• Aucun résultat trouvé

Accurate 3D friction stir welding simulation tool based on friction model calibration

N/A
N/A
Protected

Academic year: 2021

Partager "Accurate 3D friction stir welding simulation tool based on friction model calibration"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: hal-00509265

https://hal-mines-paristech.archives-ouvertes.fr/hal-00509265

Submitted on 11 Aug 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accurate 3D friction stir welding simulation tool based on friction model calibration

Mohamed Assidi, Lionel Fourment

To cite this version:

Mohamed Assidi, Lionel Fourment. Accurate 3D friction stir welding simulation tool based on friction model calibration. 12th ESAFORM Conference on Material Forming, Apr 2009, Enschede, Nether- lands. pp.Pages 327-330, �10.1007/s12289-009-0541-6�. �hal-00509265�

(2)

! "

# $%% & %& '&( & ) &! * ) " &+

! "

, # " - . ' %/

! "

# " 0 1 02 + ++ " 3 4 "

" 5 & ! 0 " 6 7 & + 8 6 3 &

9 + ! 6 5 : 1!: 2 + 3 " 6

& ! % 0 6 + " " 6 6

!: + & #8 + " 3 6 + " ) + " 5

)# - ; 6; & 8 < " 3 3 6

+ &

$ % # 0 " " 6 !: + ! %7

&

# + " " 6 + + "

65 % + 0 " &

!"" 3 5 3 "

6 3

< 3 + " +

" & = 5 " + +

" 6 65 + " 8

8 + "

8 & ! % 0 8 3

65 > < &? @ 6 7 &

+ 8 & 9 + ! 6 5 :

+ 1!: 2 3

" 6 ?A@& # 5 3

3 < " "" "5 B + "

+ ++ "

8 8 8 ++ C +

" 3 < " " 3

3 6 " 5

5 + " " 6 ? @& # "

3 5 6 "

+ + + " +

" 5 " " + "

8 C 5 3 + + " " ++ " &

D 8 3 " 8 !:

8 + " + " ++ "

3 + " + " + 8

" = 5 " " +

" " 8 " 3 !:

& #8 + " 3 6

- ; 6; & 5 8 3

+ " 3 6 "" + 5 +

" < 6 +

< " " E F

. 3 5&

'

! )3 " " + +

" + " " 8

6 "C ? @& # F +

C = '% >, , ;

" ++ " = &%&

# + 5 8 + " +

) D % & 9 " +

+ A/& 6 5 1+

+ 2 + (%&(

" " 3 5 + ( & # 6 &%/

& # 8

+ A&/ & # + !

8 "C + &/% & ! 3 5

+ "

8 + / + % & 9

" +

8 " +

+ 5 & # 6 "C

8 8 C "

"C + A/ & 9

" 5 8 5 5

+ 8 C " &

(3)

t (s)

F (kN)

Comparison of forces

Case 1: α=0.3 p=0.125, Case 2: α=0.4 p=0.10, Case 3: α=0.4 p=0.125 0

10 20 30 40 50

0 10 20 30 40 50 60

FX 1 FZ 1 FX 2 FZ 2 FX 3 FZ 3 FX exp FZ exp

t (s)

F (kN)

Comparison of forces

Case 1: α=0.3 p=0.125, Case 2: α=0.4 p=0.10, Case 3: α=0.4 p=0.125 0

10 20 30 40 50

0 10 20 30 40 50 60

FX 1 FZ 1 FX 2 FZ 2 FX 3 FZ 3 FX exp FZ exp

Root Shoulder

Pin

Shoulder Root Pin Tip

Temperature (°C)

450 470 490 510 530 550 570

590 Experiment

Norton (case 1) Norton (case 2) Norton (case 3)

Root Shoulder

Pin

Shoulder Root Pin Tip

Shoulder Root Pin Tip

Temperature (°C)

450 470 490 510 530 550 570

590 Experiment

Norton (case 1) Norton (case 2) Norton (case 3)

Figure 1: Global view of the finite element model.

9 + 8 " 8 8 + "

0 " 8

+ 8 !: 8 "

"" " 5 " + "

" = 5 + "

&

(& ! " ))! * + +! *" * ,! " , ! + ! "

9 + " " 6 " 8

" + "

+ ? @& # - + " 8 =

+5 8 + " " ++ " αf

3 5q&

s q s f

f =α K1T2v v

τ 1 2

8 τf K1T2

" "5 vs 3

3 " 5 + 65

n n v v v

v

vs =1 Tool2?1 Tool2& @

&

# 8 8 " 8

++ + " ++ " & αf G & qG

& & A αf G &% qG & A/& % αf G &

qG & A/&

A 8 6 3 " H + "

3 + " + "

3 5 6 6 8 <

+ " %&

Figure 2: Comparison of simulated forces for three different couples of friction parameters with experimental measures, versus time

D 8 3 " " 0

3 5 " 8 & #

< " +

8 3

1 %2&

Figure 3: Comparison of calculated and measured temperatures at pin, root, and shoulder locations in the FSW tool with a Norton friction, using an Eulerian formulation

0 - " " +

+

6 3 + " 8 <

8 + 8 65

& # + "

3 + " 6 8 "

&

(' * ))! * + +! *" * ,! " ,

! + ! "

E < 6 3

8 C + ?%) @ 6; + " 8

8 8

1 = 1A22&

Symmetry plane Symmetry plane

(4)

450 470 490 510 530 550 570

590 Experiment Coulomb (mu=0.2) Coulomb (mu=0.25) Coulomb (mu=0.3) Coulomb (mu=0.4)

Root Shoulder

Pin

Thermocouple location

Temperature (°C)

Shoulder Root Pin Tip

450 470 490 510 530 550 570

590 Experiment Coulomb (mu=0.2) Coulomb (mu=0.25) Coulomb (mu=0.3) Coulomb (mu=0.4)

Root Shoulder

Pin

Thermocouple location

Temperature (°C)

Shoulder Root Pin Tip

Shoulder Root Pin Tip

Error on force

Error on temperature ФF

ФT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.02 0.04 0.06 0.08 0.1

Coulomb

Norton α=0.4, p=0.125

α=0.4, p=0.125

α=0.4, p=0.125

=0.2

=0.25

=0.4

=0.3

Error on force

Error on temperature ФF

ФT

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.02 0.04 0.06 0.08 0.1

Coulomb

Norton α=0.4, p=0.125

α=0.4, p=0.125

α=0.4, p=0.125

=0.2

=0.25

=0.4

=0.3

s s

f v

P v

= µ

τ 1A2

8 µ + " " ++ " P " "

& - " " " 8 65

# " ; &

# " " + " 6;

# 6 A " + " &

Table 2: Calculated and measured tool forces (with error bounds F<

)

H1C-2 <1C-2

< A &(±A& %&((± &'

6 IG &A % &A '& '

6 IG &A/ A/& &%

6 IG &% A &( /&

6 IG & '& %&''

6 IG &/ &% %&

# " " + " 3 8

< C "" 6 & - "

" + + " 3

+ " " ++ " + " &

Figure 4: Calculated and measured temperatures at pin, root and shoulder locations in the FSW tool with Coulomb friction using an Eulerian formulation

8 " "

0 8 ++ " ++ " & 9 "

8 - " "

6 & # < "

" + 8 " 8

< &

/ 8 , 6 3

6 8 " " + "

3 1 H < 2 C

"" 6 1 = 1%2 1 22&



=

=

<

<

<

<

+ <

F F F F F

F

F

F

φ

φ

1%2

+

+

=

<

<

<

<

<

<

% shou

shou

root root

pin pin

T T T T

T T T

T

Tpin root shou

φT 1 2

Figure 5: Pareto plot, comparisons of Norton and Coulomb relative errors on forces and temperatures

/ " " + 6; 8& IG &%

3 6 6 + " &

- .

. /

, !: " " 8 + " 3 +

8 + " 6

" + " " (C- + " 8

" 3 " " % J

&

-(& "

!: " " " 8 ++

6 + " " ++ " & #

# 6 %&

Table3: Comparisons of calculated and measured forces at steady welding states with the ALE formulation

H1C-2 <1C-2

< A &(±A& %&((± &'

6 IG &A/ A(±A &A± &/

6 IG &% A%±A %&(± &/

6 IG & '&/±A A&(± &/

6 IG &/ /±A A& ± &/

" + " < 6 " " "

65 " " " +

(5)

450 470 490 510 530 550 570 590

Experiment Coulomb (mu=0.25) Coulomb (mu=0.3) Coulomb (mu=0.4) Coulomb (mu=0.5)

Root Shoulder

Pin

Thermocouple location

Temperature (°C)

Shoulder Root Pin Tip

450 470 490 510 530 550 570 590

Experiment Coulomb (mu=0.25) Coulomb (mu=0.3) Coulomb (mu=0.4) Coulomb (mu=0.5)

Root Shoulder

Pin

Thermocouple location

Temperature (°C)

Shoulder Root Pin Tip

Error on temperature

Error on force

0 0.05 0.1 0.15 0.2 0.25 0.3

0 0.01 0.02 0.03 0.04 0.05

4ipm

8ipm

12 ipm

0.25 0.25 0.3

0.3 0.25

0.3

Error on temperature

Error on force

0 0.05 0.1 0.15 0.2 0.25 0.3

0 0.01 0.02 0.03 0.04 0.05

4ipm

8ipm

12 ipm

0.25 0.25 0.3

0.3 0.25

0.3 ФF

ФT

" " 6 & # 6 8

6 + " 6 8 IG &A/

IG &%& D 8 3 IG &A/ 3

+ " 5 " 6 1 2&

Figure 6: Comparisons of calculated and measured temperatures at pin, root, and shoulder locations in the FSW tool with Coulomb friction and the ALE formulation.

+ / 8

" + 6

3 ++ &

-(' . ! "! 0 )

9 3 " " ++ " 1IG &A/

IG &%2 5 3 6 " + +

3 & # 6 H 6

1+ " 2 + 3 +

" 1 2 ( 1 3 +

3 2 A &

Table3: Comparisons of measured and calculated forces and temperature obtained with the ALE formulation at various travel speeds.

H 1C-2 < 1C-2

# ,

# #

< KA&/ %K &A / / (/ /

I G &A/ A &A /% /

I G &% A &/ %&A /%/ /A /

< ( A &(KA& %& K &' / ' ('

I G &A/ A( &A /%/ /AA / A

I G &% A% %&( /%( /A( / /

< A A'KA &AK &A / (% /

I G &A/ A /A( / A

IG &% A%&/ %&A /%' /A/ / /

0 6 3 = 5 +

6 3 5 8 ( 8

+ " + &

' 8 , 6 "

3 3 & " 8 ++

+ " " ++ " " < & #

3 + " 13 " < 2 ""

3 1 H < 2

'&

Figure 7: Pareto plot, error on forces according error on temperatures with the ALE calculation at various travel speeds.

1

! % 0 " 6 6 !:

+ 6 6;

- ; 8 & 9 8 8 "

8 6 + !: 3

+ " 5 "" & 6

+ " 5 6 "

6 8 3 + " 5

" + & # 5 3 3

3 = 5 + 8 " 8

+ " " 6 " 6

& D 8 3

+ " 5 " 5 = 3

"" &

$

# "C 8 + " + 8 C

+ L++ " + - 3 " " " -J - )

%) ) ' A & M ,

? @ & > <& - " + + "

0 " & , & ),

A '&

?A@ > < & :&

"" 6 !: + + %

+ + " 8 & 9 - "

9 , " ,

, !9, A '&

?%@ D& " M& D M& 0 & ! 5 "

+ + "

8 &

" " A %N /' A &

? @ ,& & : M&O& D P& &

" " 5 + + " 8

" + & " "

# " 5 + 0 M 1/2 A( NA('

A &

Références

Documents relatifs

However the mechanisms of formation of the welds jointsby friction stir remain relatively ignored because of the complexity of the phenomena broughtinto play, on the one hand the

To increase the welding quality and the process reliability, the design of the tool includes a shaft-spring-based system aimed at avoiding premature damage, furthermore to allow

Lisieux (14), cathédrale Saint-Pierre : charpentes et couvertures - CEM, 2016 36 2.3 – Les réemplois Cette charpente a été réalisée avec de nombreux bois anciens en

The main point in the phenomenological model is to determine whether the uranium recovery is limited by its solubility or its dissolution kinetics, along a particular

1) Variables nominales indiquant la situation des enclaves dans leurs communes, afin d’analyser leurs situations par apport à d’autres éléments physiques tels que les

Les éléments trivalents (Cm, Eu) sont étudiés car 1/ l’interaction de ces ions avec les argiles est maintenant bien connue ; 2/ l’interaction est gouvernée

L’EM a été conduite entre 2001 et 2005 pour évaluer les conséquences de l’évolution des écosystèmes sur le bien-être humain et pour éta- blir la base scientifique des

Expression of PD-1, signed the “exhausted phenotype” of effector T cells, has been first identified through studies of chronic viral infections in mice in which PD-1/PD-L1