• Aucun résultat trouvé

Dual spaces of dyadic Hardy spaces generated by a rearrangement invariant space X on 0, 1

N/A
N/A
Protected

Academic year: 2022

Partager "Dual spaces of dyadic Hardy spaces generated by a rearrangement invariant space X on 0, 1"

Copied!
13
0
0

Texte intégral

(1)

Ark. Mat., 36 (1998), 163-175

@ 1998 by Institut Mittag-Lefller. All rights reserved

Dual spaces of dyadic Hardy spaces generated by a rearrangement invariant space X on [0, 1]

Nicolae P o p a

A b s t r a c t . First we define the dyadic Hardy space HX (d) for an arbitrary rearrangement invariant space X on [0, 1]. We remark that previously only a definition of Hx (d) for X with the upper Boyd index qx <oc was available. Then we get a natural description of the dual space of Hx, in the case X having the property 1 ~Px ~_ qx < 2, improving an earlier result [P1].

1. I n t r o d u c t i o n

In t h e last 20 years m a n y p a p e r s a b o u t H a r d y spaces have been published.

T h e interest in t h e topic includes H a r d y spaces of analytic functions h a v i n g t h e classical spaces H 1 (D) a n d H P ( R '~) as representative examples a n d H a r d y spaces of martingales, for instance t h e d y a d i c H a r d y space H 1 (d).

M o t i v a t e d by t h e deep s t u d y of t h e r e a r r a n g e m e n t invariant spaces (r.i.s.) which was carried o u t b y W. B. J o h n s o n , B. Maurey, G. S c h e c h t m a n a n d L. Tzafriri in 1979 [JMST], we initiated a detailed s t u d y of dyadic H a r d y spaces Hx(d) gen- e r a t e d by a r.i.s. X on I = [ 0 , 1]. (See [PI], [P2], [P3].)

Using t h e ideas of M. Frazier a n d B. J a w e r t h [FJ], very recently we i m p r o v e d some earlier results on this s u b j e c t a n d proved some new results.

For t h e u n e x p l a i n e d t e r m i n o l o g y we refer to [LT1] a n d [LT2].

We recall t h e n o t i o n of a rearrangement invariant space of functions (r.i.s.) X on I = [0, 1], following [LT2]. We consider w i t h o u t a n y c o n t r a r y m e n t i o n t h a t all B a n a c h spaces are real.

N o w we say t h a t X is a r.i.s, on I = [0, 1] if:

(1) T h e space X is a B a n a c h lattice of Lebesgue m e a s u r a b l e functions w i t h respect to the a.e. pointwise order relation on I = [ 0 , 1].

(2) T h e space X is an order ideal of the space M ( I ) of all Lebesgue m e a s u r a b l e functions on I, i.e. if f, g E M ( I ) with Ifl<_igl a n d g C X it follows t h a t f E X a n d

Ilfll_<lJglJ.

(2)

(3) The space X contains all characteristic functions of all Lebesgue measur- able subsets A C I .

(4) If f and g are equimeasurable (i.e.

I { t C I ; I f ( t ) I > A}l = i{t e I ; ig(t)l > A}l

for every A>O, where [A[ is the Lebesgue measure of A C I ) , then for f E X it follows that g e X and [[f[[x=[[g[[x.

(5) We assume that the canonical injections i: L ~ - - ~ X and j: X---~LI(I) have norms less t h a n or equal to 1.

(6) We assume also that X is either a minimal space (i.e. the simple functions are dense in X) or a maximal space, i.e. X = X ' , where Xr={g:I--~R;]]g[]x ,=

suPllfllx_<l

if

f g l < o c } is the associate Kdthe space of X .

We call a space X having properties (1), (2) and (3) a KSthe function space on I. The classical Orlicz and Lorentz spaces are examples of r.i. spaces.

Now we recall the useful definition of Boyd indices for a r.i.s.X. Let 0 < s < o e and put

I

f ( t / s ) , if t_< rain(l, s), D J ( t )

I

0, otherwise.

and

Now put

log s Px = sup

Log ILI),LI log s qx = inf

0< <1 log IIDsll

Here Px and qx are called the Boyd indices of X , and they satisfy the relations l <_px <_ qx <_Oo and px, = ( q x )' ; q x , = ( p x ) ~, where 1/p+ l / p ' = l.

We now define the dyadic Hardy space Hx(d). Let Q c I be a dyadic interval.

Let hQ be the L2-normalized Haar function supported by Q, i.e.,

hQ

= 1QI1/2 1 (1QI - 1Q~),

where Q1 (resp. Q2) is the left half (resp. the right half) of the interval Q. Then for every Lebesgue measurable fimction f on I with f = ~ Q sQhQ a.e., put

('~Q 2 .,1/2

S ( f ) = IsQI /IQIl@ 9

(3)

Dual spaces of dyadic Hardy spaces generated by a rearrangement invariant space on [0, 1] 165

(1.1) Here

Now let X be a r.i.s, on I such t h a t qx<oC. We define H x ( d ) = { f E

M(I) ; llfllHx = Ils(f)llx < ~c}

and call H x (d) the dyadic Hardy space generated by the r.i.s. X on I.

If X = L 1, then H x (d) coincides with the dyadic H a r d y space H 1 (d) introduced by A. Garsia [G]. It is known (see [P1]) t h a t

Hx(d)

is a Banach space and t h a t H x ( d ) is isomorphic to a closed subspaee of X itself, whenever qx <oo.

B u t more is true (see [A]).

T h e o r e m 1.1. Let X be a r.i.s, on I. The following assertions are equivalent:

(1) The Boyd indices of X satisfy the inequalities l < p x <qx <~c.

(2) There is a constant C > 0 such that

c-1llfllx <_

I I S ( f ) l l x

<_cIIfllx

for all f ~ X .

Therefore from the point of view of the isomorphic theory of Banach spaces, only the r.i.s. X such t h a t either p x = l or qx=~C are of interest.

Now we extend the previous definition to r.i.s. X with qx=cX~. We use some ideas of M. Frazier and B. J a w e r t h (see [FJ]).

First we extend a well-known inequality of C. Fefferman and E. Stein (see [FS]).

T h e o r e m 1.2. (Fefferman-Stein inequality) Let (fi)i~=l be a sequence of func- tions on R. Then the following inequality holds:

( ~ _ ~ l M f k l r ) Zp <A~'p ( ~ / ,,Lp ( l < r , p < o c ) .

= s u p

If(z)l dx,

M S ( x ) Q~,Q i n t e r v a l 10i for f E L l ( R ) .

We omit the proof b u t instead we extend the t h e o r e m to an a r b i t r a r y r.i.s. X on I such t h a t l < p x <_qx <oc.

2. D y a d i c H a r d y spaces H x ( d ) for r.i.s. X w i t h qx=or

T h e o r e m 2.1. Let X be a r.i.s, on I, I being either (0, oc) or (0, 1), such that l < p x < _ q x < o c and let l < r < o c . Then we have

(2.1)

IMAI ) x < C ( X , r ) If*l~) x

(4)

for any choice of elements f ~ c X , i<_n, and every n E N .

Proof.

We use T h e o r e m 1.2 and interpolation techniques. (See [BS].) Let ~->0 and

l<p<px<_qx<q<oc.

P u t f:=(}-~-~=l [fklr) 1/~ and

f k ( x ) , if

i f ( x ) ~_ f~(~r), f~ = f(~r)fk(x)

if

i f ( x ) >

f r ( T ) ,

f(x) '

1 < k < n. Here we let

f ( x ) =

inf sup

If(u)l, x>O.

IEI =x u c I \ E

Then

If~l T

(x)= ]~(~.),

(See [BS, pp. 223-224].) So

if

i f ( x ) < f~(~),

if

i f ( x ) > f~(~-).

t ) = m i n ~(t), T(T)).

P u t now

f~(x) =

(Ifk(x)] ~'-

[f~(x)l~)l/~sgnfk(x),

1 k = 1 , 2 , . . . ,n.

T h u s it follows

(2.2)

]fk(x)]~=lf~(x)[~+lf~(x)[ ~,

l < k < n . M o r e ove r,

If2(x)l r

(t) = 0, if

if(t) < fr(z) = [ff(t)_]~(~_)]+

f f ( t ) - f~(-r),

otherwise and

[f~]~ t) =

(]r(t)--fT(T))+

for every t E I.

(5)

D u a l s p a c e s of d y a d i c H a r d y s p a c e s g e n e r a t e d by a r e a r r a n g e m e n t i n v a r i a n t s p a c e o n [O, 1] 167

P u t n o w

ilfllp,q = { (~o ~ Z)

,

oSUp tUP f(t),

Then it follows that ( ~ . 3 )

and

(2.4)

0 < q < o c , q = ~ c .

(I ( ~ [f~[r)'/rllq,1 =q'r~/q f(T)+ /~ta/~ f(t) at

if~l~) = tl/p[f~(t)_ f~(T)]l/~ d tt

<_2 ~o~tl/pl(t) d---~-pf('c)71/p.

Since l < p , q < o c , by Theorem 1.2 it follows t h a t there is a constant A > 0 such (f~)k=l and that we have the inequality (1.1) for l < r < o ~ ,

p, q

and the functions 2 n

k/k=l"

By Proposition 4.2 in [BS, p. 217] it follows that

(k~=llMfllr)l/r,,q,oc~C (~_llMfllr)l/r q

n

(2.5)

/ IIq,1

and similarly

~20t (~t~JJ~l~ ~c (~r~J~lp 1

By (2.5) we get

and (2.6) implies that

1 --liP

I~l ((~,~,~J~;I~l~I~l (~,~,5 ~ ~1

(6)

Using (2.3) and (2.7) we get

dt -

(2.9)

((~k IMfl]r)l/r)~(1T) <C(T-1/q~ tl/qff(t) TJrpf(T))

and similarly

(2.10)

((~k [Mf21r) ) (1T)<C(--pf(T)A-2T-1/P~ tl/Pf(t) d--~).

But, in view of (2.2) it follows that

( ~ ,M fk,r)l/~ <_ (~(M[(,f~,~ +,f~,~)l/~])~) 1/~

< (~. [M(,f~[+[f~[)]r) 1/~ / hilt/ r,I/r

thus

(/ \l/r\~ ((~k )l/r)~ (( ll/rl ~

(E(Mfk) ~) )(T)< (Mr1) ~ (1T)+ E(Mf2) "

oc dt ~ tl/p](t) d~)

=

where a is the interpolation interval [(l/q,

1/q), (i/p,

l/p)] and S~ is the Calderdn operator. (See [BS].)

Thus, since

P<Px

and

qx<q,

the proof of T h e o r e m 5.16 in [BS, p. 153] gives US

(~k I~/~fklr) 1/r X ~C (~lfklr)l/r"x" [~

Now we use Theorem 2.1 in order to get an equivalent norm on

Hx(d),

when-

ever X is a r.i. space on I = [0, 1] with

qx < ~D.

For a dyadic interval

QcI,

let

EQCQ

be a Lebesgue

measurable

subset such t h a t

IEQI>IlQI,

and for

f=~Q SQhQ

put

\1/2

SE(f)= (~Q [sQI2/IEQI1EQ) .

T h e n we have the following corollary.

(7)

Dual spaces of dyadic H a r d y spaces g e n e r a t e d by a r e a r r a n g e m e n t invariant space on [0, 1] 169

C o r o l l a r y 2.2.

Let X be a r.i. space on

I = ( 0 , 1)

with l <_px <_qx < oC. Then [[f[IHx ~inf{[[SE(f)llx ;EQ

c Q , IEQI > 89

Proof.

Obviously

[[SE(f)[Ix

<2[[S(f)[tx =21If I[ Hx-

Conversely, it is clear that 1Q

<_2M(1EQ).

Therefore, for every A > 0 and every dyadic interval Q, we have

1Q<_21/A[M(1EQ)] 1/A

and

(2.11)

S ( f ) < 2 1 / A ( ~ [ M ( [8QIA .~]2/A.~1/2

)

We choose A > 0 such that

I < p x / A

and l < 2 / A . Put

r=2/A

and, since

px qx

1 <

~ - =Pxl/A <__ ~ = qx~/a < 0%

(where

x U A = { f : I ~ R ; I f l l / A e x }

and

tlIllxl/A:=II ]I[1/AllA)

we have by (2.11) and Theorem 2.1

']f,,Hx <21/A_

( Q ~ [ M ( [ E Q , A / 2

'sQ'A IEQ)]2/A)I/2 X

< 2 UA

( Q~ ]8Q]2 " ~A/2[[I/A

_ IEQ) IIx,J

Define now for

f = ~ Q 8QhQ,

(2.12)

re(f)

= sup

Q dyadic interval

1.) ] ( lQI)lQ

Then we get the following theorem.

T h e o r e m 2.3.

Let X be a r.i. space on I=[O,

1]

with qx<eC. Then

(2.13)

IIfI[Hx,.~inf{I[SE(f)[[x;EQCQ, IEQ[>~lQ[}~[[m(f)l[x. 1

Proof.

We use the argument of Proposition 5.5 in IF J]. Since the operator M is of weak type (1,1) there is a constant C > 0 such that, for each t>0,

I{x;m(f)(x)

>t}]_< I{x;M(l{y:S(f)(y)>t})(x

)

> ~}] <c]{x;

S(f)(x)

> t}l.

(8)

Since X is a r.i. space it follows that

tlm(f)llx _<

cllS(f)llx

for

xGI.

Therefore we have

(2.16)

By (2.14), (2.16) and Corollary 2.2, (2.13) follows.

Thus, if

qx<eC,

we have

IISE(f)IlX ~ cllm(f)llx"

[]

Hx(d) = { f 9 Ll(I) ; llm(f)llx < c~}.

Now for an arbitrary r.i. space X on I = ( 0 , 1) (even in the case

qx=oC)

we may define

Hx (d) as

follows.

(2.14)

for all

f E Hx.

For x E I put

u(x)=inf

u c Z ;

~QtX)~ <_m(f)(x) ,

/(Q)<2 "

where

l(Q)

is the length of the interval Q. P u t

EQ

= {x E Q ; 2 -~(x) > / ( Q ) } = {x E

Q;SQ(f)(x) <_ m(f)(x)}

for every dyadic interval Q, where

SQ(f)= (p~cQ ]sp]2 1

,~1/2

By definition of

mQ(f):=SQ(f)(88

it follows that

IEQI>~IQI

and

ts~ " A1/2 <_ c~(f)(x)

(2.15) (~d,Q I~QI EQ,X)]

(9)

Dual spaces of dyadic Hardy spaces generated by a rearrangement invariant space on [0, 1] 171

Definition

2.4. Let X be an a r b i t r a r y r.i. space on I . T h e n we put

(2.17)

Hx(d)

:=

{f~L~(I);lllflBH~

:= IIm(f)llx < oo}.

T h e above definition permits us to improve the description of the dual space of

Hx(d)

whenever X is a r.i.s, on I such t h a t

l<_px <_qx

<2, which was done in [P1].

In order to prove t h a t we extend T h e o r e m 5.9 in IF J]. First of all we extend Proposition 5.5 in [FJ].

For

f = ~-~Q SQhQ

put

(2.1s)

f~(t)

= s u p

P~t(IPI f ~-"

- -1

jp QZ..~c P-~-lQtx) ax ]sQI2 . . . . J ~/2

(1 Q E , Q,2)lJ2 ( 1 s ,1j2

= sup ~-~ = supper--IPI If(u) - f P 12

du)

where

fp:=(1/IPI) fp f(u) du.

We then have the following result.

P r o p o s i t i o n 2.5.

Let X be a r.i. space on I such that 2 < p x < q x h o O . Then it follows

(2.19) IIm(f)llx ~ Ilfnllx.

Proof.

By Chebyshev's inequality we have

1/o

(2.20)

I { x E Q ; S Q ( f ) ( x )

> e } l < 7E

(SQ(f)(x))2dx<_ (f~(t)) 2

for every t E Q and c > 0.

If e > 2 f ~ ( t ) , we have, by (2.20),

(2.21) I{x e 0 ; sQ(f)(*) > ~}1 < ~lOI, which in t u r n implies t h a t

rrtQ

(f) <_ 2ff (t),

where

(10)

for all t E Q.

Thus

re(f )(t)

= sup

mQ(f)lQ(t) <_

2f~(t)

Q and

(2.22)

Conversely we consider

IIm(f)llx ~ 211f"ltx.

(2.23) t J ( x ) = i n f { t ~ E Z ; ( E 'SQ'21

(x)) 1/2<m(f)(z)}

I(Q)<2 " ~ I Q _ 9

Now let

EQ={xCQ;2 -~(x) >_l(Q)}={xEQ;SQ(f)(x)<m(f)(x)}

for every dy- adic interval Q. As in the proof of Theorem 2.3 it follows t h a t

IEQI/IQI>_ }

and

I~QI 2,

, .',~1/2

(2.24)

(~Q ~-IEQ[X)) <Cm(f)(x)

for every x E I.

Integrating (2.24) on the dyadic fixed interval P we have

~"

IsQI 2

<_Cfm~(f)(x)d~

Q c P o r

ftt2 (t) < Csup j-~ /gm2(f)(x) dx

- - P ~ t I ~ l

for all t C I.

Now, using the fact that M is a bounded (non linear) operator on Y, for every r.i. space Y such that

l<pv<_qy<oc,

we have, denoting by X2 the space

X2={f:I--+R; Ifl 1/2 ~X}

with the quasi-norm II f llx~ : = I IIfl 1/2112 and using the hypothesis

Px~ > 1,

Ilfn211x~ ~ CllM(m2(f))llx~ ~ CIIm2(f)llx= = Cltm(f)ll~-

Thus

(2.25) IlfiIIx < clIm(f)llx,

and (2.22) and (2.25) prove Proposition 2.5. []

(11)

D u a l s p a c e s of d y a d i c H a r d y s p a c e s g e n e r a t e d by a r e a r r a n g e m e n t i n v a r i a n t s p a c e o n [0,1] 173

T h e o r e m 2.6.

Let X be a r.i. space on I such that l=px<_qx<2. Then the dual space of Hx may be identified with Hx,, by the map carrying lC(Hx)* onto t = ~ Q tQhQEHx,, where tQ=l(hQ) for every dyadic interval Q. Moreover,

IlZll(~x)* ~tlltlllH~,.

Proof.

Let

t ~ Q tQhQ

and S = ~ Q

8QhQ.

Using the notation of Proposi- tion 2.5 we have, by the Cauchy Schwarz inequality and (2.24),

sqtQ < ~ / E tsQi 1 ,tQi 1

_ IQI1/2 q ~ Eo

<cllsllgx I-~QI'E~ II~,<cllsllg~ll~"(t)llx'--cllsllHxlltll~"

i.e.,

(2.26)

Illll(Hx). < cllltlllnx,.

Conversely, let

IE(Hx)*, tQ=l(hQ)

and

s=~-~Q SQhQEHx.

Now fix a dyadic interval P and let us consider the space X1 = {Q ;Q c P} endowed with the measure

~(Q)=IQI/IPI.

T h e n

~ ItQI2xl/2=

= sup

- - ~ sQtQIOl 1/2

Q C P 12(X1, dp) - Q c P

8QIQ[ 1/2

It

<_ Iltll(.x). sup Z ~l ~

But

h decreasing

(12)

since X is a r.i. space.

On the other hand, for a fixed ~ > 0 there is an

sEl2(X1, d#)

such that Ilsll,~(x.,a. ) <_ 1

and an

hEX', fihlfx,

<1, h decreasing, such t h a t sup

E sQ}O}l/2hQ

<

Consequently,

Now

+~

-< f [ (Q~. ~ 1Q)'/~] ~h+~.

,~ - ~--~) j ,~*~j

t~ < Iltll([M(h~)]U~+~)

and, since Px~ = ~Px' > 1, 1

Ilt~lfx, <_ IlZll [ll[M(h2)]l/21lx, +el --IILII [liM(h2)ll~+ El _< fluff [ffh2fl~+~] = Illll [llhllx'+~] -< IIZlJ(l+~).

Since ~ > 0 is arbitrarily small we have

(2.27) IIt~11~, _< Illll(~x)-.

Thus (2.26) and (2.27) prove the theorem. []

It is clear by T h e o r e m 2.6 that for

X=L 1, Hx,

coincides with the classical space

BMO(d) := {f: I--~

R;llf ~llL~

< ~ } .

(13)

Dual spaces of dyadic Hardy spaces generated by a rearrangement invariant space on [0, 1] 175 R e f e r e n c e s

[A] ANTIPA, A., Doob's inequality for rearrangement invariant function spaces, Rev.

Roumaine Math. Pures Appl. 35 (1990), 101-108.

[BS] BENNETT, C. and SHARPLEY, R., Interpolation of Operators, Academic Press, Boston, 1988.

[FJ] FRAZIER, M. and JAWERTH, B., A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.

[FS] FEFFERMAN, C. and STEIN, E. M., Some maximal inequalities, Amer. J. Math.

93 (1971), 107-115.

[G] GAI~SIA,

A. M., Martingale Inequalities; Seminar Notes on Recent Progress, Ben- jamin, Reading-London-Amsterdam, 1973.

[JMST] JOHNSON, W. B., MAUREY, B., SCHECHTMAN, G. and TZAFRIRI, L., Symmetric structures in Banach spaces, Mere. Amer. Math. Soc. 217 (1979).

[LT1] LINDENSTRAUSS, J. and TZAFRIRI, L., Classical Banach Spaces I, Springer-Ver- lag, Berlin-Heidelberg, 1977.

[LT2] LINDENSTRAUSS, J. and TZAFRIRI, L., Classical Banach Spaces II, Springer- Verlag, Berlin-Heidelberg, 1979.

[P1] POPA, N., Duals of dyadic Hardy spaces generated by a rearrangement invariant function space X, Rev. Roumaine Math. Pures Appl. 33 (1988), 769-778.

[P2] POPA, N., Isomorphism theorems for dyadic Hardy spaces generated by a re- arrangement invariant space X on unit interval, Rev. Roumaine Math. Pures Appt. 35 (1990), 261-281.

[P3] POPA, N., Dyadic Hardy spaces generated by rearrangement invariant spaces:

some topological-vector space properties, in Structuri de ordine fn analiza functional5 (Cristescu, R., ed.), vol. 3, pp. 163-214, Editura Academiei Ro-

mane, Bucharest, 1992. (Romanian) Received October 17, 1996

in revised form August 14, 1997

Nicolae Popa

Institute of Mathematics Romanian Academy P.O. Box 1-764 RO-70700 Bucharest Romania

email: npopa@imar.ro

Références

Documents relatifs

A linear isometry on a Hilbert space which is surjective is called a unitary operator and this term is sometimes used to refer to surjective isometries on general Banach

David and Semmes [2] have proven the so-called uniformization theorem which states that every uniformly disconnected, uniformly perfect, doubling compact metric space

[r]

We shall prove the theorem in this section. Let f,g be two functions as in the theorem. We shall show the existence of the.. required operator T only in the case where g is in Hoc

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale.. Toute copie ou impression de ce fichier doit conte- nir la présente mention

We are now going to explain to what extent the preceding results can be generalized to the domain 5. An explicit formula for the reproducing kernel of H^CS) is known only in

logical vector space V which is bounded, closed and absolutely convex (circled convex) and complete in its self-induced norm ( see below).. The norm and the

For any symmetric space S, we obtain explicit links between its function e(X, Y), introduced in Part I, and invariant differential operators, or spherical functions,