• Aucun résultat trouvé

Spectroscopic imaging of a dilute cell suspension Journal de Mathématiques Pures et Appliquées

N/A
N/A
Protected

Academic year: 2022

Partager "Spectroscopic imaging of a dilute cell suspension Journal de Mathématiques Pures et Appliquées"

Copied!
59
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal de Mathématiques Pures et Appliquées

www.elsevier.com/locate/matpur

Spectroscopic imaging of a dilute cell suspension

Habib Ammaria,∗, Josselin Garnierb, Laure Giovangiglic, Wenjia Jingd, Jin-Keun Seoe

a DepartmentofMathematics,ETHZürich,Rämistrasse101,CH-8092Zürich,Switzerland

bLaboratoiredeProbabilitésetModèlesAléatoires&LaboratoireJacques-LouisLions,Université Paris VII,75205ParisCedex13,France

cDepartmentofMathematics,340RowlandHall,UniversityofCaliforniaatIrvine,Irvine, CA 92697-3875,USA

dDepartmentofMathematics,TheUniversityofChicago,5734S.UniversityAvenue,Chicago,IL60637, USA

eDepartmentofComputationalScienceandEngineering,YonseiUniversity,50Yonsei-Ro, Seodaemun-Gu,Seoul 120-749,RepublicofKorea

a r t i cl e i n f o a b s t r a c t

Articlehistory:

Received15July2015

Availableonline19November2015

MSC:

35R30 35B30 65W21

Keywords:

Electricalimpedancespectroscopy Stochastichomogenization Maxwell–Wagner–Frickeformula Debyerelaxationtime

The paper aims at analytically exhibiting for the first time the fundamental mechanismsunderlyingthefactthateffectivebiologicaltissueelectricalproperties andtheirfrequencydependencereflectthetissuecompositionandphysiology.For doingso,ahomogenizationtheoryisderivedtodescribetheeffectiveadmittivityof cellsuspensions.A newformulaisreportedfordilutecasesthatgivesthefrequency- dependenteffectiveadmittivitywithrespecttothemembranepolarization.Different microstructuresareshowntobedistinguishableviaspectroscopicmeasurementsof theoveralladmittivityusingthespectralpropertiesofthemembranepolarization.

The Debyerelaxationtimesassociatedwiththemembranepolarizationtensorare showntobeabletogivethemicroscopicstructureofthemedium.A naturalmeasure oftheadmittivityanisotropyisintroducedanditsdependenceonthefrequencyof appliedcurrentisderived.A Maxwell–Wagner–Frickeformulaisgivenforconcentric circularcells, andtheresults canbe extendedto therandom cases. A randomly deformedperiodicmediumisalsoconsideredandanewformulaisderivedforthe overalladmittivityofadilutesuspensionofrandomlydeformedcells.

© 2015TheAuthors.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Dans cet article, on introduit une approche spectroscopique afin d’imager les propriétés électriques d’un tissu biologique. On construit un dévéloppement asymptotiquedel’admittivitéeffectivedutissuenfonctiondelafractionvolumique des cellules et du tenseur de polarisation de la membrane cellulaire. On étudie les propriétés de ce tenseur et on introduit le concept de temps de relaxation pour des géométries de cellules quelconques. Ce concept permet de distinguer

ThisworkwassupportedbytheERCAdvancedGrantProjectMULTIMOD-267184.

* Correspondingauthor.

E-mailaddresses:habib.ammari@math.ethz.ch(H. Ammari),garnier@math.jussieu.fr(J. Garnier),lgiovang@uci.edu (L. Giovangigli),wjing@math.uchicago.edu(W. Jing),seoj@yonsei.ac.kr(J.-K. Seo).

http://dx.doi.org/10.1016/j.matpur.2015.11.009

0021-7824/© 2015TheAuthors.PublishedbyElsevierMassonSAS.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

différentesorganisationscellulairesdutissuàpartirdemesuresspectroscopiquesde l’admittivitéeffective.

© 2015TheAuthors.PublishedbyElsevierMassonSAS.Thisisanopenaccess articleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The electric behavior of biologicaltissue under theinfluence of an electricfield at frequency ω canbe characterized by its frequency-dependent effective admittivity kef := σef(ω)+ef(ω), where σef and εef are respectivelyits effectiveconductivity and permittivity. Electricalimpedance spectroscopy assesses the frequency dependence of the effective admittivity by measuring it across a range of frequencies from a few Hz to hundreds of MHz. Effective admittivity of biological tissues and its frequency dependence vary withtissue composition, membranecharacteristics, intra- and extra-cellular fluids and other factors.

Hence, the admittance spectroscopyprovides information about the microscopicstructure of the medium and physiologicalandpathologicalconditionsofthetissue.

The determinationof theeffective,or macroscopic, property of asuspensionis anenduringproblem in physics[44].Ithasbeenstudiedbymanydistinguishedscientists,includingMaxwell,Poisson[52],Faraday, Rayleigh [54], Fricke [31], Lorentz, Debye, and Einstein [26]. Many studies have been conducted on ap- proximateanalytic expressionsforoveralladmittivityofacellsuspensionfromtheknowledgeofpointwise conductivity distribution, and these studies were mostly restricted to the simplified model of a strongly dilutesuspensionofsphericalorellipsoidalcells.

In this paper, we consider aperiodic suspension of identical cellsof arbitrary shape. We apply at the boundaryofthemediumanelectricfieldoffrequencyω.The medium outsidethecellshasanadmittivity of k0 :=σ0+0. Each cell is composed of anisotropic homogeneous core of admittivityk0 and athin membrane of constantthickness δ andadmittivity km:=σm+m. The thicknessδ isconsidered to be very small relative to the typical cell size and the membrane is consideredvery resistive, i.e., σm σ0. In this context, the potentialin themedium passes aneffective discontinuity over the cell boundary;the jumpisproportional toitsnormalderivativewithacoefficientoftheeffectivethickness, givenbyδk0/km. The normalderivativeofthepotentialiscontinuous acrossthecellboundaries.

Weusehomogenizationtechniqueswithasymptoticexpansionstoderiveahomogenizedproblemandto defineaneffectiveadmittivityofthemedium.Weprovearigorousconvergenceoftheoriginalproblemtothe homogenizedproblemviatwo-scaleconvergence.Fordilutecellsuspensions,weuselayerpotentialtechniques toexpandtheeffectiveadmittivityintermsofcellvolumefraction.Throughtheeffectivethickness,δ k0/km, the first-orderterminthisexpansioncanbeexpressedintermsofamembranepolarizationtensor,M,that depends on the operating frequency ω. We retrieve the Maxwell–Wagner–Fricke formula for concentric circular-shaped cells. This explicit formula has been generalized in many directions: in three dimension for concentric spherical cells;to include higherpower termsof the volumefraction for concentric circular and spherical cells; and to include various shapes such as concentric, confocal ellipses and ellipsoids; see [14,15,28–30,43,55–57].

The imaginary part of M is positive for δ small enough. Its two eigenvalues are maximal for frequencies 1/τi,i= 1,2,oforderofafewMHzwithphysicallyplausibleparametersvalues.Thisdispersion phenomenon well knownbythe biologists isreferred to as theβ-dispersion.The associated characteristic timesτicorrespond toDebyerelaxationtimes.Giventhis,weshowthatdifferentmicroscopicorganizations of themediumcanbedistinguishedviaτi,i= 1,2,alone.The relaxationtimesτiarecomputednumericallyfor differentconfigurations:onecircularorellipticcell,twoorthreecellsincloseproximity.The obtainedresults illustratetheviabilityofimagingcellsuspensionsusingthespectralpropertiesofthemembranepolarization.

The Debye relaxationtimesareshowntobeabletogivethemicroscopicstructureof the medium.

(3)

In the second part of this paper, we show that our results can be extended to the random case by considering arandomly deformed periodicmedium. We also derive arigorous homogenizationtheory for cells (and hence interfaces) that are randomly deformed from a periodic structure by random, ergodic, and stationary deformations. Weprove a newformula for theoverall conductivity of adilute suspension of randomly deformedcells. Again, the spectral properties of the membrane polarization canbe used to classify different microscopic structures of the mediumthrough their Debye relaxation times. For recent worksoneffectivepropertiesofdiluterandommedia,wereferto[7,17].

Ourresultsinthispaperhavepotential applicabilityincancerimaging,foodsciencesandbiotechnology [41,42],andappliedandenvironmentalgeophysics.TheycanbeusedtomodelandimprovetheMarginProbe system for breast cancer [61], which emits an electric field and senses the returning signal from tissue underevaluation. The greater vascularization, differently polarizedcell membranes,and other anatomical differencesoftumorscomparedwithhealthytissuecausethemtoshowdifferentelectromagneticsignatures.

The abilityof theprobe to detectsignalscharacteristic of cancerhelps surgeonsensure theremovalof all unwantedtissuearoundtumormargins.

Another commercial medical system to which our results can be applied is ZedScan [62]. ZedScan is based on electrical impedance spectroscopy for detecting neoplasias in cervical disease [1,20]. Malignant whitebloodcellscanbealsodetectedusinginducedmembranepolarization[53].In foodqualityinspection, spectroscopicconductivityimagingcanbeusedtodetectbacterialcells[12,59].In appliedandenvironmental geophysics,inducedmembrane polarizationcanbe usedto probe uptosubsurface depths ofthousands of meters [58,60].

Thestructureoftherest ofthispaperisas follows.Section2introducestheproblemsettings andstate themain resultsofthis work.Section3is devotedtothe analysisof theproblem.Weproveexistenceand uniquenessresultsandestablishusefulaprioriestimates.In section4weconsideraperiodiccellsuspension andderivespectralpropertiesoftheoverallconductivity.In section5weconsidertheproblemofdetermining theeffective property of asuspensionof cellswhen thevolumefraction goes to zero.Section6is devoted to spectroscopic imagingofadilutesuspension.Wemake useof theasymptoticexpansionof theeffective admittivity in terms of the volume fraction to image a permittivity inclusion. We also discuss selective spectroscopicimagingusingapulsedapproach.Finally,weintroduceanaturalmeasureoftheconductivity anisotropyandderiveitsdependenceonthefrequencyofappliedcurrent.In section7weextendourresults tothecaseofrandomlydeformedperiodicmedia.In section8weprovidenumericalexamplesthatsupport our findings. A few concluding remarks are given in the last section. For simplicity, we only treat the two-dimensionalcase.Ourresultscanbeextendedinto thethree dimensionalsetting [35].

2. Problemsettingsandmainresults

Theaimofthissectionisto introducetheproblem settingsandstatethemainresultsofthispaper.

2.1. Periodic domain

We consider the probe domain Ω to be a bounded open set of R2 of class C2. The domain contains a periodic array of cells whose size is controlled by ε. Let C be aC2,η domain being contained inthe unit squareY = [0,1]2,seeFig. 2.1.Here,0< η <1 andC representsareferencecell.Wedividethedomain Ω periodicallyineachdirectioninidenticalsquares(Yε,n)n ofsize ε,where

Yε,n=εn+εY.

Here,n∈Nε:=

n∈Z2|Yε,nΩ= .

Weconsider thatacellCε,nlives ineachsmall squareYε,n. As showninFig. 2.4, allcellsareidentical, uptoatranslationandscalingofsizeε, tothereferencecellC:

(4)

Fig. 2.1.Schematic illustration of a unit periodY.

∀n∈Nε, Cε,n=εn+ε C.

Soaretheirboundaries (Γε,n)n∈Nε totheboundaryΓ of C:

∀n∈Nε, Γε,n=εn+εΓ.

Let usalso assumethatall thecellsarestrictly containedinΩ,thatisforeveryn∈Nε,the boundary Γε,nofthecellCε,ndoesnotintersecttheboundary∂Ω:

∂Ω∩(

nNε

Γε,n) =∅.

2.2. Electricalmodelofthecell Setforany opensetD ofR2:

L20(D) :=

⎧⎨

f ∈L2(D)

∂D

f(x)ds(x) = 0

⎫⎬

and

H1(D) :=

f ∈L2(D)|∇f| ∈L2(D)

.

WeconsiderinthissectionthereferencecellCimmersedinadomainD.Weapplyasinusoidalelectrical current g∈L20(∂D) withangularfrequencyω attheboundaryofD.

Themediumoutsidethecell,D\C,isahomogeneousisotropicmediumwithadmittivityk0:=σ0+iω0. The cellCiscomposedofanisotropichomogeneouscoreofadmittivityk0andathinmembraneofconstant thickness δwithadmittivitykm:=σm+m.Wemakethefollowing assumptions:

σ0>0, σm>0, 0>0, m0.

If we apply a sinusoidal current g(x)sin(ωt) on the boundary ∂D in the low frequency range below 10 MHz,the resultingcomplex-valuedtimeharmonicpotentialuˇisgovernedby

⎧⎨

∇ ·(k0+ (km−k0Γδ)∇u) = 0ˇ inD k0∂uˇ

∂n

∂D =g,

where Γδ :={x∈C : dist(x,Γ)< δ}andχΓδ isthecharacteristic functionoftheset Γδ.

(5)

The membrane thickness δ is considered to be very small compared to the typical size ρ of the cell, i.e.,δ/ρ1.Accordingtothetransmissioncondition,the normalcomponentofthecurrentdensityk0∂uˇ canbeapproximatelyregardedascontinuousacross thethinmembraneΓ. ∂n

Weset β := δ km

. Sincethemembraneis veryresistive,i.e.σm0 1,the potentialuˇinD undergoes ajumpacrossthecellmembraneΓ,which canbe approximatedatfirstorder byβk0

∂uˇ

∂n. A rigorousproof ofthisresult,basedonasymptoticexpansionsoflayerpotentials, canbefound in[37].

Moreprecisely,weapproximateuˇbyudefinedasthesolutionofthefollowing equations[37,50,51]:

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎩

∇ ·k0∇u= 0 in D\C,

∇ ·k0∇u= 0 in C, k0∂u

∂n

+=k0∂u

∂n

on Γ,

u|+−u| βk0∂u

∂n = 0 on Γ,

k0

∂u

∂n

∂D=g,

∂D

g(x)ds(x) = 0,

D\C

u(x)dx= 0.

(2.1)

Here n is the outward unit normal vector and u|±(x) denotes lim

t0+u(x±tn(x)) for x on the concerned boundary.Likewise, ∂u

∂n

± := lim

t→0+∇u(x±tn(x))·n(x).

Equation(2.1)isthestartingpoint ofouranalysis.

Foranyopen setB inR2,wedenote HC1(B) theSobolevspaceH1(B)/Cwhichcanberepresentedas:

HC1(B) =

⎧⎨

u∈H1(B)|

B

u(x)dx= 0

⎫⎬

. Thefollowingresultholds:

Lemma2.1. Thereexistsaunique solutionu:= (u+,u)inHC1(D+)×H1(D)to(2.1).

Proof. To provethewell-posednessof(2.1)weintroducethefollowingHilbertspace:V :=HC1(D)×H1(D) equippedwiththefollowing naturalnormforourproblem:

∀u∈VuV =∇u+L2(D+)+∇uL2(D)+u+−uL2(Γ). Wewritethevariationalformulationof(2.1)asfollows:

Findu∈Vsuch that for allv:= (v+, v)∈V :

⎧⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

D+

k0∇u+(x)· ∇v(x)dx+

D

k0∇u+(x)· ∇v(x)dx + 1

βk0 Γ

(u+−u)(v+−v)dσ(x) = 1 ko

∂Ω

gv dσ(x).

Since (k0) = σ0 > 0 and ( 1 βk0

) = σmσ0+εmε0

δ|k0| > 0, we can apply Lax–Milgram theory to obtain existenceanduniquenessofasolutiontoproblem (2.1). 2

(6)

Fig. 2.2.Real and imaginary parts of the potentialuoutside and inside the cell.

Fig. 2.3.Gradient vector fields of the real and imaginary parts ofu.

We conclude this subsection with a few numerical simulations to illustrate the typical profile of the potential u. Weconsider anelliptic domain D inwhich lives anelliptic cell.Wechooseto virtually apply at theboundaryofD anelectricalcurrent g=ei30r.

Weuseforthedifferentparametersthefollowingrealisticvalues:

• thetypicalsizeofeukaryotescells:ρ10–100 μm;

• theratiobetweenthemembranethickness andthesizeofthecell:δ/ρ= 0.7·10−3;

• theconductivityofthemediumand thecell:σ0= 0.5 S m−1;

• themembraneconductivity:σm= 108 S m1;

• thepermittivityofthemediumand thecell:0= 90×8.85·10−12 F m−1;

• themembranepermittivity:εm= 3.5×8.85·10−12 F m−1;

• thefrequency:ω= 106Hz.

Note thattheassumptionsofourmodelδρandσmσ0 areverified.

Therealand imaginaryparts ofuoutsideandinsidethecellarerepresentedinFig. 2.2.

We can observe that the potential jumps across the cell membrane. We plot the outside and inside gradientvectorfields;seeFig. 2.3.

2.3. Governingequation

Wedenote byΩ+ε themediumoutsidethecellsandΩε themediuminsidethecells:

Ω+ε = Ω(

n∈Nε

Yε,n\Cε,n), Ωε =

n∈Nε

Cε,n.

(7)

Fig. 2.4.Schematic illustration of the periodic medium Ω.

SetΓε:=

nNε

Γε,n.Bydefinition,the boundaries ∂Ω+ε and∂Ωε ofrespectivelyΩ+ε andΩε satisfy:

∂Ω+ε =∂Ω∪Γε, ∂Ωε = Γε.

We apply asinusoidal current g(x)sin(ωt) at x ∈∂Ω, where g L20(∂Ω). The inducedtime-harmonic potentialuεinΩ satisfies:

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎩

∇ ·k0∇u+ε = 0 in Ω+ε,

∇ ·k0∇uε = 0 in Ωε, k0

∂u+ε

∂n =k0

∂uε

∂n on Γε,

u+ε −uε −ε βk0

∂u+ε

∂n = 0 on Γε, k0

∂u+ε

∂n

∂Ω=g,

∂Ω

g(x)ds(x) = 0,

Ω+ε

u+ε(x)dx= 0,

(2.2)

whereuε=

u+ε in Ω+ε, uε in Ωε.

Note thatthe previouslyintroduced constantβ, i.e., the ratiobetween thethickness of the membrane ofC anditsadmittivity,becomesεβ.Becausethecells(Cε,n)n∈Nε areinsquaresofsizeε,the thicknessof theirmembranesisgivenbyεδandconsequently,afactorεappears.

2.4. Main resultsintheperiodiccase

We set Y+ := Y \C and Y := C. For any open set D in R2, we denote HC1(D) the Sobolev space H1(D)/Cwhichcanberepresentedas

HC1(D) =

⎧⎨

u∈H1(D)|

D

u(x)dx= 0

⎫⎬

.

Throughoutthis paper,weassumethatdist(Y,∂Y)=O(1).Wewritethesolutionuεas

∀x∈Ω uε(x) =u0(x) +εu1(x,x

ε) +o(ε) (2.3)

with

(8)

y−→u1(x, y)Y-periodic andu1(x, y) =

u+1(x, y) in Ω×Y+, u1(x, y) in Ω×Y. Thefollowing theoremholds:

Theorem 2.1.

(i) The solution uε to (2.2) two-scale converges to u0 and ∇uε(x) two-scale converges to ∇u0(x)+ χY+(y)yu+1(x,y)+χY(y)yu1(x,y),whereχY± are thecharacteristicfunctionsof Y±.

(ii) The functionu0 in(2.3)isthesolution inHC1(Ω) tothefollowinghomogenized problem:

∇ ·K∇u0(x) = 0 inΩ,

n·K∇u0=g on∂Ω, (2.4)

where K,the effectiveadmittivityof themedium,isgivenby

(i, j)∈ {1,2}2, Ki,j =k0

⎝δij+

Y

Y+∇w+i +χY∇wi )·ej

, (2.5)

andthefunction(wi)i=1,2 arethesolutions of thefollowingcellproblems:

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎩

∇ ·k0(wi+(y) +yi) = 0 inY+,

∇ ·k0(wi(y) +yi) = 0 inY, k0

∂n(w+i (y) +yi) =k0

∂n(wi (y) +yi) onΓ, wi+−wi −βk0

∂n(wi+(y) +yi) = 0 onΓ, y−→wi(y)Y-periodic.

(2.6)

(iii) Moreover, u1 can be writtenas

(x, y)Ω×Y, u1(x, y) = 2

i=1

∂u0

∂xi(x)wi(y). (2.7)

Wedefine theintegraloperatorLΓ:C2,η(Γ)→ C1,η(Γ),with 0< η <1 by LΓ[ϕ](x) = 1

Γ

2ln|x−y|

∂n(x)∂n(y)ϕ(y)ds(y), x∈Γ. (2.8) LΓ isthenormalderivativeofthedouble layerpotentialDΓ.

SinceLΓ ispositive,onecanprovethattheoperatorI+αLΓ:C2,η(Γ)→ C1,η(Γ) isaboundedoperator and hasaboundedinverseprovidedthatα >0[23,47].

As the fraction f of the volume occupied by the cells goes to zero, we derive an expansion of the effectiveadmittivityforarbitraryshapedcellsintermsofthevolumefraction.Werefertothesuspension, as periodic dilute.The followingtheorem holds.

Theorem 2.2. The effective admittivity of a periodic dilute suspension admits the following asymptotic expansion:

(9)

K=k0

I+f M

I−f 2M

1

+o(f2), (2.9)

whereρ=

|Y|,f =ρ2,

M=

⎜⎝Mij =βk0

ρ−1Γ

njψi(y)ds(y)

⎟⎠

(i,j)∈{1,2}2

, (2.10)

andψi isdefinedby

ψi=

I+βk0Lρ−1Γ

−1

[ni]. (2.11)

Notethatρ1Γ istherescaledmembraneandtherefore,M isindependentofρ.

2.5. Descriptionof therandomcells andinterfaces

We describe the domains occupied by the cells. As mentioned earlier, they are formed by randomly deforming aperiodic structure.We transform the aforementioned periodicstructure by arandom diffeo- morphismΦ:R2R2.Let

R+2 :=

n∈Z2

(n+Y+), R2 :=

n∈Z2

(n+Y), Γ:=

n∈Z2

(n+ Γ). (2.12)

Thecells,the environmentandtheinterfacesarehencedeformedtoΦ(R2),Φ(R+2) andΦ(Γ).Weemphasize thatthe topologyof these sets arethe sameas before. Finally,the deformed structure is scaledto size ε, where 0 < ε 1, by the dilation operator εI where I is the identity operator. The final sets εΦ(R2), εΦ(Γ) andεΦ(R+2) thusarerealisticmodelsfortherandom cells,membranesand theenvironmentforthe biologicalproblemathand.

TomodelthecellsinsideanarbitraryboundeddomainΩ asin(2.2),wewouldliketosetΩ+ε := Ω∩εΦ(R2) and Γε:= Ω∩εΦ(Γ). However,atechnicalityis encountered,precisely, the intersectionofεΦ(Γ) with the boundary∂Ω maynotbeempty.In thiscase,somecellsarecutbytheboundaryofthebody,whichisnot physicallyadmissible.Moreover,anarbitrarydiffeomorphismΦ mayallowsomedeformedcellsinεΦ(R2) toget arbitrarilyclosetoeachother. Thisimposes difficultiesfor rigorousmathematical analysis.In order to resolve these issues, we will impose a few conditions on Φ and refine the above construction in the next subsection.

2.6. Stationary ergodicsetting

Let (O,F,P) be some probability space on which Φ(x,γ) : R2× O → R2 is defined. Throughout this paper,weassumethatFiscountablygeneratedsothatthespaceL2(O) isseparable.Forarandomvariable X ∈L1(O,dP),wedenoteitsexpectationby

EX =

O

X(γ)dP(γ).

Throughoutthis paper,weassumethatthegroup(Z2,+) actsonObysomeactionn:O → O}n∈Z2, andthatforalln∈Z2,τn isP-preserving,thatis,

(10)

P(A) =P(τnA), for allA∈ F.

We assumefurtherthattheaction isergodic, whichmeansthatforany A∈ F,ifτnA=A foralln∈Z2, then necessarilyP(A)∈ {0,1}.

Following [19],wesaythatarandomprocess F∈L1loc(R2,L1(O)) is(discrete)stationary if

∀n∈Z2, F(x+n, γ) =F(x, τnγ) for almost everyxandγ. (2.13) Clearly, adeterministic periodicfunctionis aspecial caseof stationary process. However,we precise that theabovenotionofstationarityisdifferentfromtheclassicalone,seeforinstance[49]and[39].Throughout this paper, wepresume stationarityinthesense of(2.13)ifnotstated otherwise.Whatmakes thisnotion useful isthefollowing versionofergodictheorem[25,34].

Proposition 2.1. (i) Let F L(R2,L1(O)) be a stationary random process. Equip Z2 with the norm

|n|= max1i2|ni| foralln∈Z2.Then 1

(2N+ 1)2

|n|≤N

F(x, τnγ)−−−−→L

N→∞ EF(x,·) for a.e.γ∈ O. (2.14) This impliesin particularthat

Fx

ε, γ −−−−−−−→Lε→0weak- E

Y

F(x,·)dx

for a.e.γ∈ O. (2.15)

(ii) Forp∈(1,),suppose F ∈Lp(O,Lploc(R2))isastationaryrandom process,then theaboveconver- gence resultsstillholdif wereplaceL by Lploc.

Weassumethatforeveryγ∈ O, Φ(·,γ) isadiffeomorphismfromR2 toR2 andthatitsatisfies

Φ(x, γ) is stationary. (2.16)

ess inf

γ∈O,x∈R2det(Φ(x, γ)) =κ >0, (2.17)

ess sup

γ∈O,x∈R2 |∇Φ(x, γ)|F =κ>0, (2.18)

where | · |F is the Frobenius norm and ess inf and ess sup are the essential infimum and the essential supremum,respectively.WepointoutthatΦ−1 automaticallysatisfiessimilarconditionswithconstantsκ1 and κ1.BytheuniformLipschitzassumptiononΦ andΦ1 above,wehave

1)−1|y1−y2| ≤ |Φ(y1, γ)−Φ(y2, γ)| ≤κ|y1−y2|.

So thecellsremain well separatedafter thedeformation. Toavoidthe intersectionof∂Ω and therandom cells εΦ(R2), we erase those intersecting the boundary. More precisely, given a bounded and simply connected open set Ω with smooth boundary and a small numberε 1, we denote by Ω1/ε the scaled set {x∈R2 |εx∈Ω}.LetΩ!1/ε betheshrunkset

Ω!1/ε:={x∈Ω1/ε| dist(x, ∂Ω1/ε)dist(Y, ∂Y)}.

(11)

We introduce for n Z2, Yn and Yn± the translated cubes, reference cells and reference environments:

Yn :=n+Y,Yn± :=n+Y±. Let Iε Z2 be the indices of cubes Yn such that Yn Ω!1/ε. Note that Iε

correspondsto Nεintheperiodiccase.WesetΩε tobe Ωε :=

n∈Iε

εΦ(Yn) (2.19)

andthenΩ+ε = Ω\Ωε.Wealsodefine thefollowing twonotations:

Eε:=

n∈Iε

εΦ(Yn) and Kε:= Ω\Eε. (2.20)

Clearly, Eε encloses all the cells in εΦ(Yn),n ∈ Iε and their immediate surroundings εΦ(Yn+); Kε is a cushionlayerneartheboundarythatpreventsthecellsfromtouchingtheboundary.Fromtheconstruction weseethat

x∈Ωinfε

dist(x, ∂Ω)≥Cε and sup

x∈Kε

dist(x, ∂Ω)≤Cε. (2.21)

Furthermore,wecancheckthat

n,j∈Isupε,n=j inf

xεΦ(Yn),yεΦ(Yj)|x−y| ≥Cε. (2.22) Above, the constantsC vary butallof them dependonly ondist(Y,Y), κand κ and areuniform inε.

This shows thatthe cellsinΩ arewell separated, i.e.,with a distance comparableto (if notmuch larger than)thesizeofthecells.

2.7. Main resultsintherandom case

Thefirstimportantresultintherandomcaseconcernsanauxiliaryproblemwhichproduces oscillating testfunctionsthatareusedinthestochastichomogenizationprocedure.In thefollowingtheorem,afunction fext in Wloc1,s(R2) is said to be an extension of f Wloc1,s(R+2) if fext = f on R+2 and fextW1,s(K) C(K,R+2)fW1,s(R+2K),forany compactsubsetK.

Thefollowingtheorem holds.

Theorem 2.3. Let Φ(·,γ) be a random diffeomorphism from R2 to R2 defined on the probability space (O,F,P),andassumethat (2.16)–(2.18) hold. Fora.e.γ∈ Oand foranyfixed vectorp∈R2,the system

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎩

∇ ·k0(∇wp+(y) +p) = 0 in Φ(R+2, γ),

∇ ·k0(∇wp(y) +p) = 0 in Φ(R2, γ), k0

∂wp+

∂n (y)−k0

∂wp

∂n (y) = 0 on Φ(Γ, γ),

wp+−wp =βk0

∂w+p

∂n (y) +νy·p

on Φ(Γ, γ),

wp±(y, γ) =w"p±−1(y, γ), γ), ∇w"p± are stationary,

∃w˜extp ∈Hloc1 (R2)that extendsw˜p+ s.t. ∇w˜extp =P

∇w˜+p , and E#

Y ∇w˜pexty,·)d˜y

= 0,

(2.23)

(12)

admits a unique (up to an addition of a random variable) weak solution wp = wp+χΦ(R+

2) +wpχΦ(R 2)

in Hloc1 (Φ(R+2))×Hloc1 (Φ(R2)) and the operator P above denotes the extension operator of Corollary Appendix A.1.

The precise weak formulation of the system above is postponed to section 7, where the proof of this theorem isgiven;see(7.1).Weremarkthatthenon-uniqueadditiverandomvariableis notimportantand what matters is the fact thatthe gradient ∇wp of the solution is unique. The second main result inthe random caseisthefollowing homogenizationtheorem.

Theorem 2.4. Let Ω be a bounded and connected open subset of R2 with regular boundary. Let Φ be a random diffeomorphism on(O,F,P)satisfying (2.16)–(2.18).Assumethat thecellsΩε areconstructed as inSection2.6.Thenfora.e.γ∈ O,the solutionuε(·,γ)= (u+ε,uε)of(2.2)satisfiesthefollowingproperties:

(i) We canextend u+ε(·,γ)touextε (·,γ)∈H1(Ω),where uextε (·,γ)convergesweakly, as ε→0,to adeter- ministic functionu0∈H1(Ω).

(ii) The function uε(·,γ) convergesstrongly in L2(Ω) to u0 above. Further,let Q be thetrivial extension operatorsetting Qf = 0outside thedomainof f,anddefine

:= det

⎝E

Y

Φ(z,·)dz

−1

, θ:=E

Y

detΦ(z,·)dz <1, (2.24)

where detdenotesthedeterminant.Then, Quε convergesweakly toθu0 inL2(Ω).

(iii) The functionu0 istheuniqueweaksolution inHC1(Ω) tothehomogenizedequation ∇ ·K∇u0(x) = 0, x∈Ω,

n(x)·K∇u0(x) =g, x∈∂Ω,

(2.25)

The homogenized admittivitycoefficientK isgivenby (i,j)∈ {1,2}2,

Kij =k0

⎜⎝δij+E

Φ(Y)

ej·Φ(Y+)∇w+ei+χΦ(Y)∇wei)(y,·)dy

⎟⎠, (2.26)

where{ei}2i=1istheEuclideanbasisofR2andforeachp∈R2,the pairoffunctions(wp+,wp)istheunique solution totheauxiliary system(2.23).

WementionthefactthatK isuniformly elliptic,the proofofwhichisstandardandisomitted.In the dilute limit ρ:=

|Y| 1, weobtain the following approximation of the effectivepermittivity for the dilutesuspension:

Kij =k0(I+fEMij) +o(f), (2.27) where accountsfortheaveragedchangeofvolumeduetotherandomdiffeomorphismandf:=ρ2isthe volumefraction occupiedbythecells;thepolarizationmatrixM isdefinedby

Mij =βk0 ρ−1Φ(Γ)

ψ˜inj ds(˜y), (2.28)

(13)

where

ψ˜i=(I+βk0n· ∇Dρ−1Φ(Γ))−1[ni],

withDρ−1Φ(Γ)thedoublelayerpotentialassociatedtothedeformedinclusionscaledtotheunitlengthscale.

3. Analysisofthe problem

Forafixed ε,recallthatHC1+ε) denotestheSobolevspaceH1+ε)/C,whichcanbe representedas

HC1+ε) =

⎧⎪

⎪⎩u∈H1+ε)|

Ω+ε

u(x)dx= 0

⎫⎪

⎪⎭. (3.1)

Thenaturalfunctional spacefor(2.2)is Wε:=

u=u+χ+ε +uχε |u+ ∈HC1+ε), u ∈H1ε)

, (3.2)

whereχ±ε arethecharacteristicfunctionsofthesetsΩ±ε.Wecanverifythat uWε =

∇u+2L2+ε)+∇u2L2ε)+εu+−u2L2ε)

1

2 (3.3)

definesanormonWε.In fact,as itwill beseeninProposition 3.2,thisnormisequivalenttothestandard normonWε whichis

uH1C+ε)×H1ε)=

∇u+2L2+ε)+∇u2L2ε)+u2L2ε)

1

2. (3.4)

3.1. Existence anduniquenessof asolution

Problem (2.2) should be understood through its weak formulation as follows: For a fixed ε > 0, find uε∈Wεsuchthat

Ω+ε

k0∇u+ε(x)· ∇v+(x)dx+

Ωε

k0∇uε(x)· ∇v(x)ds(x)

+ 1 εβ

Γε

(u+ε −uε)(x)(v+−v)(x)ds(x) =

∂Ω

g(x)v+(x)ds(x), (3.5)

foranyfunctionv∈Wε.

Definethesesquilinearformaε(·,·) onWε×Wε by aε(u, v) :=

Ω+ε

k0∇u+· ∇v+dx+

Ωε

k0∇u· ∇vdx+ 1 εβ

Γε

(u+−u)(v+−v)ds. (3.6)

Associatethefollowinganti-linearform onWεtotheboundarydatag:

(u) :=

∂Ω

gu+ds. (3.7)

Références

Documents relatifs

contains free variables vo, ..., vn-1, if p is any formula containing exactly one free variable, and if ~(03BC) is the result of relativizing.. the quantifiers of cp to

Youness BOUTAIB, Lajos Gergely GYURKÓ, Dimension-free Euler estimates of rough Terry LYONS, and Danyu YANG differential equations.

Florin R Ă DULESCU On unbounded, non-trivial Hochschild cohomology in finite von Neumann algebras and higher order Berezin’s quantization. Betül TANBAY A letter on

KALISZEWSKI, Tron OMLAND and Cuntz-Li algebras from a-adic numbers John QUIGG.

2 185 Youness BOUTAIB, Lajos Gergely GYURKÓ, Terry LYONS and Danyu YANG,.. Dimension-free Euler estimates of rough differential

Hideto NAKASHIMA and Takaaki NOMURA Basic relative invariants on the dual clans obtained by representations of Euclidean Jordan algebras. Nicolae ANGHEL On the Erd ő

Daniël WORM and Radu ZAHAROPOL On an ergodic decomposition defined in terms of certain generators: the case when the generator is defined on the entire space C b (X).

REVUE ROUMAINE DE MATHÉMATIQUES PURES ET APPLIQUÉES (ROMANIAN JOURNAL OF PURE AND APPLIED MATHEMATICS).. TOME LX • N O 2