• Aucun résultat trouvé

On the global stability of contact discontinuity for compressible Navier-Stokes equations

N/A
N/A
Protected

Academic year: 2022

Partager "On the global stability of contact discontinuity for compressible Navier-Stokes equations"

Copied!
23
0
0

Texte intégral

(1)

On the Global Stability of Contact Discontinuity for Compressible

Navier-Stokes Equations.

FEIMIN HUANG(*) - HUIJIANG ZHAO(**)

ABSTRACT- The asymptotic behavior of the solutions toward the contact disconti- nuity for the one-dimensional compressible Navier-Stokes equations with a free boundary is investigated. It is shown that the viscous contact discontinu- ity introduced in [3] is asymptotic stable with arbitrarilylargeinitial pertur- bation if the adiabatic exponentgis near 1. The case the asymptotic state is given by a combination of viscous contact discontinuity and the rarefaction wave is further investigated. Both the strength of rarefaction wave and the in- itial perturbation can be arbitrarily large.

1. Introduction.

W e s t u d y i n p r e s e n t p a p e r t h e l a r g e t i m e b e h a v i o r o f t h e s o l u t i o n s f o r t h e o n e - d i m e n s i o n a l c o m p r e s s i b l e N a v i e r - S t o k e s ( N S ) e q u a t i o n s . I t i s k n o w n t h a t t h e r e h a v e b e e n a lo t o f w o r k s o n t h i s s u b j e c t . M o s t o f t h e s e r e s u l t s a r e c o n c e r n e d w i t h t h e r a r e f a c t i o n w a v e a n d v i s c o u s s h o c k w a v e . W e r e f e r t o [ 4 , 6 - 9 , 1 1 - 1 5 , 1 7 - 1 9 ] a n d r e f e r e n c e s t h e r e i n . I t i s n o t e d t h a t N i s h i h a r a , Y a n g a n d Z h a o r e c e n t l y e s t a b l i s h e d i n [ 1 7 , (*) Indirizzo dell’A.: Institute of Applied Mathematics, AMSS, Academia Si- nica, Beijing 100080, China. E-mail: fhuangHmail.amt.ac.cn

(**) Indirizzi dell’A.: Laboratory of Mathematical Physics, Wuhan Institute of Physics and Mathematics, Academia Sinica, Wuhan 430071, China. E-mail:

hhjjzhaoHhotmail.com

School of Political Science and Economics and Graduate School of Science and Engineering, Waseda University, Tokyo 169-8050, Japan.

(2)

1 8 ] t h e g l o b a l s t a b i l i t y o f s t r o n g r a r e f a c t i o n w a v e f o r t h e 333 eq u a - t i o n s . H o w e v e r f e w r e s u l t i s k n o w n f o r t h e c o n t a c t d i s c o n t i n u i t y e x - c e p t [ 3 ] d u e t o v a r i o u s d i f f i c u l t i e s . A s a n e l e m e n t a r y h y p e r b o l i c w a v e , t h e a s y m p t o t i c s t a b i l i t y o f c o n t a c t d i s c o n t i n u i t y s h o u l d b e i n v e s t i g a t - e d . L i u a n d X i n [ 1 0 , 2 0 ] f i r s t s t u d i e d i n 1 9 9 5 t h e n o n l i n e a r s t a b i l i t y o f c o n t a c t d i s c o n t i n u i t y f o r a n a r t i f i c i a l v i s c o s i t y s y s t e m . I t w a s s h o w n i n [ 1 0 , 2 0 ] t h a t t h e c o n t a c t d i s c o n t i n u i t y c a n n o t b e t h e a s y m p t o t i c s t a t e a n d a li n e a r d i f f u s i v e w a v e c a l l e d v i s c o u s c o n t a c t w a v e ( o r v i s c o u s c o n t a c t d i s c o n t i n u i t y ) , w h i c h a p p r o x i m a t e s t h e c o n t a c t d i s c o n t i n u i t y o n a n y f i n i t e t i m e i n t e r v a l , i n s t e a d d o m i n a t e s t h e l a r g e t i m e b e h a v i o r o f t h e s o l u t i o n s . M o t i v a t e d b y [ 1 0 , 2 0 ] , H u a n g , M a t s u m u r a a n d S h i [ 3 ] i n v e s t i g a t e d t h e c o n t a c t d i s c o n t i n u i t y c a s e f o r a ph y s i c a l s y s t e m – c o m - p r e s s i b l e N S e q u a t i o n s , w i t h a fr e e b o u n d a r y . U n l i k e t h e a r t i f i c i a l v i s - c o u s s y s t e m , t h e c o n t a c t d i s c o n t i n u i t y f o r c o m p r e s s i b l e N S e q u a t i o n s i s a p p r o x i m a t e d b y a no n l i n e a r d i f f u s i v e w a v e . T h e n o n l i n e a r s t a b i l i t y o f t h e v i s c o u s c o n t a c t w a v e w a s e s t a b l i s h e d i f t h e i n i t i a l p e r t u r b a t i o n i s s m a l l ( s e e [ 3 ] ) . T h i s m e a n s t h e n o n l i n e a r s t a b i l i t y o f [ 3 ] i sl o c a l. It is w o r t h y t o p o i n t o u t t h a t t h e s t a b i l i t y o f [ 1 0 , 2 0 ] i s a l s ol o c a l. Th u s , a n a t u r a l q u e s t i o n i s w h e t h e r t h e v i s c o u s c o n t a c t w a v e c o n s t r u c t e d i n [ 3 ] i s s t i l l s t a b l e o r n o t u n d e r a r b i t r a r i l yl a r g e p e r t u r b a t i o n . O u r m a i n p u r p o s e o f t h i s p a p e r i s t o g i v e a po s i t i v e a n s w e r t o t h i s q u e s t i o n w h e n t h e a d i a b a t i c e x p o n e n t g i s n e a r 1 . F u r t h e r m o r e , t h e c a s e t h e a s y m p t o t i c s t a t e i s g i v e n b y a su p e r p o s i t i o n o f t h e v i s c o u s c o n t a c t d i s - c o n t i n u i t y a n d t h e r a r e f a c t i o n w a v e i s a l s o t r e a t e d . I n t h i s s i t u a t i o n , b o t h t h e s t r e n g t h o f r a r e f a c t i o n w a v e a n d t h e i n i t i a l p e r t u r b a t i o n c a n b e a r b i t r a r i l y l a r g e.

We now formulate our main results. The 1-dcompressible NS equa- tions reads in Lagrangian coordinates:

. ` / `

´

vt2ux40 , ut1px4m

g

uvx

h

x,

g

e1u22

h

t1(pu)x4

g

kuvx 1muux v

h

x

, (1.1)

whereu(x,t) is the velocity, v(x,t)D0 the specific volume, u(x,t) the absolute temperature, mD0 the viscosity constant and kD0 the coeffi-

(3)

cient of heat conduction. Here we consider the perfect gas so that the pressure

p4 Ru

v 4Av2ge

g21 R s

, (1.2)

and the internal energye4gR

21u1const., where s is the entropy, gD1 is the adiabatic exponent andA, Rare positive constants. By (1.2)2, the entropys can also be regarded as a function ofv andu. Our initial and boundary conditions are

. /

´

uNx404u2,

g

p(v,u)2muvx

h

( 0 , t)4p0, tD0 ,

(v,u,u)(x, 0 )4(v0,u0,u0)(x)K(v1,u1,u1) as xK 1Q, (1.3)

where (1.3)2means the gas is attached at the boundaryx40 to the atmo- sphere with pressurep0(see [19]),v1D0 ,u1,u1D0 are constants and u0( 0 )4u2 holds as a compatibility condition.

It is well known that the contact discontinuity is a unique Riemann solution

(V,U,U)(x,t)4./

´

(v2,u2,u2), xE0 , (v1,u1,u1), xD0 , (1.4)

of the following Riemann problem

. ` / `

´

vt2ux40 , ut1px40 ,

g

e1u22

h

t1(pu)x40 ,

(v,u,u)(x, 0 )4(v2,u2,u2), xE0 , (v,u,u)(x, 0 )4(v1,u1,u1), xD0 , (1.5)

ifu24u1andp24Ruv 2

2

4p14Ruv 1

1

. In view of [3], the contact discon- tinuity (V,U,U) in the half spacexD0 can be approximated by a viscous contact wave (V,U,U) satisfying

V(V2V,U2U,U2U)VLp( 0 ,1Q)4O(k)( 11t)1 /2p, all pF1 .

(4)

Here

V(x,t)4 R

p1U(x,t), U(x,t)4u11 k(g21 ) gR

U(x,t)x U(x,t) , (1.6)

and U(x,t)4U(j), j4 x

k11t is the unique self similarity solution of (1.7) Ut4a

g

UUx

h

x,U(0,t)4u2,U(1Q,t)4u1, a4kp1gR(g22 1)D0.

From (1.7), U(j) satisfies (1.8) 21

2jU8 4a

g

UU8

h

8, U( 0 )4u2, U(1Q)4u1, 84 djd . By the same lines as in [2, 3], we have

(1.9)

. / ´

C1(g21)21/2Nu12u2NGNU8(0)NGC2(g21)21/2Nu12u2N,

N g

NUxxN,kg121NUxN, 1

g21NU2u1N

h N

GC3e2C4j

2

g21, as jKQ, whereCi,i41 , 2 , 3 , 4 are positive constants depending onu6. By (1.9), the lemma 1.1 of [3] reads in the following style.

LEMMA 1.1. If Nu12u2N GM(g21 ), then

(1.10)

0 Q

U4xdxGC(g21)5/2(11t)23/2,

0 Q

Uxx2 dxGC(g21)1/2(11t)23/2,

(1.11)

0 Q

U2xxxdxGC(g21)21/2(11t)25/2,

0 Q

x(U2x1NUxxN)dxGC(g21), where the constant C only depends on M.

The main aim of present paper is to show the global stability of the viscous contact wave and the superposition of a viscous contact wave and a rarefaction wave. The precise statement of our first result is

THEOREM 1.2. Assume that p04p1 and Nu12u2N GM(g21 ) holds for some constant M. Assume that(V,U,U) is the viscous con-

(5)

tact wave constructed in (1.6) and (1.7) and the initial data satis- fies

./

´

0EM021Gv0(x),u0(x)GM0, u0(x)2U(x, 0 )H1( 0 , Q), (v0(x)2V(x, 0 ),s0(x)2S(x, 0 ) )H01( 0 , Q)

(1.12)

for some positive constant M0, where S4gR

21

g

lnRUA 1(g21 ) lnV

h

and s0(x)4s(x, 0 ). Then there exists a positive constant d0D0 such that if gE11d0, the problem (1.1)-(1.3) has a unique global solution (v,u,u)(x,t) satisfying

(v2V,u2U,u2U)(x,t)C( 0 ,1Q; H1( 0 ,1Q) ), (1.13)

(v2V)x(x,t)L2( 0 ,1Q; L2( 0 , 1Q) ), (1.14)

(u2U,u2U)x(x,t)L2( 0 ,1Q;H1( 0 , 1Q) ), (1.15)

and

sup

xF0N(v2V,u2U,u2U)(x,t)NK0 , as tK 1Q. (1.16)

REMARK 1.3. The difference Nu12u2N is naturally bounded by (g21 ) multiplying some constant M from the physical point of view.

Whenp0cp1, there are two subcases: the superposition of a viscous contact wave and a 3-rarefaction wave or that of a viscous contact wave and a 3-viscous shock wave. Here we only consider the previous one. In this situation, by the basic theory of hyperbolic system of conservation laws, there exists a unique point (vm,um,um) such that p04pm4Ruv m

m

and (vm,um,um) belongs to the 3-rarefaction wave curve R(v1,u1,u1) in the phase plane, where

(1.17) R(v1,u1,u1)4

{

(v,u,u)Ns4s1,u4u12v

1 v

l(h,s1)dh,vDv1

}

,

l(v,s)4

o

Agv2g21e

g21 R s

. (1.18)

The precise statement of our second result is

(6)

THEOREM 1.4. Assume that there exists a unique point (vm,um,um) such that p04pm and (vm,um,um)R(v1,u1,u1) and Nu12umN 1 Num2u2N GM(g21 ) holds for some constant M. As- sume that (Vcd,Ucd,Ucd) is the viscous contact wave constructed in (1.6) and (1.7), where (v1,u1,u1) is replaced by (vm,um,um) and (Vr,Ur,Ur) is the smooth rarefaction wave constructed in (3.4) satis- fying Sr4s(Vr,Ur)4s(v1,u1)4s1. Let

V4Vcd1Vr2vm,U4Ucd1Ur2um,S4Scd. (1.19)

Assume that the initial data satisfies(1.12). Then there exists a positi- ve constantd0D1 such that if gE11d0,the problem (1.1)-(1.3) has a unique global solution (v,u,u)(x,t) satisfying (1.13)-(1.15). Further- more,

sup

xF0N(v2Vcd2vr1vm,u2Ucd2ur1um,s2Scd)(x,t)N K0 , (1.20)

where (vr,ur,ur), (sr4s(vr,ur)4s1) is the 3-rarefaction wave uniquely determined by (3.1).

Our plan of this paper is as follows. In sect. 2, the single contact dis- continuity case is investigated. In sect. 3, the case including the rarefac- tion wave is treated.

NOTATIONS. Throughout this paper, several positive generic con- stants are denoted by c,C without confusions. For function spaces, Hl(V) denotes the l-th order Sobolev space with its norm

VfVl4

g

j

!

40 l

jx fV2

h

1 /2, when VQ4VQVL2(V).

(1.21)

The domain V will be often abbreviated without confusions.

2. Global stability of viscous contact wave.

PROOF OF THEOREM 1.2. We put the perturbation (f,c,z,W)(x,t) by

. /´

v(x,t)4V(x,t)1f(x,t), u(x,t)4U(x,t)1c(x,t), u(x,t)4U(x,t)1z(x,t), s(x,t)4S(x,t)1W(x,t), (2.1)

where (V,U,U)(x,t) is the viscous contact wave constructed in (1.6)

(7)

and (1.7). By (1.6) and (1.7), we have

. ` / `

´

Vt2Ux40 , Ut1

g

RUV

h

x

4m

g

UVx

h

x1F,

R

g21Ut1p1Ux4k

g

UVx

h

x1mUVx2 1G, (2.2)

where

F4Ut2m

g

UVx

h

x4k(gRg21 )

k

( lnU)xt2m

g

RUp1 ( lnU)xx

h

x

l

,

(2.3)

G4 2mUx2

V 4 2mp1

RU

g

k(gRg21 )( lnU)xx

h

2.

(2.4)

From lemma 1.1, we have

VFVL1GC(g21 )( 11t)21, VGVL1GC(g21 )5 /2( 11t)23 /2. (2.5)

Substituting (2.2) into (1.1) and (1.3) yields

. `

` ` / `

` `

´

ft2cx40 ,

ct1

g

R(UV11fz)2 RU

V

h

x4m

g

UVx11cfx 2 Ux V

h

x2F,

R

g21zt1 R(U1z)

V1f (Ux1cx)2p1Ux,

4k

g

UVx11fzx

h

x2k

g

UVx

h

x1m(UVx11cfx)22mUx2 V 2G,

g

VRu12f 2mUx1cx

V1f

h N

x404p1,

z( 0 , t)40 ,

(f,c,z)(x, 0 )4(v02V,u02U,u2U)(x, 0 ).

(2.6)

We shall prove theorem 1.2 by the local existence and the a priori esti- mate. We look for the solution (f,c,z) in the solution spaceX(0,1Q),

(8)

where

(2.7) X(0,T)4

m

(f,c,z) : (f,z)C(0,T;H01),cC(0,T;H1), 12M121G GvG2M1, 1

4M021

GuG4M0, fxL2(0,T;L2), (c,z)xL2(0,T;H1)

n

for some 0ETG 1Q, where the constant M1 will be determined later.

Since the local existence has already been established in [3], we only con- sider the a priori estimate here. We have

PROPOSITION 2.1. (A Priori Estimate). Assume that the conditions of theorem1.2 hold, then there exists a positive constantd0such that if gE11d0and(f,c,z)X( 0 ,T)is a solution of(2.6)for some positive T, then the followings hold

M121Gv(x,t)GM1, 1

2M021Gu(x,t)G2M0, (2.8)

(2.9) V(f,c,z)V121

0 t

]VfxV21V(cx,zx)V12(dtGC(M0)(11V(f0,c0,W0)V12), where the constant C(M0) depends on M,M0 and the initial data, but does not depend on M1.

Proposition 2.1 is proved by a series of lemmas.

LEMMA 2.2. It follows that

(2.10)

V u

(

o

F

g

Vv

h

,c, k1dz

v

(t)

V

21

0

t

m V g

vc1 /2x , zx

v1 /2

h

(t)

V

2

n

dtG

GC(M0)

m

V(f0,c0,kdW0)V121C(M1)

k

d1d

0 t

V g

vf3 /2x , zx

v1 /2

h V

2dt1

1

0 t

d2( 11t)28 /5

V g

c, k1dz

h V

2(t)dt

ln

,

where d4g21E1.

(9)

PROOF. Due to [3], we have

(2.11)

g

12c21RUF

g

Vv

h

1RdUF

g

Uu

hh

t1 kUvu2zx2

1 mUcx2

vu 1 1Hx1Q4 2Fc2 zG

u , where

(2.12) F(s)4s212lns, C(s)4s21211lns, (2.13) H4R

k g

U1v z2U

V

h

c

l

2m

k g

Ux1vcx2Ux V

h

c

l

2

2kz

u

g

uvx 2 Ux

V

h

,

(2.14) Q4p1C

g

Vv

h

Ux1pd1C

g

Uu

h

Ux1mcxUx

g

1v 2 1 V

h

2

2z

u(p12p)Ux2k Ux

u2vzzx2kzxfUUx

u2vV 1k zf u2vVU2x2 2mzUx2

u

g

1v 2 1

V

h

22vumzcxUx. By the formula of F(s), we know that F( 1 )4F8( 1 )40 , C( 1 )4 4C8( 1 )40 and F(s) is a strictly convex function. This yields that F(s)D0 and

. /

´

C1(M0)C1(M1)f2GF

g

Vv

h

GC2(M0)C2(M1)f2,

N

C

g

Uu

h N

GC(M0)C(M1)z2,

(2.15)

for some constants Ci(M0),Ci(M1),i41 , 2 . Since (2.16) NQN G kU

4vu2zx2

1 mU 4vucx2

1

1C(M0)C(M1)

k

NUxN

g

f21 1dz2

h

1(f21z2)U2x

l

,

(10)

and

(2.17)

0 Q

NFcN 1

N

Gzu

N

dxG 43mM02

0 Qcx2

v dx1 k 44M03

0 Qzx2

v dx1

1C(M0)C(M1)

y

d( 11t)26 /51d2( 11t)28 /5

V g

c, k1dz

h V

2

z

due to (2.5), integrating (2.11) over R13( 0 , t) gives (2.18)

V u o

F

g

Vv

h

,c, k1dz

v V

21

0 t

0 Qcx2

v 1z2x

v dx dt2

0 t

H( 0 , t)dtG

GC(M0)C(M1)

m

0 t

0 Q

(z21f2)(NUxxN 1U2x)dx dt1d1

1

0 t

d2( 11t)28 /5

V g

c, k1dz

h V

2dt

n

1C(M0)

V g

f0,c0, k1dz0

h V

2.

On the other hand, the boundary condition (1.2) exactly gives the value of f( 0 , t). From [3] and the fact that f0(x)H01( 0 ,Q), we have

f( 0 , t)4f0( 0 )e2

p1 m t

40 , (2.19)

which yields that H( 0 , t)40 . Note that

Nz(x,t)N Gx1 /2VzxV, Nf(x,t)N Gx1 /2VfxV, (2.20)

due to [16], applying Lemma 1.1 and the boundary condition (2.19), we have

(2.21)

0 t

0 Q

(z21f2)(NUxxN 1U2x)dx dtG

GC(M0)C(M1)d

0 t

V g

vf3 /2x , zx

v1 /2

h V

2dt.

By (1.2) and (2.1), we have

Vz0V1GCdV(f0,W0)V1. (2.22)

Thus, combining (2.18)-(2.22) yields lemma 2.2.

(11)

LEMMA 2.3. There exists a small positive constant d0 such that if dGd0, then

(2.23)

V g

f,c, k1dz

h

(t)

V

21VfxV21

0 t

]V(fx,cx,zx)(t)V2(dtG

GC(M0)]11V(f0,c0,W0)V12(. PROOF. Following [14], we introduce a new variable vA4Vv . Then (2.6)2 can be rewritten by the new variable as

g

m

g

vAvAx

h

2c

h

t2px4F.

(2.24)

Multiplying (2.24) by vAx

vA , we have

(2.25)

g

m2

g

vAvAx

h

22cvAvAx

h

t1

g

cvAvAt

h

x1Ruv

g

vAvAx

h

22 Rv zx

vAx vA 1 1Ru

v

g

U1 2 1

u

h

Ux vAvA 4x c2x

v 1cxUx

g

1v 2 1

V

h

1FvAvAx . The Cauchy inequality yields that

(2.26)

N

Rv zx

vAx

vA

N

1

N

cxUx

g

1v 2 1

V

h N

G Ru4v

g

vAvAx

h

21

1C(M0)

g

zv2x 1cx2

v 1C(M1)f2Ux2

h

,

(2.27)

N

Ruv

g

U1 2 1

u

h

Ux vAvAx

N

1

N

FvAvAx

N

G Ru4v

g

vAvAx

h

21

1C(M0)C(M1)(z2U2x

1 NFN2), and

(2.28) c1 fx2

v2 2C(M0)C(M1)f2U2x

G

g

vAvAx

h

2Gc3 fv2x2 1

1C(M0)C(M1)f2Ux2.

(12)

Similar to (2.19), we also have

g

vAvAt

h

( 0 ,t)4

g

fvt

h

( 0 ,t)40 . Note that the right hand sides of (2.26)-(2.28) have already been investigated in Lem- ma 2.2. Integrating (2.25) overR13( 0 , t) and using Lemma 2.2, (2.15), (2.26)-(2.28) and the fact that

N

cvAvAx

N

G m4

g

vAvAx

h

21Cc2,

we get

(2.29)

V u o

F

g

Vv

h

,c, k1dz

v

(t)

V

21

1

V

vAx

vA

V

21

0

t

m V g

vf3 /2x , cx

v1 /2 , zx

v1 /2

h

(t)

V

2

n

dtG

GC(M0)

m

V(f0,c0,kdW0)V121C(M1)

k

d1d

0 t

V g

vf3 /2x , zx

v1 /2

h

(t)

V

2dt1

1

0 t

d2( 11t)28 /5

V g

c, k1dz

h V

2(t)dt

ln

,

We now choose a small positive constant d0E1 so that C(M0)Q QC(M1)d0E12. Then for any dEd0, the Gronwall’s inequality yields

(2.30)

V u o

F

g

Vv

h

,c, k1dz

v

(t)

V

21

1

V

vAx

vA

V

21

0

t

m V g

vf3 /2x , cx

v1 /2 , zx

v1 /2

h

(t)

V

2

n

dtG

GC(M0)]11V(f0,c0,kdW0)V12(. We note here that the constant C(M0) does not depend on M1.

(13)

We now use the method of [14] and (2.30) to show (2.8)1. To this end, let

h(vA)4

1 vA

k

F(s)

s ds, F(s)4s212lns. (2.31)

Since

h(vA)K ./

´

2Q, vAK01, 1Q, vAK1Q, (2.32)

and

(2.33) Nh(vA(x,t) )N 4

4

N

1Q x

¯

¯yh(vA(y,t) )dy

N

G

R1

g

F

g

Vv

h

1

g

vAvAx

h

2

h

(x,t)dx,

the inequality (2.30) yields that there exists a positive constantM2which only depends on M,M0 and the initial data such that

M221Gv(x,t)GM2. (2.34)

LetM14M2, then (2.8)1is proved. After we obtain the a priori estimate (2.34), it is easy to imply (2.23) from (2.15) and (2.30).

LEMMA 2.4. It follows that (2.35) V(cx,zx)(t)V21

1

0 t

]V(cxx,zxx)(t)V2(dtGC(M0)( 11V(f0,c0,z0)V12).

PROOF. We first estimate the term cx. Multiplying (2.6)2by 2cxx, we have

(2.36)

g

12cx2

h

t2(ctcx)x1mcvxx2 2pxcxx1 1m

g

Uvx 2 Ux

V

h

xcxx1mcx

g

1v

h

xcxx4Fcxx.

(14)

Since p1 is constant, we have NpxcxxN G m

4vcxx2

1C(M0)(f21z2)Ux2

1C(M0)(f2x1zx2).

(2.37)

On the other hand, (2.38)

N

m

g

Uvx 2Ux

V

h

xcxx

N

1

N

mcx

g

1v

h

xcxx

N

G

G m

4vcxx2 1C(M0)d2(U4x1U2xx1U2xxx)1C(M0)(f2x1c2x)1 1C(M0)NfxVcxVcxxN. We compute by lemma 2.3

0 Q

NfxVcxVcxxNdxGsup]NcxN(VfxV VcxxV (2.39)

Gk2VcxxV3 /2VcxV1 /2VfxV Gm

V

2cvxx1 /2

V

21C(M0)VcxV2.

Since cx( 0 , t)4ft( 0 , t)40 , integrating (2.36) over R13( 0 ,t) and using (2.37)-(2.39) and Lemmas 1.1 and 2.3 imply

Vcx(t)V21

0 t

Vcxx(t)V2dtGC(M0)( 11V(f0,c0,z0)V12) . (2.40)

We now estimate zx. Multiplying (2.5)3 by 2zxx, we have

g

2Rdzx2

h

t2

g

Rdztzx

h

x1kzvxx2 1m

g

uvx2 2Ux2

V

h

zxx1QA4Gzxx,

(2.41) where (2.42) QA

42(p2p1)Uxzxx1kzx

g

1v

h

xzxx2pcxzxx1k

g

Uvx2Ux

V

h

xzxx.

(15)

By the same method for the estimate on cx, we obtain

V

dz1 /2x (t)

V

21

0 t

Vzxx(t)V2dtGC(M0)( 11V(f0,c0,z0)V12).

(2.43)

We omit the details here. Combining (2.40) and (2.43) yields lemma 2.4.

By lemmas 2.3 and 2.4, we have

Nz(x,t)NLQGCVzV1GC(M0)d1 /2( 11V(f0,c0,z0)V1) . (2.44)

Choosing d suitably small yields 1

2M021Gu(x,t)4U(x,t)1z(x,t)G2M0. (2.45)

Thus proposition 2.1 is obtained from (2.34), (2.45) and lemmas 2.3 and 2.4. Theorem 1.2 is easy from the local existence and proposition 2.1.

3. Superposition of viscous contact wave and rarefaction wave.

PROOF OF THEOREM 1.4. In this case, there exists a unique point (vm,um,um)R(V1,u1,u1) such that p04pm and the superposition of the viscous contact wave connecting (v2,um,u2) with (vm,um,um) and the 3-rarefaction wave connecting (vm,um,um) with (v1,u1,u1), where v24Rup2

0

. The 3-rarefaction wave (vr,ur,ur)

g

xt

h

connecting

(vm,um,um) and (v1,u1,u1) is the weak solution of the Riemann problem

. ` / `

´

vt2ux40 , ut1p(v,u)x40 ,

u

e(v,u)1 u22

v

t

1(p(v,u)u)x40 , (v0,u0,u0)(x)4./

´

(vm,um,um),xE0 , (v1,u1,u1),xD0 . (3.1)

Since the rarefaction wave is a weak solution, it is necessary to construct a smooth approximate rarefaction wave (Vr,Ur,Ur)(x,t) of

(16)

(vr,ur,ur)

g

xt

h

inR13( 0 , 1Q). To this end, we apply the idea of [4]

to construct the smooth rarefaction wave. The advantage of this kind smooth wave is that the boundary effect can be exactly eliminated. We first construct the solution w(x,t) of the following problem

. ` / `

´

wt1wwx40 , (x,t)R3( 0 , 1Q),

wNt404

. /

´

w2,

w21wAKq

0 ex

zqe2zdz,

xE0 , xF0 , (3.2)

where w64l(v6,s1), s14s(v1,u1), wA 4w12w2, Kq is a constant such thatKq

s

0 1Q

zqe2zdz41 for large constantqF8 andeis a small posi- tive constant. We have the following properties of w(x,t) due to [4].

LEMMA 3.1 [4]. Let 0Ew2Ew1, then the problem (3.2) has a unique smooth solution w(x,t) satisfying

i) w2Gw(x,t)Ew1, wxF0 , for xF0 ,tF0 .

ii) For any p( 1GpG 1Q),there exists a constant Cp,qsuch that for tF0 ,

Vwx(Q,t)VLpGCp,qmin

(

wAe121 /p,wA1 /pt2111 /p

)

,

Vwxx(Q,t)VLpGCp,qmin

(

wAe221 /p,wA1 /qe121 /p11 /qt2111 /q

)

.

iii) When xGw2t, w(x,t)2w24wx(x,t)4wxx(x,t)40 . iv) lim sup

tK1Q,xDNw(x,t)2wR(x,t)N 40 .

Here wR(x,t) is the Riemann solution of the scalar equation (3.2) with the initial data w0(x)4w2, if xE0 and w0(x)4w1, if xD0 .

The smooth approximation (VAr,UAr,UAr) to (vr,ur,ur)(x,t) is given by

. ` / `

´

SAr(x,t)4s1,

l(VAr(x,t),s1)4w(x,t), UAr(x,t)4u12

v1 VAr(x,t)

l(h,s1)dh. (3.3)

(17)

Setting

(Vr,Ur,Ur)(x,t)»4(VAr,UAr,UAr)(x,t1t0)NxF0, (3.4)

where the constant t0D1 will be given later. Then we have

. ` / `

´

Vtr2Uxr40 ,

Utr1p(Vr,Ur)x40 ,

g

e(Vr,Ur)1 12(Ur)2

h

t1(p(Vr,Ur)Ur)x40 ,

(Vr,Ur,Ur)Nx404(vm,um,um),

(Vr,Ur,Ur)Nt404(V0r,U0r,Ur0)(x)4(Vr,Ur,Ur)(x, 0 ).

(3.5)

Due to Lemma 3.1, (Vr,Ur,Ur) has the following properties.

LEMMA 3.2. The smooth rarefaction wave (Vr,Ur,Ur)(x,t)satis- fies, if qFp,

i) Uxr(x,t)F0 , NUxrN GCe, for tF0 ,xF0 .

ii) For any p( 1GpG 1Q), there exists a constant Cp,q such that

V(Vxr,Uxr,Urx)VLp(xF0 )GCp,qmin]e121 /p, (t01t)2111 /p(,

V(Vxxr ,Uxxr ,Urxx)VLp(xF0 )GCp,qmin]e221/p, (t01t)2111 /q(, tF0 . iii) (Vr,Ur,Ur)NxGl(vm,s1)t4(vm,um,um),

(Vxr,Uxr,Urx,Vxxr ,Uxxr ,Urxx)NxGl(vm,s1)t40 . iv) lim sup

tK1Q,x]xF0(

N

(Vr,Ur,Ur)(x,t)2(vr,ur,ur)

g

xt

h N

40 .

Let (Vcd,Ucd,Ucd) be the viscous contact wave constructed in (1.6) and (1.7), where (v1,u1,u1) is replaced by (vm,um,um). Then (Vcd,Ucd,Ucd) satisfies

. ` / `

´

Vtcd2Uxcd40 ,

Utcd1

g

RUVcdcd

h

x4m

g

UVxcdcd

h

x1Fcd,

R

g21Ucdt 1p0Uxcd4k

g

UVcdcdx

h

x1m(UVxcdcd)21Gcd, (3.6)

Références

Documents relatifs

The proof is based on the weighted estimates of both pressure and kinetic energy for the approximate system which result in some higher integrability of the density, and the method

in Sobolev spaces of sufficiently high order, then we show the existence of a solution in a particular case and finally we solve the general case by using the

a problem the unknown angular velocity co for the appropriate coordinate system in which the solution is stationary can be determined by the equilibrium

By using this approach, Garreau, Guillaume, Masmoudi and Sid Idris have obtained the topological asymptotic expression for the linear elasticity [9], the Poisson [10] and the

Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process, in Nonhomogeneous media and vibration theory, edited by E. Temam,

Danchin: Well-posedness in critical spaces for barotropic viscous fluids with truly nonconstant density, Communications in Partial Differential Equations, 32 , 1373–1397 (2007).

In this article, we show a local exact boundary controllability result for the 1d isentropic compressible Navier Stokes equations around a smooth target trajectory.. Our

Mimicking the previous proof of uniqueness (given in Sec. 2.2) at the discrete level it is possible to obtain error esti- mates, that is an estimate between a strong solution (we