)+Y(ω)

0 Y(ω)

) .

Q. 4.2 Compute the probability that A is not invertible, that is,P({ωΩsuch that A(ω)is not invertible}).

Q. 4.3 Give the law of the random variable of the rank of A, that is the dimension of the image of A, and its expected value.

Q. 4.4 Give a necessary and sufficient condition on a,b andc for a 2×2matrix of the form (a c

0 b )

to be diagonalizable.

Q. 4.5 Compute the probability that A is diagonalizable.

2/2

Références

Documents relatifs

However, in contrast to the case of independent r.v.’s where it is found that the optimal rate is of order N − 2+2δ δ for the strong invariance principle and N − 3+2δ δ for the

The convex bodies of Theorem 1.2 are in fact random spectrahedra (i.e., spectrahedra defined using random matrices A 0 ,. , A n ) of appropriate dimension, where the formulas for

Members of the tpc.int subdomain cooperative are defined as those Internet sites who provide access to services as defined in this document and as periodically amended by

Once the identity of the VPIM directory server is known, the email address, capabilities, and spoken name confirmation information can be retrieved.. This query is expected to

It will be seen that the method used in this paper leads immediately to a much better result than o (n/log2 n) for thenumber ofprimitive abundant numbers not

Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism1. On the same

Please attach a cover sheet with a declaration http://tcd-ie.libguides.com/plagiarism/declaration confirming that you know and understand College rules on plagiarism.. Please put

In an orthogonal approach, [26] proposed a quantum algorithm for LPs and SDPs by quantizing a variant of the classical interior point method and using the state of the art