• Aucun résultat trouvé

Physics Driven Geometrical Model Reduction (GMM)

N/A
N/A
Protected

Academic year: 2021

Partager "Physics Driven Geometrical Model Reduction (GMM)"

Copied!
21
0
0

Texte intégral

(1)

HAL Id: hal-02964494

https://hal.inria.fr/hal-02964494 Submitted on 12 Oct 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Physics Driven Geometrical Model Reduction (GMM)

Vincent Vadez, François Brunetti, Pierre Alliez

To cite this version:

Vincent Vadez, François Brunetti, Pierre Alliez. Physics Driven Geometrical Model Reduction (GMM). 2020. �hal-02964494�

(2)

ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics Driven

Geometrical Model Reduction

(GMM)

Vincent Vadez

vincent.vadez@dorea.eu

François Brunetti

francois.brunetti@dorea.fr

Pierre Alliez

pierre.alliez@inria.fr

(3)

Page 2Page 2 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Outline

Previous results on new view factor computation methods

Physics driven geometrical model reduction

Problem statement

Reduction process coupled to an oracle for the physical component (here thermal)

Limits

(4)

Page 3Page 3 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Progressive geometric view factors

Polygon-based quadrature

Adaptive splitting

Predictions

More details here:

V. Vadez, F. Brunetti, P. Alliez.

Progressive Geometric View Factors

for Radiative Thermal Simulation.

International Conference on

(5)

Page 4Page 4 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Problem statement:

Radiative thermal computations are time consuming

Goal: Geometric reduction consulting physics unaware but physics

driven thanks to an oracle

User inputs: Geometric file & decimation step Output: Distortion

Global generic architecture:

Preparation: reference calculation case request and clustering

Reduction: decimation iterations for each cluster

Reassembling: reduced geometry reconstitution and calculations request

Distortion: stop criteria according to user input and calculations results (max distortion)

(6)

Page 5 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Model geometry

Inputs: reduction ratio

& max distortion

Preparation

input: geometry format

output: distortion quantity

Clustering

(If required)

Reduction

Computations

Reassemble geometric clusters

Distortion

If max distortion not reached

If max distortion reached

Output

Oracle (physics calculus) Reduction tool

physics unaware but

physics driven

(7)

Page 6 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Model geometry

Inputs: reduction ratio

& max distortion

Preparation

input: geometry format

output: distortion quantity

Clustering

(If required)

Reduction

Computations

Reassemble geometric clusters

Distortion

If max distortion not reached

Output

Reduction tool physics unaware but physics driven

If max distortion reached

Nodal breakdown

Thermal solver

Oracle (physics calculus)

Temperatures

(8)

Page 7Page 7 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Current prototype thermal limitations

View surfaces face to face only (no solar or albedo fluxes computed)

Node-to-node radiative couplings

Thermal equation solved: steady state

No conductive part in considered model (so only radiative

couplings influence final temperatures aka radiative component totally drives temperatures)

Same thermo-optical properties everywhere

Note: if solar and albedo computations are performed, if

conductive couplings are added, if thermo-optical properties are different for each node -> final reduced output would be different BUT reduction algorithm does not change

(9)

Page 8Page 8 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

State of the art on geometric model reduction

Edge-collapse or halfedge-collapse

Cost function & placement function

Lindstrom-Turk [1]: optimizes shape, volume & boundaries

Garland-Heckbert [2]: encodes approximate distance to the original mesh by using quadric matrices that it assigns to each vertex

Volume preserving memory-aware

Normal preserving

[1] Peter Lindstrom and Greg Turk. Fast and memory efficient

polygonal simplification. In IEEE Visualization, pages 279–286, 1998. [2] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics. In Proc. SIGGRAPH '97, pages 209–216, 1997.

(10)

Page 9 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Considered model:

• 10 thermal nodes • 1006 triangle faces

• 4 antennas oriented towards Earth and 2 reflectors • 0,1W injected at the nozzle

• 1 boundary node

Algorithm inputs:

• reduction step ratio: 10% of faces

• desired max distortion: 0.5°C

• Lindstrom-Turk edge collapse (appropriate since boundaries

are preserved and view factors depend on area, squared distance

and orientations of the faces)

(11)

Page 10 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 1:

895 faces over 1006 original faces (89%)

Max distortion: 0.083°C

0 200 400 600 800 1000 1200 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0 1 Nu m be r of fa ce s M ax dis tor ti on Iteration number

Max distortion and number of faces over iteration number

(12)

Page 11 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 2:

797 faces over 1006 original faces (79%)

Max distortion: 0.058°C

0 200 400 600 800 1000 1200 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0 1 2 Nu m be r of fa ce s M ax dis tor ti on Iteration number

Max distortion and number of faces over iteration number

(13)

Page 12 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 3:

703 faces over 1006 original faces (70%)

Max distortion: 0.149°C

0 200 400 600 800 1000 1200 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0 1 2 3 Nu m be r of fa ce s M ax dis tor ti on Iteration number

Max distortion and number of faces over iteration number

(14)

Page 13 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 4:

630 faces over 1006 original faces (63%)

Max distortion: 0.133°C

0 200 400 600 800 1000 1200 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0 1 2 3 4 Nu m be r of fa ce s M ax dis tor ti on Iteration number

Max distortion and number of faces over iteration number

(15)

Page 14 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 5:

552 faces over 1006 original faces (55%)

Max distortion: 0.204°C

0 200 400 600 800 1000 1200 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0 1 2 3 4 5 Nu m be r of fa ce s M ax dis tor ti on Iteration number

Max distortion and number of faces over iteration number

(16)

Page 15 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 6:

486 faces over 1006 original faces (48%)

Max distortion: 0.462°C

0 200 400 600 800 1000 1200 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0 1 2 3 4 5 6 Nu m be r of fa ce s M ax dis tor ti on Iteration number

Max distortion and number of faces over iteration number

(17)

Page 16 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Iteration 7:

429 faces over 1006 original faces (48%)

Max distortion: 0.466°C

0 200 400 600 800 1000 1200 0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0 1 2 3 4 5 6 7 Nu m be r of fa ce s M ax dis tor ti on Iteration number

Max distortion and number of faces over iteration number

(18)

Page 17Page 17 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Conclusion

Volume and boundaries preserved thanks to Lindstrom-Turk edge collapse

Results are acceptable until geometry is too much approximated

Fast computation times (around 2 minutes for reduction and thermal calculus for this model). And faster at each iteration.

Iteration 8:

370 faces

Distortion: 1.838°C But antennas can still be reduced without altering too much the global

geometry!

Note: The prototype shows that the algorithm can be

improved. Even if the geometry is drastically corrupted, the temperatures are still acceptable thanks to the chosen

(19)

Page 18Page 18 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Future works on geometric model reduction

Progressive reduction (with adaptive ratio for each reduction step)

Reduce large clusters first to avoid small clusters to be too much approximated

Future works for thermal simulation

Test on a complete radiative model by adding maskings & shadows for incident fluxes (albedo, solar & Earth)

Test on a real model, with ESA permission Sentinel-3 and BepiColombo are good candidates

Examine standard exchange formats between our reduction outputs and STEP-TAS & STEP AP203

Sensitivity analysis on thermo-optical properties, use of machine learning to acquire thermal expertise about what drives the reduction process

(20)

Page 19Page 19 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Physics driven geometrical model reduction

Future works for 3D conductive couplings

Implement a new oracle for 3D conductive couplings (finite elements computations)

Max distortion based on conservation of defined interface nodes conductive couplings

The oracle could be improved to preserve mechanical structures characteristics

Note: Edge connectivity conforming is not required for the

radiative calculation. Due to finite elements (volumic connectivity), the edge connectivity between clusters is mandatory.

Edge connectivity between clusters is not preserved

(21)

Page 20 ESTEW – DOREA – 2020 – Réf: DOR/PRE/2020/007

Thank you for your

attention!

Références

Documents relatifs

For static measurements, the parameters to be measured to have a reactivity indicator are the neutron flux level in the core, the beam current on the target but also the neutron

Interactive physics-driven animations Retargetting of extracted audio grains was used to gener- ate interactive audio in the context of simulations driven by the Sofa [3]

So, even though QBism is phenomenologically right to claim that the de jure basis of scientific knowledge is personal lived experience and verbal communication between

Fish feed production and diesel and lubricating oil production are the main responsible for ozone depletion potential related to aquaculture and demersal trawling with

The three main tools are: (1) an upper bound on the distorsion which is obtained via height estimates, using basic number theory (this holds in arbitrary dimension); (2) a result

Inverse problems, cosparsity, and cosparse recovery In the context of linear inverse problems where one observes y ≈ Mx with x cosparse (with respect to some Ω), a new greedy

Table II: Force factor coefficients entailing the investigated nonlinear behaviour of the transducer Table III: Theoretical and measured nominal parameters of the EM 428

In the first case driven by viability selection and in the diploid context, the Fisher theorem, stating that the mean fitness increases as time passes by, holds true but, as a result