• Aucun résultat trouvé

Fermi-Dirac Correlations in $\Lambda$ Pairs in Hadronic Z Decays

N/A
N/A
Protected

Academic year: 2021

Partager "Fermi-Dirac Correlations in $\Lambda$ Pairs in Hadronic Z Decays"

Copied!
19
0
0

Texte intégral

(1)

HAL Id: in2p3-00004624

http://hal.in2p3.fr/in2p3-00004624

Submitted on 4 Apr 2000

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Fermi-Dirac Correlations in Λ Pairs in Hadronic Z Decays

R. Barate, D. Decamp, P. Ghez, C. Goy, J.P. Lees, F. Martin, E. Merle, M.N.

Minard, B. Pietrzyk, R. Alemany, et al.

To cite this version:

R. Barate, D. Decamp, P. Ghez, C. Goy, J.P. Lees, et al.. Fermi-Dirac Correlations in Λ Pairs in Hadronic Z Decays. Physics Letters B, Elsevier, 2000, 475, pp.395-406. �in2p3-00004624�

(2)

Fermi-Dirac Correlations in

Pairs in Hadronic Z Decays

The ALEPH Collaboration

)

CERN EP/99-172

8 December, 1999

Abstract

Two-particle correlationsofand

pairshave beenstudiedinmultihadronic

Zdecays recordedwiththeALEPH detectorat LEPintheyears from1992 to1995.

Thecorrelations were measuredas afunction of thefour-momentumdierence Q of

the pair. A depletion of events is observed in the region Q < 2 GeV which could

arisefrom theeects of Fermi-Dirac statistics. Inaddition thespincontent of the

pairsystemhasbeendetermined. ForQ>2GeV thefractionof pairswithspinone

isconsistent with thevalueof 0.75 expected fora statistical spinmixture,whilstfor

Q< 2 GeV thisfraction is found to be lower. For

pairs, where no Fermi-Dirac

correlationsareexpected,thespinonefractionismeasuredto beconsistentwith0.75

over theentireanalysedQrange.

(Submitted to Physics Letters B)

)Seenextpagesforthelistofauthors

(3)

R.Barate,D. Decamp,P.Ghez,C.Goy,J.-P.Lees,F.Martin, E.Merle,M.-N.Minard,B.Pietrzyk

Laboratoire de Physique des Particules (LAPP), IN 2

P 3

-CNRS, F-74019 Annecy-le-Vieux Cedex,

France

R. Alemany, S. Bravo,M.P.Casado, M.Chmeissani, J.M.Crespo, E. Fernandez, M.Fernandez-Bosman,

Ll.Garrido, 15

E. Grauges,A. Juste, M.Martinez, G. Merino, R. Miquel, Ll.M. Mir,A. Pacheco, I.Riu,

H.Ruiz

Institut de F

isica d'Altes Energies, Universitat Autonoma de Barcelona, E-08193 Bellaterra

(Barcelona),Spain 7

A. Colaleo, D. Creanza, M. de Palma, G. Iaselli, G. Maggi, M. Maggi, S. Nuzzo, A. Ranieri, G. Raso,

F.Ruggieri,G.Selvaggi,L.Silvestris,P.Tempesta,A.Tricomi, 3

G.Zito

Dipartimentodi Fisica,INFN SezionediBari,I-70126Bari,Italy

X.Huang,J.Lin,Q.Ouyang,T.Wang,Y.Xie,R. Xu,S. Xue,J.Zhang,L.Zhang,W.Zhao

InstituteofHigh-EnergyPhysics,Academia Sinica,Beijing,ThePeople'sRepublic ofChina 8

D. Abbaneo,G.Boix, 6

O.Buchmuller,M. Cattaneo,F.Cerutti, V.Ciulli,G.Dissertori, H. Drevermann,

R.W.Forty,M.Frank,T.C.Greening,A.W.Halley,J.B.Hansen,J.Harvey,P.Janot,B.Jost,I.Lehraus,

O. Leroy, P. Mato, A. Minten, A. Moutoussi, F. Ranjard, L. Rolandi, D. Schlatter, M. Schmitt, 20

O.Schneider, 2

P.Spagnolo,W. Tejessy,F.Teubert, E.Tourneer,A.E.Wright

EuropeanLaboratoryforParticlePhysics(CERN),CH-1211Geneva23,Switzerland

Z. Ajaltouni, F. Badaud, G. Chazelle, O. Deschamps, A. Falvard, C. Ferdi, P. Gay, C. Guicheney,

P.Henrard,J.Jousset,B.Michel,S. Monteil,J-C.Montret,D.Pallin,P.Perret,F.Podlyski

Laboratoire de Physique Corpusculaire, Universite Blaise Pascal, IN 2

P 3

-CNRS, Clermont-Ferrand,

F-63177Aubiere,France

J.D.Hansen,J.R.Hansen,P.H. Hansen,B.S.Nilsson,B.Rensch,A. Waananen

NielsBohrInstitute,DK-2100Copenhagen, Denmark 9

G.Daskalakis,A.Kyriakis,C.Markou,E.Simopoulou,I.Siotis,A. Vayaki

NuclearResearchCenterDemokritos(NRCD), GR-15310Attiki,Greece

A.Blondel,G.Bonneaud,J.-C.Brient,A. Rouge,M.Rumpf,M.Swynghedauw,M.Verderi,H.Videau

Laboratoire de Physique Nucleaire et des Hautes Energies, Ecole Polytechnique, IN 2

P 3

-CNRS,

F-91128PalaiseauCedex, France

E.Focardi,G.Parrini,K.Zachariadou

Dipartimentodi Fisica,UniversitadiFirenze, INFNSezionedi Firenze,I-50125Firenze, Italy

M.Corden,C.Georgiopoulos

Supercomputer Computations Research Institute, Florida State University, Tallahassee, FL 32306-

4052,USA 13;14

A. Antonelli, G. Bencivenni, G. Bologna, 4

F. Bossi, P. Campana, G. Capon, V. Chiarella, P. Laurelli,

G.Mannocchi, 1;5

F.Murtas,G.P.Murtas,L.Passalacqua,M.Pepe-Altarelli

Laboratori Nazionalidell'INFN(LNF-INFN),I-00044Frascati,Italy

L.Curtis,J.G.Lynch,P.Negus,V.O'Shea,C.Raine,P.Teixeira-Dias,A.S.Thompson

DepartmentofPhysicsandAstronomy,UniversityofGlasgow,GlasgowG128QQ,UnitedKingdom 10

(4)

R. Cavanaugh,S. Dhamotharan,C.Geweniger, P. Hanke,G. Hansper,V. Hepp,E.E.Kluge, A.Putzer,

J.Sommer,K.Tittel,S. Werner, 19

M.Wunsch 19

InstitutfurHochenergiephysik,UniversitatHeidelberg,D-69120Heidelberg,Germany 16

R.Beuselinck,D.M.Binnie,W.Cameron,P.J.Dornan, 1

M.Girone,S.Goodsir,E.B.Martin,N.Marinelli,

A.Sciaba,J.K.Sedgbeer,E.Thomson,M.D. Williams

DepartmentofPhysics,Imperial College,LondonSW7 2BZ,UnitedKingdom 10

V.M.Ghete,P. Girtler,E.Kneringer,D. Kuhn,G.Rudolph

InstitutfurExperimentalphysik,UniversitatInnsbruck,A-6020Innsbruck,Austria 18

C.K. Bowdery, P.G. Buck, A.J. Finch, F. Foster, G. Hughes, R.W.L. Jones, N.A. Robertson,

M.I.Williams

DepartmentofPhysics,UniversityofLancaster,LancasterLA14YB,United Kingdom 10

I.Giehl,K.Jakobs,K.Kleinknecht,G.Quast,B.Renk,E.Rohne,H.-G.Sander,H.Wachsmuth,C.Zeitnitz

InstitutfurPhysik,UniversitatMainz,D-55099Mainz,Germany 16

J.J.Aubert,A. Bonissent,J.Carr,P.Coyle,P.Payre,D. Rousseau

CentredePhysiquedesParticules,FacultedesSciencesdeLuminy,IN 2

P 3

-CNRS,F-13288Marseille,

France

M.Aleppo,M.Antonelli,F.Ragusa

Dipartimentodi Fisica,UniversitadiMilano eINFN SezionediMilano,I-20133Milano,Italy

V.Buscher,H.Dietl,G.Ganis,K.Huttmann,G.Lutjens,C.Mannert,W.Manner,H.-G. Moser,S.Schael,

R.Settles, H.Seywerd,H.Stenzel,W. Wiedenmann,G.Wolf

Max-Planck-InstitutfurPhysik,Werner-Heisenberg-Institut,D-80805Munchen,Germany 16

P. Azzurri, J. Boucrot,O. Callot, S. Chen, A. Cordier, M. Davier, L.Duot, J.-F.Grivaz, Ph. Heusse,

A. Jacholkowska, 1

F. Le Diberder, J. Lefrancois, A.-M. Lutz, M.-H. Schune, J.-J.Veillet , I. Videau, 1

D. Zerwas

Laboratoiredel'AccelerateurLineaire,UniversitedeParis-Sud,IN 2

P 3

-CNRS,F-91898OrsayCedex,

France

G.Bagliesi,T.Boccali,C.Bozzi, 12

G.Calderini,R.Dell'Orso,I.Ferrante,L.Foa,A. Giassi,A.Gregorio,

F.Ligabue,P.S.Marrocchesi,A. Messineo,F.Palla,G.Rizzo,G.Sanguinetti,G.Sguazzoni,R.Tenchini,

A.Venturi,P.G.Verdini

Dipartimento di Fisica dell'Universita, INFN Sezione di Pisa, e Scuola Normale Superiore, I-56010

Pisa,Italy

G.A.Blair,G.Cowan,M.G.Green, T.Medcalf,J.A.Strong

DepartmentofPhysics,RoyalHolloway&BedfordNewCollege,UniversityofLondon,SurreyTW20

OEX,United Kingdom 10

D.R.Botterill,R.W.Clit,T.R.Edgecock,P.R. Norton,J.C.Thompson,I.R.Tomalin

ParticlePhysicsDept.,RutherfordAppletonLaboratory,Chilton,Didcot,OxonOX11OQX,United

Kingdom 10

B.Bloch-Devaux, P. Colas, S. Emery, W. Kozanecki, E. Lancon, M.-C.Lemaire, E. Locci, P. Perez,

J.Rander,J.-F.Renardy,A.Roussarie,J.-P.Schuller,J.Schwindling,A. Trabelsi, 21

B.Vallage

CEA, DAPNIA/Service de Physique des Particules, CE-Saclay, F-91191 Gif-sur-Yvette Cedex,

France 17

S.N. Black, J.H. Dann, R.P. Johnson, H.Y. Kim, N. Konstantinidis, A.M. Litke, M.A. McNeil,

G.Taylor

InstituteforParticlePhysics,UniversityofCaliforniaat SantaCruz,SantaCruz,CA95064,USA 22

C.N.Booth,S. Cartwright,F.Combley,M.Lehto, L.F.Thompson

10

(5)

FachbereichPhysik,UniversitatSiegen,D-57068Siegen,Germany 16

G.Giannini,B.Gobbo

Dipartimentodi Fisica,UniversitadiTrieste eINFN SezionediTrieste,I-34127Trieste,Italy

J.Rothberg,S. Wasserbaech

ExperimentalElementaryParticlePhysics,UniversityofWashington,WA98195Seattle,U.S.A.

S.R. Armstrong, P. Elmer, D.P.S. Ferguson, Y. Gao, S. Gonzalez, O.J. Hayes, H. Hu, S. Jin,

J. Kile, P.A. McNamara III, J. Nielsen, W. Orejudos, Y.B. Pan, Y. Saadi, I.J. Scott, J. Walsh,

J.H.vonWimmersperg-Toeller, SauLanWu,X.Wu, G.Zobernig

DepartmentofPhysics,UniversityofWisconsin, Madison,WI53706,USA 11

1

AlsoatCERN, 1211Geneva23, Switzerland.

2

NowatUniversitedeLausanne,1015Lausanne,Switzerland.

3

AlsoatCentroSicilianodiFisicaNucleareeStrutturadellaMateria,INFN,SezionediCatania,95129

Catania,Italy.

4

AlsoIstitutodiFisicaGenerale,UniversitadiTorino,10125Torino,Italy.

5

AlsoIstitutodiCosmo-GeosicadelC.N.R.,Torino,Italy.

6

SupportedbytheCommissionoftheEuropeanCommunities, contractERBFMBICT982894.

7

SupportedbyCICYT,Spain.

8

SupportedbytheNationalScienceFoundationofChina.

9

SupportedbytheDanishNaturalScience ResearchCouncil.

10

SupportedbytheUKParticlePhysicsand AstronomyResearchCouncil.

11

SupportedbytheUSDepartmentof Energy,grantDE-FG0295-ER40896.

12

NowatINFNSezione deFerrara,44100Ferrara,Italy.

13

SupportedbytheUSDepartmentof Energy,contractDE-FG05-92ER40742.

14

SupportedbytheUSDepartmentof Energy,contractDE-FC05-85ER250000.

15

Permanentaddress: UniversitatdeBarcelona,08208Barcelona,Spain.

16

SupportedbytheBundesministeriumfurBildung,Wissenschaft,ForschungundTechnologie,Germany.

17

SupportedbytheDirectiondesSciencesdelaMatiere,C.E.A.

18

SupportedbyFondszurForderungderwissenschaftlichenForschung,Austria.

19

NowatSAPAG,69185Walldorf,Germany.

20

NowatHarvardUniversity,Cambridge,MA02138,U.S.A.

21

NowatDepartementdePhysique,FacultedesSciencesdeTunis,1060LeBelvedere,Tunisia.

22

(6)

Studies of Bose-Einstein (BE) correlations of identical bosons and of Fermi-Dirac (FD)

correlationsofidenticalfermionsproducedinhighenergycollisionsprovidemeasurementsof

thedistributionofthe particlesourcesinspaceandtime. Thesecorrelationsoriginatefrom

the symmetrization or antisymmetrization of the two-particle wave functions of identical

particles and lead to an enhancement or a suppression of particle pairs produced close to

each other in phase space. This eect is sensitive tothe size of the source from which the

identicalparticlesofsimilarmomentaareemitted. Adescriptionofthetheorycanbefound

e.g., inreferences [1], [2]and [3].

Thispaperreportsonastudyof Fermi-Diraccorrelationsusingthe combinedsampleof

and

pairs (represented by () throughout this paper) reconstructed by ALEPH

in multihadronic Z decays at LEP 1. Section 2 summarizes the theory of Fermi-Dirac

correlations and the techniques used to study these correlations. Section 3 describes the

ALEPH detector and the selection of neutral decays. The results are presented in

Section4 and are followed by the conclusionsin Section5.

2 Theory

The strength of two-particle BE or FD correlation eects can be expressed in terms of a

two-particlecorrelation function C(p

1

;p

2

) dened as

C(p

1

;p

2

)=P(p

1

;p

2 )=P

0 (p

1

;p

2

); (1)

wherep

1 andp

2

arethefour-momentaofthe particles,P(p

1

;p

2

)isthemeasureddierential

cross section for the pairs and P

0 (p

1

;p

2

) is that of a reference sample, which is free of BE

or FD correlations but otherwise identical in all aspects to the data sample. The main

experimental diÆculty is to dene an appropriate reference sample P

0 (p

1

;p

2

) in order to

determinethat partof P(p

1

;p

2

)whichcan beattributed totheBE orFDcorrelations. An

example for such a reference sample is given by the JETSET Monte Carlo [4] for which

productionofhadronsissimulatedwithouttakingintoaccountBEorFDcorrelationeects.

The correlation function C is usually measured as a function of the Lorentz invariant

Q with Q 2

= (p

1 p

2 )

2

. For Q 2

= 0 the eects of BE and FD correlations reach their

extremevalues. VariousparametrisationsforC(Q)areproposedintheliterature. Herethe

GGLPparametrisation[5]

C(Q)=N[1+exp ( R 2

Q 2

)] (2a)

isused, together with analternative parametrisation[6]

C(Q)=N[1+exp ( R Q)] (2b)

(7)

density distribution in the rest frame of the emitted pair. The free parameters are the

normalisation N, the suppression parameter (jj 1) and the radius R , which can

be identied with the space-time extent of the source. In two-boson systems a value of

= 1 corresponds to a completely incoherent emission; jj is expected to be dierent

from unity if sources of dierent radii (for example, due to dierent resonance lifetimes)

contributetotheemissionofthe pairs[7]orif theparticleshavenon-zero spinasexplained

below. This parameter also accomodates for experimental backgrounds such as particle

misidentication.

Thetotalwavefunctiondescribingthenalstateoftwoidenticalparticlesmustbeeither

symmetric(s)or antisymmetric(a)under the exchange of the two particles, dependingon

thespinstatisticsofthe particles. Inthelimitofplanewaves(i.e., neglectingcontributions

frompossible nal state interactions) this leads to[8]

j

s;a j

2

=1cos [(p

1 p

2 )(r

1 r

2

)]; (3)

wheres (a) corresponds tothe + ( ) sign and r

1;2

are the four-vector positionsof the two

particles. In the case of identical spinless bosons,

s

completely describes the nal state,

whereas in the case of identical fermions both

s and

a

can contribute.

Since P

s;a (p

1

;p

2

) is proportional to the integral R

dr

1 dr

2 g(r

1

;r

2

;p

1

;p

2 )j

s;a j

2

, where

g(r

1

;r

2

;p

1

;p

2

) describes the source intensity and the integral is taken over the relative

space-time distances r

1 r

2

of the particleemission points,it follows that the correlation

functionC

s;a (p

1

;p

2

) forthe symmetric (antisymmetric) nal state should show anincrease

(decrease) forQ!0.

Foridenticalbosonswithspinoridenticalfermions,e.g.,two's,onehasalsotoconsider

their spin. For the () system the total spin may be S = 0 or S = 1 with spin wave

functions s

0

and s i

1

, where i = 1;0;1 are the eigenvalues of the third component of the

totalspin;s

0

isantisymmetricwhereas the s i

1

are symmetricunder theexchangeof thetwo

's. Asthe totalwavefunctionforthe()system isantisymmetric,s

0

must becombined

with

s

fromEq. 3 and the s i

1 with

a

to yieldantisymmetric wave functions:

0

=

s s

0

and i

1

=

a s

i

1

. In generalboth

0

and the i

1

can contribute toP(p

1

;p

2

),depending on

the source. However for a statistical spin mixture ensemble, where each of the four spin

states s

0

and s i

1

is emitted with the same probability, the contributions from the i

1 will

dominate by a factor of 3 and thus the correlation function C(Q) is expected to decrease

to0:5 as Q tends tozero.

A dierent way of investigatingthe () correlations is provided by the measurement

ofthe spin compositionof the() system, thatis todeterminethe fractions ofthe S=0

and S = 1 states. The method used in this paper was proposed in Ref. [9] and is based

on the measurement of the distribution dN=dy

in the di-hyperon centre-of-mass system.

In this system the momenta of the decay protons (antiprotons) of the () system are

transformed into their parent hyperon rest frames and y

is then the cosine of the angle

(8)

distributionsfor the S =0and S=1 states of asystem of identical hyperons are

dN=dy

j

S=0

= (N=2)(1 2

y

) (4a)

and

dN=dy

j

S=1

= (N=2)(1+( 2

=3)y

) (4b)

where

=

= 0:6420:013 is the decay asymmetry parameter [11]. In general

both spin states willcontribute. If the parameter " is dened as the fraction of the S =1

contribution, then " can be measured asa function of Q by tting the expression

dN=dy

=(1 ")dN=dy

j

S=0

+"dN=dy

j

S=1

(4c)

tothemeasureddistributionforagivenrangeofQ. Inthecaseofastatisticalspinmixture,

" is equal to 0.75 which results in a constant distribution for dN=dy

. The advantage of

this methodis that areference sample is not needed. In Ref. [9] the relation in Eq. 4 was

derivedforthedi-hyperonthresholdand alsoshown toholdapproximatelyforlowvaluesof

Q,where the relativemomentum of the two 's isnon-relativistic. Itwas recently pointed

out, however, that the validity range for Eq. 4can beextended toany Qvalue [12].

The correlation function C(Q) and the spin composition "(Q) yield dierent

measurements which are sensitive to the same physicaleect. If a source only emitteddi-

hyperons inatotal spinstateS =1orS=0,then"(Q)would beoneorzero,respectively,

independent of Q, whereas the correlation function C(Q) is still expected to show a Q

dependence.

Thequantity"(Q)canalsobeusedtoestimatethe sizeR ofthesource[12]. IfC(Q)

S=0

andC(Q)

S=1

are respectivelythe contributions ofthe S =0and the S =1statestoC(Q),

then for a statistical spin mixture ensemble C(Q)

S=0

and C(Q)

S=1

can be parametrised

with the formulaof Eq. 2a as

C(Q)

S=0

= 0:25N(1+exp ( R 2

Q 2

))

and

C(Q)

S=1

= 0:75N(1 exp ( R 2

Q 2

))

with jj1. With"(Q)=C(Q)

S=1

=(C(Q)

S=0

+C(Q)

S=1

) one nds

"(Q)=0:75(1 exp ( R 2

Q 2

))/(1 0:5exp ( R 2

Q 2

)); (5)

where the suppression parameter = 2 results from the requirement C(Q)

S=0 +

C(Q)

S=1

=C(Q), with C(Q) dened in Eq. 2a. In the ideal case C(Q)

S=1

is expected to

decrease to zero as Q tends to zero which implies =1. But due to the eects described

beforein connection withEq. 2, can deviate from one.

(9)

The ALEPH detector is described in detail elsewhere [13]. This analysis relies mainly on

the information from three concentric tracking detectors, a 1.8 m radius time projection

chamber (TPC) surrounding a small conventional drift chamber (ITC) and a two layer

siliconvertex detector (VDET).The TPC provides up to21 space pointspertrack and in

additionup to338samples ofthe particle's specic ionisation. TheITC measures8 points

per track and the VDET provides two high precision space points on the track near the

primary vertex. The tracking detectors are located inan axialmagnetic eld of 1.5Tand

have a combined track transverse momentum resolution of p

?

=p

?

= 0:0006p

?

0:005

(withp

?

inGeV=c).

The analysis was performed on data collected on and around the Z peak. The event

sample consists of a total of 3.9 million hadronic events corresponding to an integrated

luminosity of 142 pb 1

. A sample of 6.5 million Monte Carlo events with full detector

simulation [13], based on the JETSET 7.4 [4] generator, was used to provide a reference

sample and to calculate the selection eÆciencies as described in Section 4. This Monte

Carlosample does not includeBE orFD correlations.

Hadronic events were required to contain at least ve well reconstructed tracks. Each

such track must haveat least four TPC hits and apolarangle inthe range jcosj<0:95.

The pointof closest approachof the reconstructed tracks tothe beamaxis must bewithin

10 cmof the nominal interaction point along the beam direction and within 2 cm of it in

the plane transverse to the beam. The total energy of all tracks satisfyingthe above cuts

isrequired tobeat least 10% of the centre-of-mass energy.

Forthe selectionof the neutralV 0

decays (see alsoRef.[14])allcombinationsof tracks

with opposite charge and with momenta higher than 150 MeV are examined. Both tracks

mustoriginatefromacommonsecondary vertex with acceptable 2

. Forthe nalselection

and for the assignment of the dierent hypotheses K 0

, and

, the most importantcuts

are given below:

a) A 2

testofenergy-momentumconservationforagivenhypothesis,assumingthatthe

decayingparticleisproducedatthe primaryvertex andthatitdecaysatasecondary

vertex [15].

b) Cuts on the impact parameter D of the secondary tracks from the V 0

decay with

respect to the primary vertex. If D

r

is the component of D in the direction

perpendicular to the beam axis and D

z

is the component of D in the direction of

the beam axis then two cuts for each secondary V 0

track are applied: (D

r

=

r )

2

> 4

and (D

z

=

z )

2

>4,where

r

and

z

are the uncertainties on D

r

and D

z .

c) For V 0

candidates with tracks having a good dE=dx measurement, the ionisation is

requiredtobewithinthreestandarddeviationsofthatexpectedforagivenhypothesis.

Références

Documents relatifs

The correlations as a function of rapidity and azimuth relative to the thrust axis within pairs of and K 0 are found to be in good agreement with Jetset. Also Herwig reproduces many

The fraction f of the measured sample containing a primary quark (or a quark from a weak decay of a primary quark) is extracted directly from data using the two methods described

Studies of Bose-Einstein (BE) correlations of identical bosons and of Fermi-Dirac (FD) correlations of identical fermions produced in high energy collisions provide measurements

This result is valid for the different shell- model interactions: although the binding energies calculated with the three shell-model interactions vary by several MeV, in each case

This ratio was then used to correct the background evaluation (see below). After all the selections, 22 events were left in data, while the normalised number in simulation was

solid circles, and the predictions of Jetset and standard Herwig are shown by the open circles and squares, respectively. The plot is an integral; i.e., all pairs with

In an analysis of multihadronic events recorded at LEP by DELPHI in the years 1992 through 1994, rapidity correlations of -, proton-proton, and - proton pairs are compared with

The rate of gluon splitting into c¯c pairs in hadronic Z decays is measured using the data sample collected by ALEPH from 1991 to 1995D. The selection is based on the identification