• Aucun résultat trouvé

Air tightness of fire dampers for smoke exhaust systems in high-rise buildings

N/A
N/A
Protected

Academic year: 2021

Partager "Air tightness of fire dampers for smoke exhaust systems in high-rise buildings"

Copied!
12
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Paper (National Research Council of Canada. Division of Building Research); no.

DBR-P-1254, 1984

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=741dd8d6-bc4d-4269-8fbf-da9b0152c92e

https://publications-cnrc.canada.ca/fra/voir/objet/?id=741dd8d6-bc4d-4269-8fbf-da9b0152c92e

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/40001727

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Air tightness of fire dampers for smoke exhaust systems in high-rise

buildings

(2)

Ser

THl

N21d

1254

National Research

Conseil national

c *

2

BLDG

I

$

Council Canada

de recherches Canada

AIR TIGHTNESS OF FIRE DAMPERS FOR SMOKE EXHAUST

SYSTEMS I N HIGH-RISE BUILDINGS

by

G.T. Tarnura and J.H. McGuire

Reprinted from

ASHRAE Transactions

Vol. 90, 1984, Part 1 B

p.

647

-

654

DBR Paper

No.

1254

Division of Building Research

(3)

L ' e x t r a c t i o n de l ' a i r d* l a zone e n f e u d ' u n biitiment r 6 d u i t n e t t e m e n t l e s p r o b l h e s r e l i B s B l a f u d e . En g g n g r a l , l ' e x t r a c t i o n de l a FumBe s e f a i t au w y e n d'une g a i n e comportant d e s r e g i s t r e s

a

chacun d e s s t a g e s du biitiment. En c a s d ' i n c e n d i e , les r e g i s t r e s du t o i t e t c e l u i de l ' 6 t a g e e n f e u s ' o u v r e n t pour Bvacuer l a fumBe.

L ' e f f i c a c i t i d e l a g a i n e d 1 6 v a c u a t i o n d e s fumBes diminue s i d e s F u i t e s s e p r o d u i s e n t aux r e g i s t r e s E e r d s d e s k t a g e s non a t t e i n t s p a r l e f e u . Des e s s a i s o n t i t 6 e f f e c t u i s a v a n t e t a p r s s un i n c e n d i e pour mesurer l e s f u i t e s d ' a i r de r e g i s t r e s c o u p e - f e u b r e v e t g s couramment u t i l i s i s s u r l e s g a i n e s d 1 6 v a c u a t i o n d e s fumBes. Avant l ' i n c e n d i e , l e r a p p o r t de l ' a i r e de f u i t e ii l ' a i r e du r e g i s t r e G t a i t g6nEralement i n f 6 r i e u r B 2,5%. Aprss e x p o s i t i o n pendant un temps d6terminB

a

l a t e m p g r a t u r e d ' e s s a i , l e s r a p p o r t s 6 t a i e n t e n gBn6ral i n f g r i e u r s

a

4%. En r e d u i s a n t l a t e m p e r a t u r e maximale du g 6 n C r a t e u r d ' a i r chaud 2 1 000°F (540°C), l ' a u g m e n t a t i o n d e l ' a i r e de E u i t e c o n s i c u t i v e 2 une e x p o s i t i o n au f e u 6 t a i t moins i m p o r t a n t e .

(4)

Air Tightness

of

Fire Dampers for Smoke

Exhaust Systems in High-Rise Buildings

G.T. Tamura

ASHRAE Member

J.H. McGuire

ABSTRACT

Venting t h e f i r e r e g i o n of a b u i l d i n g t o t h e e x t e r i o r s i g n i f i c a n t l y reduces smoke problems caused by a f i r e . T h i s i s of t e n a c h i e v e d by means of a smoke e x h a u s t s h a f t w i t h dampered openings on e a c h f l o o r . I n t h e e v e n t of f i r e , t h e dampers a t t h e t o p and on t h e f i r e f l o o r a r e opened t o e x h a u s t smoke t o t h e e x t e r i o r .

The performance of t h e smoke exhaust s h a f t is s e r i o u s l y a f f e c t e d by any e x t r a n e o u s a i r l e a k a g e through c l o s e d dampers l o c a t e d on t h e n o l r f i r e f l o o r s . T e s t s have b e e n conducted b e f o r e and a f t e r f i r e exposure t o measure t h e a i r l e a k a g e c h a r a c t e r i s t i c of p r o p r i e t o r y f i r e dampers c u r r e n t l y used f o r smoke s h a f t a p p l i c a t i o n .

The p r e - f i r e t e s t r a t i o s of l e a k a g e a r e a t o damper a r e a were g e n e r a l l y below 2f%. A f t e r exposure t o t h e s t a n d a r d time-temperature, t h e r a t i o s were g e n e r a l l y below 4%. R e s t r i c t i n g t h e maximum f u r n a c e temperature t o 1000°F (540°C) c o n s i d e r a b l y reduced t h e i n c r e a s e i n l e a k a g e a r e a r a t i o due t o f i r e exposure.

INTRODUCTION

Venting of smoke from t h e f i r e r e g i o n i n a b u i l d i n g t o t h e e x t e r i o r p l a y s a s i g n i f i c a n t r o l e i n r e d u c i n g smoke problems caused by f i r e . The p r e f e r r e d approach i s t o c r e a t e a steady- s t a t e c o n d i t i o n of lower p r e s s u r e i n t h e f i r e compartment r e l a t i v e t o t h a t i n a d j a c e n t compartments.

I n g e n e r a l , proper a p p l i c a t i o n of v e n t i n g of t h e f i r e r e g i o n can a c h i e v e t h i s

o b j e c t i v e , a l t h o u g h t e c h n i q u e s of v e n t i n g v a r y c o n s i d e r a b l y . The N a t i o n a l Building Code of Canada (1980), which r e q u i r e s p r o v i s i o n f o r v e n t i n g of e a c h f l o o r a r e a , p e r m i t s u s e of t h e b u i l d i n g a i r h a n d l i n g system t o a c h i e v e t h i s i f t h e f l o o r a r e a i s s p r i n k l e r e d . A r e c e n t survey of smoke c o n t r o l systems i n a Canadian c i t y * i n d i c a t e s t h a t b u i l d i n g s w i t h c e n t r a l

HVAC systems u s u a l l y make u s e of e i t h e r t h e r e t u r n a i r o r e x h a u s t systems, and t h a t

compartmented systems u s e t h e f r e s h air v e r t i c a l s h a f t . Only a few b u i l d i n g s u s e a s e p a r a t e smoke s h a f t a s a means of v e n t i n g a f i r e compartment.

I n s i n g l e - s t o r y b u i l d i n g s roof v e n t s o r powered roof e x h a u s t s may be used, b u t i n high- r i s e b u i l d i n g s a s e p a r a t e v e r t i c a l s h a f t o r d u c t i s o f t e n n e c e s s a r y . When f i r e i s d e t e c t e d , t h e s h a f t i s opened a t t h e t o p and a t t h e f i r e f l o o r and t h e e x h a u s t f a n ( l o c a t e d a t t h e t o p of t h e s h a f t ) i s a c t i v a t e d . The e x h a u s t dampers on non f i r e f l o o r s must b e closed.

. . . .

"Information t o be p u b l i s h e d s h o r t l y

G.T. Tamura i s a Research O f f i c e r , Energy and S e r v i c e s S e c t i o n , and J.H. McGuire f o r m e r l y a Research O f f i c e r , F i r e Research S e c t i o n , D i v i s i o n of B u i l d i n g Research, N a t i o n a l Research C o u n c i l Canada, Ottawa, Canada, K1A OR6.

(5)

FIRE DAMPERS

Openings i n a f i r e - r a t e d e x h a u s t s h a f t must be p r o t e c t e d w i t h a f i r e damper a c c o r d i n g t o NFPA 90A, "Standard f o r t h e I n s t a l l a t i o n of A i r c o n d i t i o n i n g and V e n t i l a t i n g Systems

."

S p e c i f i c a t i o n f o r f i r e dampers i s g i v e n i n UL 555, "Standard f o r F i r e Dampers and C e i l i n g Assemblies." It i s t h e f u n c t i o n of a f i r e damper t o m a i n t a i n t h e i n t e g r i t y of f i r e

p a r t i t i o n s d u r i n g f i r e . The proposed "UL 5558, Standard f o r Leakage Rated Dampers f o r Use i n Smoke C o n t r o l Systems," i s b e i n g developed t o limit t h e amount of smoke m i g r a t i n g through a dampered opening.

The a i r l e a k a g e c h a r a c t e r i s t i c of dampers i s p a r t i c u l a r l y important when t h e y a r e used i n a smoke-exhaust s h a f t . Unless dampers on f l o o r s o t h e r t h a n t h e f i r e f l o o r a r e c l o s e d t i g h t l y t h e e f f e c t i v e n e s s of t h e smoke exhaust system w i l l be g r e a t l y impaired. T e s t s conducted on 7-story and 22-story b u i l d i n g s w i t h c e n t r a l a i r h a n d l i n g systems i n d i c a t e t h a t t h e r a t e s of a i r f l o w i n t o t h e smoke s h a f t through an open smoke damper a r e about one t h i r d t h e t o t a l flow r a t e a t t h e t o p of t h e smoke s h a f t ; a d d i t i o n a l a i r e n t e r s t h e s h a f t through c r a c k s i n t h e w a l l c o n s t r u c t i o n , around and between damper b l a d e s , and between damper frame and w a l l (Tamura and Shaw 1981). T e s t s conducted on a 3 0 s t o r y b u i l d i n g w i t h a smoke s h a f t c o n s t r u c t e d of s h e e t metal gave a v e n t i n g r a t e on t h e f o u r t h f l o o r of 1.4 a i r changes p e r hour; t h i s r e p r e s e n t e d 38% of t h e t o t a l e x h a u s t r a t e a t t h e t o p . When a l l c l o s e d smoke

dampers were s e a l e d w i t h p l a s t i c s h e e t , t h e v e n t i n g r a t e on t h e f o u r t h f l o o r i n c r e a s e d by 44% t o 2.0 a i r changes p e r hour. T h i s s u g g e s t s t h a t t h e performance of smoke e x h a u s t s h a f t s c a n be g r e a t l y improved by reducing l e a k a g e through c l o s e d smoke dampers.

C u r r e n t l y , t h e f i r e dampers used i n smoke e x h a u s t systems a r e t h e same a s t h o s e t h a t s e r v e a s f i r e c u t - o f f s i n a i r h a n d l i n g d u c t s , where t h e y a r e n o t expected t o b e p a r t i c u l a r l y t i g h t . The t e s t s now d e s c r i b e d were c a r r i e d o u t t o a s s e s s t h e i r a i r - l e a k a g e c h a r a c t e r i s t i c s f o r such a p p l i c a t i o n s .

TEST DAMPERS

Two each of n i n e d i f f e r e n t models of damper were purchased from f i v e manufacturers. A s noted i n T a b l e 1 , t h r e e were c u r t a i n t y p e , two were s i n g l e b l a d e , and f o u r were m u l t i b l a d e . A l l

were ULC approved, complying w i t h ULC S112 (comparable t o UL 5551, Standard Method of F i r e T e s t of Fire-Damper Assemblies.

P r i o r t o t e s t , v e r t i c a l and h o r i z o n t a l through-openings, a s d e f i n e d i n ULC S112, were measured on a l l dampers. There were no h o r i z o n t a l through-openings i n e i t h e r b l a d e o r c u r t a i n t y p e dampers, nor v e r t i c a l t h r o u g h w p e n i n g s i n c u r t a i n t y p e dampers; b u t t h o s e i n b l a d e t y p e dampers v a r i e d from 0 t o 0.32 i n . (8 mm). These through c l e a r a n c e s complied w i t h

being l e s s t h a n t h e maximum 0.031 i n . ( 1 ram) f o r h o r i z o n t a l through-openings and 0.375 i n . (10 mrn) f o r v e r t i c a l through-openings.

TESTS

A t o t a l of f i v e 2-hour f i r e t e s t s , f o l l o w i n g t h e ASTM E-119 s t a n d a r d time-temperature c u r v e

( F i g u r e l ) , were c a r r i e d o u t i n t h e l a r g e DBRINRCC w a l l f u r n a c e . Each t e s t i n v o l v e d between I t h r e e and f i v e dampers ( F i g u r e 2). The f i r s t was conducted w i t h n e g a t i v e f u r n a c e p r e s s u r e

I

r a n g i n g between 0.04 and 0.08 i n . of w a t e r (10 and 20 Pa), depending on t h e h e i g h t i n t h e

f u r n a c e of t h e damper under c o n s i d e r a t i o n . The remaining t e s t s were c a r r i e d o u t under a i p o s i t i v e f u r n a c e p r e s s u r e of about 0.20 i n . of w a t e r ( 5 0 Pa). T h i s l a t t e r c o n d i t i o n i s more

s e v e r e t h a n would be encountered i n r e a l i t y , where t h e room a i r i n t h e non f i r e f l o o r s normally f l o w s through t h e c l o s e d dampers i n t o t h e smoke e x h a u s t s h a f t . A s i x t h 2-hour t e s t was c a r r i e d o u t w i t h a maximum f u r n a c e temperature of 1000°F (540°C).

A i r l e a k a g e t e s t s were conducted on each damper b e f o r e and a f t e r t h e f i r e exposure t e s t . F i g u r e 3 shows t h e t e s t arrangement f o r measuring t h e a i r t i g h t n e s s of t h e dampers. It

c o n s i s t e d of a s e a l e d plywood box 3 x 4 x 6 f t (0.91 x 1.22 x 1.83 m) w i t h a l a r g e opening on one s i d e f o r i n s t a l l i n g t e s t dampers. The o p p o s i t e s i d e of t h e box was connected t o a round

(6)

d u c t , i t s end connected t o t h e s u c t i o n s i d e of a fan. The d i s c h a r g e s i d e of t h e f a n was connected t o a s h o r t d u c t w i t h a damper t o c o n t r o l t h e r a t e of a i r f l o w through t h e t e s t damper. With t h i s arrangement t h e a i r was drawn from t h e room, through t h e t e s t damper, i n t o t h e l a r g e box, o u t through t h e d u c t and f a n , and back i n t o t h e room.

Three d i f f e r e n t duct-fan arrangements were used t o cover t h e expected range of l e a k a g e r a t e through t h e t e s t dampers:

Fan Duct Duct

C a p a c i t y Diameter Length Method of

cfm ( L / s ) i n . (m) i n . (m) Flow Measurement 350 (165) 4 (0.10) 96 (2.44) laminar flow element

800 (377) 8 (0.20) 108 (2.74) t o t a l p r e s s u r e a v e r a g i n g t u b e 3200 (1510) 12 (0.30) 120 (3.05) t o t a l p r e s s u r e a v e r a g i n g t u b e Flow r a t e measurements were made w i t h a s i n g l e p r e s s u r e r e a d i n g a f t e r each d u c t system had been c a l i b r a t e d u s i n g a l o - p o i n t l o g - l i n e a r p i t o t t r a v e r s e . A s t a t i c p r e s s u r e t a p was i n s e r t e d i n t o t h e w a l l of t h e l a r g e box t o measure t h e p r e s s u r e drop a c r o s s t h e t e s t damper w i t h a p r e s s u r e t r a n s d u c e r . P r e s s u r e r e a d i n g s were made w i t h a diaphragm t y p e p r e s s u r e t r a n s d u c e r ( s e n s i t i v i t y of 0.002 i n . of water (0.50 Pa)).

The l a r g e box was t e s t e d f o r a i r - t i g h t n e s s by o p e r a t i n g t h e f a n a f t e r t h e opening of t h e t e s t damper had been s e a l e d . The t e s t was t e r m i n a t e d a t 1 in. of w a t e r (249 Pa) w i t h t h e p r e s s u r e d i f f e r e n c e r e a d i n g s t i l l r i s i n g , i n d i c a t i n g t h a t t h e l a r g e box was v i r t u a l l y a i r t i g h t .

The t e s t f i r e dampers were i n s t a l l e d i n t h e l a r g e box w i t h t h e a x i s of t h e b l a d e s i n t h e h o r i z o n t a l p o s i t i o n . The dampers were c l o s e d by d i s c o n n e c t i n g t h e f u s i b l e l i n k s and a l l o w i n g them t o c l o s e by e i t h e r g r a v i t y o r s p r i n g a c t i o n . Even p r i o r t o f i r e t e s t i n g , t h e dampers d i d n o t , i n some c a s e s , c l o s e completely and had t o be c l o s e d manually.

I n i t i a l t e s t s were conducted t o determine whether r e p e a t e d opening and c l o s i n g o f

dampers a f f e c t e d t h e a i r l e a k a g e r a t e s . Fan flow was a d j u s t e d by means of t h e c o n t r o l damper t o m a i n t a i n a p r e s s u r e d i f f e r e n c e of 0.50 i n . of water (125 Pa) a c r o s s t h e t e s t damper and t h e corresponding l e a k a g e flow was measured. The t e s t damper was t h e n opened and c l o s e d and t h e a i r leakage flow was measured a t t h e same p r e s s u r e d i f f e r e n c e . This procedure was

r e p e a t e d s i x times. T h i s was followed by t e s t s t o d e t e r m i n e t h e a i r l e a k a g e c h a r a c t e r i s t i c s of t h e damper. Air-leakage flows were measured a t p r e s s u r e d i f f e r e n c e s of 0.10 t o 0.50 i n . of w a t e r (25 t o 125 Pa) i n increments of 0.10 in. of w a t e r (25 Pa).

E v a l u a t i o n of A i r T i g h t n e s s

The r e l a t i o n between a i r leakage flow and p r e s s u r e d i f f e r e n c e a c r o s s t h e t e s t damper c a n be e x p r e s s e d by

Q =

c

(AP)" ( 1 )

where

Q = leakage flow p e r u n i t damper a r e a , cmf / f t (L/s m2) C = flow c o e f f i c i e n t , c f m / f t 2 ( i n . of water)" (L/s m 2 ( p a l n ) I

AP = p r e s s u r e d i f f e r e n c e a c r o s s damper, i n . of w a t e r (Pa) I n = flow exponent

The flow c o e f f i c i e n t , C , and flow exponent, n, of t h e above e q u a t i o n d e f i n e t h e a i r - l e a k a g e c h a r a c t e r i s t i c s of t h e damper. During t h e t e s t s f i v e s e t s of v a l u e s f o r l e a k a g e flow, Q, and p r e s s u r e d i f f e r e n c e , AP, were obtained. The damper a r e a s , A , were a l s o

determined, based on t h e i n s i d e dimensions of t h e frame. The v a l u e s of flow c o e f f i c i e n t and exponent were c a l c u l a t e d u s i n g t h e l e a s t s q u a r e s method.

A i r t i g h t n e s s can be expressed i n terms of t h e percentage r a t i o of leakage opening a r e a t o damper a r e a by u s i n g t h e e q u a t i o n f o r flow of a i r through a sharp-edged o r i f i c e

(7)

where

-

A = l e a k a g e areaidamper a r e a p e r c e n t a g e r a t i o , % S u b s t i t u t i n g Q of Equation 2 i n Equation 1 g i v e s

Note: When S I u n i t s a r e used, c o n s t a n t 24 i n Equations 2 and 3

i s

r e p l a c e d by 0.72.

RESULTS

Table 1 g i v e s t h e r e s u l t s of t h e a i r leakage t e s t s b e f o r e and a f t e r each f i r e endurance t e s t . They a r e e x p r e s s e d i n terms of p e r c e n t a g e of damper a r e a ( i n s i d e dimensions of frame) and a r e based on Equation 3, w i t h a v a l u e of 0.30 i n . of w a t e r (75 Pa) f o r A'. Values of t h e flow exponent ranged from 0.47 t o 0.60, w i t h a mean v a l u e of 0.53 f o r a l l dampers b e f o r e and a f t e r t h e f i r e t e s t s , i n d i c a t i n g t h a t t h e l e a k a g e openings behaved much l i k e a s h a r p edged

o r i f ice.*

With r e p e a t e d c l o s u r e t h e v a r i a t i o n i n l e a k a g e f l o w r a t e a p p e a r s t o depend on t h e t y p e of s e a l between b l a d e s and s t o p s . The v a r i a t i o n s i n l e a k a g e flow r a t e f o r two c u r t a i n t y p e dampers from one manufacturer were 11 and 19%, and t h o s e from a n o t h e r manufscturer 4 and 6%. F o r b l a d e t y p e dampers t h e v a r i a t i o n s were 10 and 38% f o r dampers from o n e manufacturer, and 0 and 3% f o r t h o s e from a n o t h e r . I n t h e l a t t e r dampers t h e s p r i n g c l i p o r l a t c h c l o s u r e s provided i n a d d i t i o n t o t h e u s u a l b l a d e s t o p a t t h e bottom appeared t o e n s u r e c o n s i s t e n t a i r leakage r a t e s .

Table 1 g i v e s t h e l e a k a g e a r e a s f o r blade-type dampers t e s t e d w i t h t h e d i r e c t i o n o f a i r f l o w away from t h e s i d e of t h e damper c o n t r o l mechanism towards t h e o p p o s i t e s i d e . T h i s

i s t h e expected d i r e c t i o n of a i r f l o w f o r smoke s h a f t a p p l i c a t i o n . No such d i s t i n c t i o n could be made f o r c u r t a i n - t y p e dampers because b o t h s i d e s of t h e dampers were s i m i l a r i n

c o n s t r u c t i o n . Upstream s i d e s of t h e s e dampers were i d e n t i f i e d s o t h a t t h e y c o u l d be t e s t e d i n t h e same manner b e f o r e and a f t e r t h e f i r e t e s t .

Table 1 g i v e s an i n d i c a t i o n ( p r i o r t o f i r e t e s t i n g ) of t h e v a r i a t i o n i n l e a k a g e v a l u e s t h a t c a n b e e x p e c t e d w i t h t y p e of damper and manufacturer, even f o r two i d e n t i c a l dampers. The l e a k a g e a r e a s f o r a l l dampers t e s t e d were between 0.44 t o 2.85% of damper a r e a . Maximum l e a k a g e a r e a s were 1.42% f o r t h e c u r t a i n t y p e , 2.61% f o r t h e s i n g l e b l a d e t y p e , 2.43% f o r t h e m u l t i b l a d e t y p e , and 2.85% f o r t h e m u l t i b l a d e t y p e w i t h c e n t e r mullion. The maximum

d i f f e r e n c e between two i d e n t i c a l dampers was 0.72 p e r c e n t a g e p o i n t s , and t h e a v e r a g e d i f f e r e n c e was about 0.30 p e r c e n t a g e p o i n t s .

Following t h e i n i t i a l a i r - l e a k a g e t e s t s , t h e f i r e dampers were i n s t a l l e d i n t h e w a l l f u r n a c e w i t h t h e upstream f a c e , a s t e s t e d f o r a i r l e a k a g e , exposed t o t h e f i r e . T a b l e 1 , which a l s o g i v e s t h e r e s u l t s of t h e a i r - l e a k a g e t e s t s t h a t followed t h e f i r e t e s t s , i n d i c a t e s a n i n c r e a s e i n l e a k a g e a r e a s f o r c u r t a i n - t y p e dampers g r e a t e r by 0.5 t o 1.0 p e r c e n t a g e p o i n t when t h e f u r n a c e was under p o s i t i v e a s compared t o n e g a t i v e p r e s s u r e . With t h e f u r n a c e under n e g a t i v e p r e s s u r e t h e a i r i n t h e room induced through t h e f i r e damper, a s i s t h e c a s e f o r smoke-shaft a p p l i c a t i o n , would t e n d t o c o o l t h e damper, whereas an o p p o s i t e e f f e c t would t a k e p l a c e w i t h t h e f u r n a c e under p o s i t i v e p r e s s u r e .

A f t e r t h e p o s i t i v e p r e s s u r e f u r n a c e t e s t s , t h e i n c r e a s e i n l e a k a g e a r e a s of t h e c u r t a i n - t y p e dampers ranged from -0.06 t o 1.34 p e r c e n t a g e p o i n t s of t h e damper a r e a . The i n c r e a s e i n leakage a r e a s a f t e r a 2-hour f i r e endurance t e s t f o r t h e blade-type dampers ranged from -0.08 t o 5.1 p e r c e n t a g e p o i n t s of t h e damper a r e a . The g r e a t e s t i n c r e a s e s o c c u r r e d f o r t h e multi- blade t y p e dampers, followed by m u l t i b l a d e t y p e w i t h c e n t e r mullion. The l e a s t o c c u r r e d f o r t h e s i n g l e b l a d e dampers. The maxirmm through c l e a r a n c e s f o r a l l dampers were less t h a n t h e 0.375 i n . (10 mrn) s p e c i f i e d by ULC S112. The maximum gap between b l a d e s was a l s o l e s s t h a n t h i s v a l u e , except f o r one m u l t i b l a d e damper t h a t had a 2111. (51-mm) gap caused by s e v e r e bowing of t h e t o p blade.

"-3

W o r e p r e c i s e l y , A, must be m u l t i p l i e d by

(-)

t o c o r r e c t f o r n

#

3

and .30

AP

#

0.30 in. of water. Because n-4 i s 0.09, t h i s c o r r e c t i o n i s n e g l i g i b l e i n t h i s case. 650

(8)

The i n c r e a s e i n a i r l e a k a g e v a l u e s f o r t h e dampers t e s t e d w i t h maxiaum f u r n a c e

t e m p e r a t u r e s of 1000°F (540°C), T e s t No. 6, were almost n e g l i g i b l e , i.e., -0.33 t o 0.14

p e r c e n t a g e p o i n t s of t h e damper a r e a .

DISCUSSION

P r e s s u r e l o s s e s can occur i n s i d e a smoke e x h a u s t s h a f t a s a r e s u l t of g a s f l o w through t h e open v e n t on t h e f i r e f l o o r and a r e u s u a l l y e x a c e r b a t e d by a i r f l o w through v a r i o u s l e a k a g e openings i n t h e w a l l s of t h e smoke s h a f t . These p r e s s u r e l o s s e s reduce t h e p r e s s u r e d i f f e r e n c e a c r o s s t h e open smoke damper, w i t h c o r r e s p o n d i n g r e d u c t i o n i n t h e r a t e of smoke exhaust. A n a l y s i s of t h e performance of smoke s h a f t s i n d i c a t e s t h a t t h e a r e a of l e a k a g e

openings i s a n i m p o r t a n t parameter i n s i z i n g a smoke s h a f t . Because t h e number of r e q u i r e d

dampers i n c r e a s e s w i t h t h e h e i g h t of a b u i l d i n g , t h e w a l l s of t h e smoke s h a f t and t h e smoke dampers of h i g h b u i l d i n g s must be r e l a t i v e l y a i r t i g h t ; f f t h e y a r e n o t , t h e smoke s h a f t

cannot e f f e c t i v e l y vent t h e f i r e f l o o r . The desiga, of a mechanical smoke e x h a u s t system t h a t

t a k e s i n t o account damper l e a k a g e h a s been d e s c r i b e d (Tamura and Shaw 1978). L e a k a g e r a t e d

dampers, a s proposed i n UL 5558 w i l l a s s i s t i n t h e d e s i g n of such systems.

P a r t i a l l y c l o s e d dampers can r e s u l t i n e x c e s s i v e a i r l e a k a g e flow. S p e c i a l p r e c a u t i o n s s h o u l d be t a k e n f o r dampers i n v e n t i l a t i o n a i r d u c t s t h a t a r e open d u r i n g normal o p e r a t i o n but c a l l e d upon t o c l o s e on non f i r e f l o o r s d u r i n g a f i r e emergency. End s w i t c h e s on dampers c a n i n d i c a t e f u l l y c l o s e d o r f u l l y open damper p o s i t i o n s a t t h e c e n t r a l a l a r m and c o n t r o l f a c i l i t y d u r i n g a f i r e a s w e l l a s d u r i n g r o u t i n e maintenance of t h e smoke-control system. F i g u r e 1 i s a t y p i c a l r e c o r d of t h e t e m p e r a t u r e extremes t h a t p r e v a i l on t h e unexposed s u r f a c e s of dampers s u b j e c t e d t o t h e s t a n d a r d time-temperature curve and p o s i t i v e f u r n a c e p r e s s u r e . Unless, i n p r a c t i c e , a l l combustible m a t e r i a l s a r e k e p t w e l l away from t h e damper, r i s k of i g n i t i o n i s s u b s t a n t i a l .

CONCLUSIONS

I n t e s t i n g f i r e dampers f o r u s e i n smoke exhaust s h a f t s t h e f o l l o w i n g p o i n t s were observed. 1. The p r e - f i r e - t e s t r a t i o of l e a k a g e a r e a t o damper a r e a was g e n e r a l l y below 23%, e x c e p t

f o r two c a s e s i n which i t was 2.61 and 2.85%. I n some c a s e s t h e dampers d i d n o t c l o s e

completely u n t i l c l o s e d manually b e f o r e t e s t i n g .

2. The p o s t - f i r e - t e s t l e a k a g e a r e a was g e n e r a l l y below 4%, e x c e p t f o r two c a s e s i n which i t

was 5.53 and 7.29%.

3. Operating t h e f u r n a c e under p o s i t i v e ( f o r c u r t a i n - t y p e dampers o n l y ) r a t h e r t h a n n e g a t i v e p r e s s u r e gave s l i g h t l y b u t n o t s u b s t a n t i a l l y g r e a t e r p o s t - f i r e l e a k a g e a r e a r a t i o s .

4. R e s t r i c t i n g t h e maximum f u r n a c e temperature t o 1000°F (540°C) c o n s i d e r a b l y reduced t h e

i n c r e a s e i n l e a k a g e a r e a r a t i o .

5. C u r t a i n dampers g e n e r a l l y had s m a l l e r i n c r e a s e s i n l e a k a g e a r e a r a t i o t h a n d i d o t h e r t y p e s t e s t e d .

REFERENCES

N a t i o n a l B u i l d i n g Code of Canada. 1980. A s s o c i a t e Committee on t h e N a t i o n a l B u i l d i n g Code,

N a t i o n a l Research C o u n c i l of Canada, Ottawa, NRCC 17303, 547 p.

Tamura, G.T.; and Shaw, C.Y. 1978. "Experimental s t u d i e s of mechanical v e n t i n g f o r smoke

c o n t r o l i n t a l l o f f i c e b u i l d i n g s . " ASHRAE T r a n s a c t i o n s 84, P a r t 1, pp. 54-71.

Tamura, G.T.; and Shaw, C.Y. 1981. " F i e l d checks on b u i l d i n g p r e s s u r i z a t i o n f o r smoke

c o n t r o l i n h i g h - r i s e buildings." ASHRAE J o u r n a l 23, No. 2, (Feb. ), pp. 21-25.

(9)

ACKNOWLEDGEMENTS

The a u t h o r s a r e indebted t o R.G. Evans f o r conducting t h e a i r leakage t e s t s and t o

J.E. Berndt, P. Huot and R. Lamirande f o r c a r r y i n g o u t t h e f i r e tests. T h i s paper i s a

c o n t r i b u t i o n from t h e Division of Building Research, National Research Council Canada, and i s

(10)

TABLE 1

R e s u l t s of A i r Leakage T e s t s

Damper Leakage Area (% damper a r e a ) Dimensions

T e s t Furnace Type Width x Height Manuf ac- Before A f t e r I n c r e a s e No. P r e s s u r e in. (m) t u r e r T e s t T e s t 1 n e g a t i v e c u r t a i n 36 x 36 A 1.42 0.94 -0.4 8 (0.91 x 0.91) 30 x 40 B 1.02 1.33 0.3 1 (0.76 x 1.01) C 0.64 0.67 0.03 2 p o s i t i v e c u r t a i n 36 x 36 A 0.80 1.10 0.30 (0.91 x 0.91) 30 x 40 B 0.88 2.22 1.34 (0.76 x 1.01) C 0.60 1.10 0.50 3 p o s i t i v e c u r t a i n * 36 x 36 A 0.94** 0.88 -0.0 6 (0.91 x 0.91) 30 x 40 B 1.33** 1.51 0.18 (0.76 x 1.01) C 0.67** 0.75 0.08 4 p o s i t i v e m u l t i b l a d e 48 x 36 D 1.56 3.67 2.1 1 (with c e n t r e (1.22 x 0.91) mullion) r m l t i b l a d e 36 x 48 D 0.44 5.5 3 5.09 (0.91 x 1.22) 36 x 12 D 1.89 2.40 0.51 (0.91 x 0.30) s i n g l e b l a d e 36 x 14 E 2.06 1.98 -0.08 (0.91 x 0.35) 5 p o s i t i v e m u l t i b l a d e 36 x 48 D 0.77 3.66 2.89 (0.91 x 1.22) 36 x 36 E 2.22 7.29 5.07 (0.91 x 0.91) nu1 t i b l a d e 48 x 36 (with c e n t r e (1.22 x 0.91) E 2.48 3.53 1.05 n u l l i o n ) 6*** p o s i t i v e s i n g l e blade 36 x 12 D 2.61 2.7 1 0.10 (0.91 x 0.30) nu1 t i b l a d e 36 x 36 E 2.43 2.2 2 -0.2 1 (0.91 x 0.91) n u l t i b l a d e 48 x 36 D 1.18 1.04 -0.14 (with c e n t r e (1.22 x 0.91) n u l l i o n ) 48 x 36 E 2.85 2.52 -0.3 3 (1.22 x 0.91)

*

Salvaged from t e s t No. 1

**

Before f i r e t e s t No. 3

(11)

F i g u r e 1 . TIME. MINUTES !Typical t e m p e r a t u r e s a t u n e x p o s e d f a c e o f damper s u b j e c t e d t o ASTM E - 1 19 t i m e - t e m p e r a t u r e c u r v e F i g u r e 2. A-I-thngement f o r f i r e e x p o s u r e t e s t S E A L I D P L Y W O O D BOX I P R E S S U R E T R A N S D U C E R f E S T D A M P E R I S T A T I C PRESSURE D A M P E R FOR TAP F L O W C O N T R O L

-

r r

A

-

f

F A N

-

/

/

\

T O T A L PRESSURE S T A T I C A V E R A G I N G TUBE PRESSURE TAP

\

S T A T I C PRESSURE TAP T O R O O M A I R F i g u r e 3 . Arrangement f o r m e a s u r i n g a i r - t i g h t n e s s o f d a m p e r s

(12)

T h i s p a p e r , w h i l e b e i n g d i s t r i b u t e d i h r e p r i n t form by t h e D i v i s i o n of B u i l d i n g R e s e a r c h , remains t h e c o p y r i g h t of t h e o r i g i n a l p u b l i s h e r . It s h o u l d n o t be r e p r o d u c e d i n whole o r i n p a r t w i t h o u t t h e p e r m i s s i o n of t h e p u b l i s h e r . A l i s t of a l l p u b l i c a t i o n s a v a i l a b l e from t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n , D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a , O t t a w a , O n t a r i o ,

KIA OR6.

Références

Documents relatifs

With its very high strength, high modulus and very low permeability, ultra high performance concrete (UHPC) can provide major improvements over conventional high performance

This report describes the design and function of three flame conductivity devices used to measure the linear flame penetration along the length of seams in a floor. assembly

Previous Research Applications Sketches Drawings CAD Engineering firm Design engineering (Henderson 1991) Storyboard Prototype R&D facility Software development (Gunaratne et

For this paper, the results of selected full-scale fire tests are used to investigate the potential additional effect on occupants of the target room as a result of the

Cette tendance, combinée à l'avènement de nouveaux matériaux de construction, pose un défi pour le maintien d'une bonne qualité de l'air intérieur (QAI), laquelle dépend en effet

The geography of *R-loss described in the previous sections outlines a vast area consisting of the two archipelagoes of Vanuatu and New Caledonia—in other words, what Lynch

This work proposes a different route for the problem of state estimation of nonlinear systems in the presence of measurement noise, which mainly combines a Luenberger observer with

Her main research topics are Speech analysis (segmentation and robust analysis for speech recognition, information fusion), Speech, Speaker and Language recognition