IN VIVO PHOTOACOUSTIC SPECTROSCOPY OF THE SKIN

Download (0)

Full text

(1)

HAL Id: jpa-00223227

https://hal.archives-ouvertes.fr/jpa-00223227

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

IN VIVO PHOTOACOUSTIC SPECTROSCOPY OF THE SKIN

P. Poulet, J. Chambron

To cite this version:

P. Poulet, J. Chambron. IN VIVO PHOTOACOUSTIC SPECTROSCOPY OF THE SKIN. Journal

de Physique Colloques, 1983, 44 (C6), pp.C6-413-C6-418. �10.1051/jphyscol:1983668�. �jpa-00223227�

(2)

I N V I V O P H O T O A C O U S T I C SPECTROSCOPY O F THE S K I N P. P o u l e t and J . Chambron

I n s t i t u t de Physique BioZogique, FacuZte' de Me'decine, 4 , rue KirschZeger,

6 7 0 8 5 Strasbourg Cedex, France

Resume - Un spectrometre photoacoustique u t i l i s a n t un d e t e c t e u r d i f f e r e n t i e l permet de mesurer i n v i v o l e s spectres d ' a b s o r p t i o n o p t i q u e de l a peau humai- ne. Sa conception e t ses c a r a c t e r i s t i q u e s sont d e c r i t e s ; le s premiers r e s u l - t a t s experimentaux sont presentes.

A b s t r a c t - b!e describe the conception and t h e c h a r a c t e r i s t i c s of an ooen- ended photoacoustic d e t e c t o r developed f o r doing i n v i v o measurements o f s k i n o p t i c a l absorption. P r e l i m i n a r y r e s u l t s a r e presented.

As soon as he introduced the modern photoacoustic spectroscopy, Rosencwaig attempted t o demonstrate the usefulness of t h i s new method i n medical sciences such as derma- t o l o g y . He soon mentionned t h e f e a s i b i l i t y 06 performing i n v i v o measurements on hu- man skin, by the use of an open-ended c e l l ' .

I n s p i t e of t h i s , almost a l l the cutaneous a p p l i c a t i o n s o f photoacoustic d e t e c t i o n have been done on excised epidermal samples. These s t u d i e s have shown t h a t t h e pho- t o a c o u s t i c spectrum r e v e a l s t h e a b s o r p t i o n band o f p r o t e i n s a t about 280 nanometres and depends on t h e h y d r a t i o n o f t h e sample through i t s thermal p r o p e r t i e s . The pho- t o a c o u s t i c s i g n a l s produced by drugs o r sunscreens g i v e t h e i r o ~ t i c a l absorption i n s i t u , t h a t i s on and i n the epidermis and t h e i r d i f f u s i o n c o e f f i c i e n t i n stratum corneum' .

At t h e time being, o n l y Campbell e t a12 and Pines and Cunningham3 r e p o r t e d i n v i v o measurements. The major d i f f i c u l t y i n doing i n v i v o photoacoustic measurements 1 ie s i n t h e f a c t t h a t the microphone i n s e n s i t i v e t o the body's movements. We undertook t o study t h e r e a l n o s s i b i l i t i e s o f such i n v i v o cutaneous photoacoustic spectroscopy.

A f t e r v a r i o u s approaches, t h i s l e d us t o c o n s t r u c t a photoacoustic d e t e c t o r u s i n g a d i f f e r e n t i a l microphone between two i d e n t i c a l c e l l s . I t s c h a r a c t e r i s t i c s a l l o w us t o measure d i f f e r e n t i n v i v o s i g n a l s w i t h good r e p r o d u c i b i l i t y and s i g n a l t o n o i s e r a t i o .

I - EXPERIFIENTAL SET-UP

The o r i g i n a l i t y of t h e spectrometer r e s i d e s i n t h e conception o f t h e photoacoustic c e l l which must be considered so as t o o p t i m i z e t h e s i g n a l t o n o i s e r a t i o . One o f t h e important features o f t h e conception o f t h i s c e l l i s t o maximizf i t s s e n s i t i v i - t y by t h e o p t i m i z a t i o n o f i t s dimensions. According t o Aamodt e t a1 and t o Quimby and Yen5, the optimal dimensions o f t h e c e l l a t 20 Hz modulation frequency and i n standard temperature and pressure c o n d i t i o n s a r e 1.6 mm l o n g and 7 mm l a r g e . This 20 Hz t h r e s h o l d was chosen because t h e v i b r a t i o n s o f t h e s k i n a r e t o o s u b s t a n t i a l a t any lower frequencies. This choice a l s o means t h a t i t i s p o s s i b l e t o use t h e o r e t i c a l models of t h e photoacoustic e f f e c t based on the Rosencwaig-Gersho theory6. The m i - crophone should be i n c o n t a c t w i t h t h e gaseous volume s p e c i f i e d above by means o f a small a c o u s t i c pipe.

Having defined t h e dimensions which o n t i m i z e t h e s e n s i t i v i t y o f t h e c e l l , we must now consider t h e second aspect o f i t s conception : t o minimize t h e noise and syn- chronous background s i g n a l produced by t h e microphone. The synchronous background i s u s u a l l y t h e most d i f f i c u l t t o reduce. I t can be generated by a b s o r p t i o n o f l i g h t w i t h i n t h e c e l l by a body o t h e r than t h e s t u d i e d sample, such as the s i d e w a l l s o r t h e microphone i t s e l f . Another synchronous background can be produced by t h e l i g h t modulator.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983668

(3)

C6-414 JOURNAL DE PHYSIQUE

Using an open c e l l r a i s e s problems o f damping e x t e r n a l sounds and v i b r a t i o n s . When t h e c e l l i s a p p l i e d t o t h e body under s c r u t i n y , the gaseous volume d e l i m i t e d by t h e c e l l and t h e surface being analysed must be p e r f e c t l y sealed w i t h r e g a r d t o t h e o u t - s i d e atmosphere i n o r d e r t o o b t a i n a p h o t o a c o u s t i c s i g n a l . As l o n g as t h i s hermetic seal can be achieved, i n s u l a t i o n a g a i n s t o u t s i d e sounds w i l l be sat.isfactory. On the o t h e r hand, i t i s imoossible t o i n s u l a t e the c e l l from t h e v i b r a t i o n s o f t h e body under s c r u t i n y , the s u r f a c e o f which i n e v i t a b l y forms one o f t h e i n t e r n a l w a l l s of t h e c e l l . It i s t h e r e f o r e e s s e n t i a l t o use a m o d u l a t i o n frequency a t which the v i - b r a t i o n s o f t h e s k i n a r e small, a l t h o u g h t i t must n o t be f o r g o t t e n t h a t as t h e mo- d u l a t i o n frequency r i s e s , t h e s i g n a l becomes weaker. I t i s a l s o advantageous t o seek o u t zones o f s k i n where v i b r a t i o n i s weakest. I n s p i t e o f a l l these precautions, t h e l e v e l o f noise detected on t h e s u r f a c e o f t h e s k i n made t h e f i r s t photoacoustic c e l l s v i r t u a l l y impossible t o use.

MICROPHONE

F i g . 1 - The photoacoustic d e t e c t o r f o r s k i n spectroscopy

I n o r d e r t o reduce the e f f e c t o f the s k i n v i b r a t i o n s on t h e measured s i g n a l , a d i f - f e r e n t i a l method was a p p l i e d , u s i n p a c l o s e - t a l k i n g microphone : t h e KnowlesBW1789.

This microphone i n c l u d e s two sounds p o r t s , one on each s i d e o f t h e diaphragm, and t h e s i g n a l i t d e l i v e r s depends on t h e p r e s s u r e d i f f e r e n c e between t h e t w o s i d e s of t h i s diaphragm. The microphone i s f i t t e d t o t h e cutaneous d e t e c t o r , i n between two i d e n t i c a l c e l l s , one o f which i s c l o s e d by t h e l i g h t guide, t h e o t h e r b y a volume- a d j u s t i n g screw. T h i s screw should enable t h e responses o f t h e two c e l l s t o be' equa- l i z e d , a t t h e frequency i n use, so as t o m i n i m i z e noise. The sketch o f t h e photoa- c o u s t i c d e t e c t o r i s shown i n F i g . 1 . I t s dimensions have been o p t i m i z e d according t o t h e c r i t e r i a s e t o u t above. It i s a t t a c h e d t o t h e s u r f a c e o f t h e s k i n b y a double -

sided adhesive tape i n which two h o l e s have been bored o p p o s i t e t h e c e l l s , and t h e

whole apparatus can be fastened t o t h e forearm by means o f an armband.

(4)

a p p l i c a t i o n s which a r e considered. The s e n s i t i v i t y o f t h e d e t e c t o r was measured on a t h i n black body, obtained by blackening a p l e x i g l a s s h o l d e r over a flame. A t 20 h e r t z , t h e s e n s i t i v i t y o f t h e c e l l i s 430 pascals per watt, and expresses t h e r a t i o between the r.m.s. values o f v a r i a t i o n s i n a c o u s t i c pressure and i n c i d e n t l i g h t po- wer. This s e n s i t i v i t y v a r i e s as a f u n c t i o n o f t h e modulation frequency. Thetheore- t i c a l decrease i n l / f i s v e r i f i e d a t frequencies h i g h e r than 25 h e r t z , as c o u l d be foreseen from t h e s i z e o f t h e c e l l . A t lower frequencies, t h e thermal losses occu- r i n g i n t h e w a l l s o f t h e c e l l weaken t h e s i g n a l . The spectrum o f t h e noise d e n s i t y d e l i v e r e d by t h e microphone i s estimated from t h e r.m.s. value o f t h e output v o l t a g e o f t h e l o c k i n a m p l i f i e r , w i t h a time constant o f 100 m i l l i s e c o n d s , which c o r r e s - ponds t o a bandwidth o f 1.25 h e r t z .

While the noise was being measured, a l l t h e instruments were operating, t h e c e l l sea- l e d a g a i n s t t h e s t u d i e d sample and t h e modulated l i g h t beam shut o f f by a b l i n d . Va- r i o u s tyoes o f n o i s e a r e detected on a v i b r a t i o n - f r e e sample : a wide-band n o i s e w i t h frequencies above 150 h e r t z , 50, 100 and 260 h e r t z p a r a s i t e s , a l / f noise w i t h a knee a t approximately 30 h e r t z , and a narrow-band n o i s e between 30 and 60 h e r t z . This spectrum i s the d i r e c t r e s u l t o f t h e d i f f e r e n t sources o f n o i s e r e f e r r e d t o a- bove, except f o r t h e synchronous background, which would appear t o be produced by t h e l i g h t s c a t t e r e d o r r e f l e c t e d by t h e sample i t s e l f , and which depends on t h e na- t u r e o f t h e l a t t e r .

W h i l s t the c e l l was attached t o the forearm o f a volunteer, t h e n o i s e l e v e l i s higher, whatever t h e frequency used, although a much more s u b s t a n t i a l l e v e l can be observed a t low frequencies (below 20 h e r t z ) , and t h i s i s due t o i n v o l u n t a r y movements of the forearm.

I I I I I

- 200- ,2000

- 1600

- 1200

W

10 20 5 0 100 200 500 1000

MODULATION FREQUENCY (Hz)

Fig. 2 - S e n s i t i v i t y t o noise d e n s i t y r a t i o as a f u n c t i o n o f t h e modulation frequen- cy w i t h t h e d e t e c t o r attached t o a forearm (e) and i s o l a t e d (+-)

F i g . 2 shows t h e s e n s i t i v i t y t o noise d e n s i t y r a t i o s corresponding t o the two fore- going s i t u a t i o n s . When t h e c e l l i s placed on an i s o l a t e d base, t h i s r a t i o reaches i t s maximum values a t 30 h e r t z (approximately 2000) and 90 h e r t z (approximately 1500).

When the c e l l i s attached t o a forearm, t h i s r a t i o i s , i n a t y p i c a l case, t e n time smaller, and has two maxima, one a t 25 h e r t z (about 200) and the other a t 80 h e r t z (about 120). The s e n s i t i v i t y t o n o i s e d e n s i t y r a t i o i s poor a t low frequencies (40 a t 10 h e r t z ) and a t h i g h frequencies ( l e s s than 50 over 300 h e r t z ) .

F i q . 3 gives t h e diagram of t h e complete spectrometer r e a l i z e d . The l i g h t source i s

a 00 W xenon lamp w i t h a b u i l t - i n p a r a b o l i c r e f l e c t o r which i s suuplied e i t h e r w i t h

(5)

C6-416 JOURNAL DE PHYSIQUE

a constant o r w i t h a sinusoSda1 c u r r e n t d e l i v e r e d by t h e power supply u n i t c o n t r o l - l e d by a f u n c t i o n generator. When t h e lamp i s s u p p l i e d w i t h a constant c u r r e n t t h e 1 ig h t i s modulated by t h e use o f a mechanical chopper placed before t h e monochroma- t o r o r the i n t e r f e r e n c e f i l t e r . The energy o f t h e light-beam produced i s 50 watts, o f which s o r e than 30 w a t t s c o n s i s t o f i n f r a - r e d r a d i a t i o n s , which are f i l t e r e d o u t by a watertank 5 centimetres t h i c k w i t h q u a r t z windows. The beam i s then focused by a UV s i l i c a lens, onto e i t h e r t h e entrance s l i t o f a h o l o g r a p h i c - g r a t i n g monochroma- t o r , w i t h a l i g h t - g u i d e a t t h e e x i t s l i t , o r d i r e c t l y on t h e l i g h t guide placed be- h i n d an i n t e r f e r e n c e f i l t e r . The used l i g h t - g u i d e i s made o f UV s i l i c a , i s 1 metre long, and t h e diameter o f t h e bundle of f i b e r s i s 4 m i l l i m e t r e s . The end o f t h e l i g h t guide forms one o f t h e w a l l s o f t h e cutaneous photoacoustic d e t e c t o r .

Lens Wheel

F i g . 3 - Diagram o f the ~ h o t o a c o u s t i c spectrometer

The e l e c t r i c a l s i g n a l produced by t h e microohone i n t h e c e l l i s analyzed by a two- phase l o c k - i n a m p l i f i e r . The amplitude and phase of t h e photoacoustic s i g n a l a r e then p l o t t e d on an X Y recorder. The X - scan i s c o n t r o l l e d e i t h e r b y t h e time-base o f t h e monochromator, o r by t h e sweep o u t p u t o f t h e f u n c t i o n generator d u r i n g a f r e - quency a n a l y s i s . A AC/DC and l o g a r i t h m i c c o n v e r t e r can be used f o r r e c o r d i n g t h e n o i s e spectra a t t h e o u t p u t o f the l o c k i n a m p l i f i e r , as w e l l as t h e frequency-va- r i a t i o n graphs o f t h e photoacoustic s i g n a l , expressed i n l o g a r i t h m i c coordinates.

As t h e amplitude o f t h e photoacoustic s i g n a l i s p r o p o r t i o n a l t o t h e energy of t h e sample, each spectrum must be c o r r e c t e d by a p o i n t by p o i n t d i v i s i o n w i t h a previous- l y recorded spectrum o f a b l a c k body.

RESULTS AND DISCUSSION

P r e l i m i n a r y a p p l i c a t i o n s o f t h e cutaneous d e t e c t o r were performed on small - s i z e d S O -

l i d s attached t o t h e c e l l w i t h double-sided adhesive tape. Spectra were recorded f o r

d i f f e r e n t s o l i d s : couloured cards, glass o p t i c a l f i l t e r s , whole oreen leaves on t h e

p l a n t . They a l l show t h a t the open d e t e c t o r can e a s i l y be used f o r making spectros-

c o p i c s t u d i e s o f the surface o f i n e r t and v i b r a t i o n - f r e e s o l i d s . Simply using dou-

b l e - s i d e d adhesive tape provides s a t i s f a c t o r y i n s u l a t i o n o f t h e c e l l from e x t e r n a l

sounds. The d e l o c a l i z a t i o n o f photoacoustic spectroscopy r e s u l t i n g from t h e use of

a l i g h t guide and an open c e l l enable t h e method t o be a p p l i e d t o v a r i o u s o r i g i n a l

s i t u a t i o n s , as i t no l o n g e r r e q u i r e s the use o f small samples enclosed w i t h i n a c e l l .

The c h a r a c t e r i s t i c s o f the cutaneous d e t e c t o r and t h e thermal p r o p e r t i e s of s k i n

enable one t o envisage the p o s s i b i l i t y o f t a k i n g cutaneous measurements. The t h e r -

mal e f f u s i v i t y o f s k i n i s close t o t h a t o f water7, and the maximum photoacoustic s i -

gnal measured a t t h e surface of t h e s k i n ought t o be about t h r e e times weaker - r a t i o

o f t h e thermal e f f u s i v i t i e s - t h a n t h e s i g n a l produced by the reference mentionned i n

(6)

a t 25 h e r t z and 25 a t 80 h e r t z .

The mean energy a v a i l a b l e i n UVB (280-320 nm) and UVC (200-28D nm) r a d i a t i o n , c o r r e - l a t e w i t h i n t e n s i t i e s o f more than 100 w a t t s Der square metre and the e f f e c t o f the- se i n t e n s i t i e s on the exposed areas must be c a r r e f u l l y c o n t r o l l e d . I t i s w e l l known t h a t such r a d i a t i o n g i v e s r i s e t o numerous p h o t o b i o l o g i c a l r e a c t i o n s , such as t h e i n h i b i t i o n o f n u c l e i c a c i d and p r o t e i n synthesis, t h e i n d u c t i o n o f s k i n cancer, and the formation o f erythemas8.

WAVELENGTH (nm)

F i g . 4 - I n v i v o photoacoustic spectrum o f human epidermis : non corrected spectrum (-) and spectrum c o r r e c t e d from v a r i a t i o n s o f t h e l i g h t i n t e n s i t y v e r s u s wavelength (+-A). The i n s e r t shows t h e s i g n a l a t 470 nm recorded d u r i n g 5 minutes. 80 Hz ; 16 nm ; 10s.

The p r e l i m i n a r y experimental r e s u l t s we present were obtained on t h e forearm o f vo- l u n t e e r s who remained s t a t i o n n a r y throughout t h e measurements. F i g . 4 shows the pho- t o a c o u s t i c spectrum o f t h e s k i n measured i n v i v o . The non-corrected soectrum i s shown, as w e l l as t h e s i g n a l a t 470 nm recorded d u r i n g 5 minutes, i n o r d e r t o g i v e prominence t o t h e good s i g n a l t o n o i s e r a t i o we o b t a i n . The spectrum c o r r e c t e d from t h e wavelength v a r i a t i o n s o f l i g h t i n t e n s i t y reveals, f o r the f i r s t time, t h e ab- s o r p t i o n band o f p r o t e i n s a t about 280 nanometres as measured i n v i v o and can be w e l l comnared w i t h transmission spectrum o f human stratum corneum o r epidermis ob- t a i n e d i n v i t r o by transmission spectroscopy u s i n g i n t e g r a t i n p soheresg o r photoa- c o u s t i c spectroscopy1. According t o t h e thermal d i f f u s i v i t y o f t h e outermost l a y e r s of t h e s k i n 0,5.10-3 square centimetre p e r second and t o theused modulation frequen- cy 80 h e r t z , t h e depth o f t h e s k i n l a y e r which gives r i s e t o the measured s i g n a l i s about 15 micrometres, corresponding t o stratum corneum only.

Fig. 5 shows t h e photoacoustic spectrum o f merbromin (dibromohydroxyrnercurifluores-

c e i n disodium s a l t ) on t h e skin. The spectrum obtained on t h e untreated s k i n i s

shown f o r comparison, as w e l l as t h e photoacoustic spectrum o f t h e used merbromin

aqueous s o l u t i o n ( 2 %), measured w i t h o u r conventional photoacoustic snectrometer

and quantized according t o a p r e v i o u s l y described m e t h o d ~ l o g y ' ~ .

(7)

JOURNAL DE PHYSIQUE

1dAVELENGTH ( nm)

F i g . 5 - A b s o r p t i o n s p e c t r a of merbromin: a b s o l u t e a b s o r p t i o n spectrum of t h e 2 % aqueous s o l u t i o n measured i n a c o n v e n t i o n a l photoacoustic c e l l (-)20Hz;

16 nm ; 3s ; and p h o t o a c o u s t i c s p e c t r a o f t h e u n t r e a t e d s k i n (M) and t h e t o p i c a l l y a p p l i e d merbromin (-A-L+) measured on a forearm. 80 HZ ; 16 nm ; 3s.

CONCLUSION

These f i r s t experimental r e s u l t s show t h a t p h o t o a c o u s t i c s i g n a l s can be measured i n vivo, and w i t h s a t i s f a c t o r y s i g n a l - t o - n o i s e r a t i o s . Reduction o f t h e noises caused by t h e s u b j e c t ' s s k i n v i b r a t i o n s has been achieved by u s i n g a d i f f e r e n t i a l micropho- ne, and t h i s i n t u r n has made p o s s i b l e t o o b t a i n t h e f i r s t i n v i v o photoacousticmea- surements o f t h e a b s o r p t i o n o f t h e s k i n i t s e l f , and o f an o p t i c a l absorption spec- trum o f a m e d i c i n a l substance a p p l i e d t o t h e s u r f a c e o f t h e s k i n o f s u b j e c t s having v o l u n t e e r e d t o remain immobile t h r o u g h o u t t h e p e r i o d necessary f o r t h e measurements t o be taken. The d i a g n o s t i c use o f p h o t o a c o u s t i c d e t e c t i o n techniques nevertheless remains l i m i t e d by t h e d e t e c t o r ' s s e n s i t i v i t y t o s k i n v i b r a t i o n s . Another mode o f d e t e c t i o n ought t o be a b l e t o e l i m i n a t e t h i s drawback : photothermal d e t e c t i o n u s i n g i n f r a r e d radiometry1', which was a l r e a d y b e i n g used i n t h e nineteen f i f t i e s f o r mea- s u r i n g t h e thermal p r o p e r t i e s o f t h e skin12.

However, these e a r l y r e s u l t s can be seen t o be encouraging, and from them can be con- s i d e r e d v a r i o u s a p p l i c a t i o n s o f p h o t o a c o u s t i c spectroscopy such as t h e b i l i r u b i n l e - v e l i n newborn's jaundice, p h o t o s e n s i t i v i t y o f t h e s k i n t o UV r a d i a t i o n o r photoche- motherapy o f s k i n diseases l i k e p s o r i a s i s and cancer.

REFERENCES

1 ) ROSENCWAIG A. Photoacoustics and Photoacoustic Spectroscopy, J.Wiley & Sons (1980).

2) CAMPBELL S.D., YEE S.S., AFROMOW1TZM.A. IEEE Trans.Biomed.Eng. BME 26 (1979) 220.

3) PINES E. and CUNNINGHAMT. i n B i o e n g i n e e r i n g and t h e s k i n , Ed. by A . Marks and P.A.

Payne, MTP Press (1981) 283.

4) AAMODTL.C., MURPHYJ.C., PARKERJ.G. J.Appl.Phys. 3 (1977) 927.

5) QUIMBY R.S. and YEN W.M. Appl. Phys. L e t . 35 (1979) 43.

6) ROSENCWAIG A. and GERSHOA. J. Appl . Phys. 47 (1976) 64.

7) BOWMAN H.F., CRAVALHO E.G. and WOODS M. Ann. Rev. Biophys. Bioeng. 4 (1975) 43.

8 ) EPSTEIN J.M. i n The Sci. o f P h o t o b i o l . Ed. by K.C.Smith, Plenum Press, NY (1977) 175.

9) EVERETTM.A., YEARGERS E., SAYRE R.M., OLSON R.L. Photochem.Photobi01.5 (1966) 533.

10) POULET P., CHmBRON J., UNTERREINER R. i n Photoacoustic Spectroscopy, Proc. of t h e I n s t i t u t e of Acoustics, Chelsea College, London (1981).

11)NOROAL P.E. and KANSTAD S.O. Phys. S c r i p t a a (1979) 659.

12) HENOLER E., CROSBIE R., HARDY J.D. J. Appl . P h y s i o l . (1958) 177.

Figure

Updating...

References

Related subjects :