• Aucun résultat trouvé

Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms

N/A
N/A
Protected

Academic year: 2021

Partager "Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-01314041

https://hal.sorbonne-universite.fr/hal-01314041v2

Submitted on 4 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms

Martino Trassinelli, D. F. Anagnostopoulos, G. Borchert, A. Dax, J.P. Egger, D. Gotta, M. Hennebach, P. Indelicato, Y-W Liu, B. Manil, et al.

To cite this version:

Martino Trassinelli, D. F. Anagnostopoulos, G. Borchert, A. Dax, J.P. Egger, et al.. Measurement of

the charged pion mass using X-ray spectroscopy of exotic atoms. Physics Letters B, Elsevier, 2016,

759, pp.583-588. �10.1016/j.physletb.2016.06.025�. �hal-01314041v2�

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms

M. Trassinellia,,D.F. Anagnostopoulosb, G. Borchertc,1, A. Daxd,J.-P. Eggere,D. Gottac, M. Hennebachc,2, P. Indelicatof, Y.-W. Liud,3, B. Manilf,4,N. Nelmsg,5, L.M. Simonsd, A. Wellsg

aInstitutdesNanoSciencesdeParis,CNRS-UMR7588,SorbonneUniversités,UPMCUniv. Paris06,75005,Paris,France bDept.ofMaterialsScienceandEngineering,UniversityofIoannina,GR-45110Ioannina,Greece

cInstitutfürKernphysik,ForschungszentrumJülichGmbH,D-52425Jülich,Germany dLaboratoryforParticlePhysics,PaulScherrerInstitut,CH5232-VilligenPSI,Switzerland eInstitutdePhysiquedel’UniversitédeNeuchâtel,CH-2000Neuchâtel,Switzerland

fLaboratoireKastlerBrossel,UPMC-SorbonneUniversités,CNRS,ENS-PSLResearchUniversity,CollegedeFrance,4,placeJussieu,75005Paris,France gDept.ofPhysicsandAstronomy,UniversityofLeicester,LeicesterLEI7RH,England,UnitedKingdom

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received10May2016

Receivedinrevisedform10June2016 Accepted12June2016

Availableonline15June2016 Editor:V.Metag

Keywords:

Chargedpionmass Exoticatoms X-rayspectroscopy

The5g4f transitionsinpionicnitrogenandmuonicoxygenweremeasuredsimultaneouslybyusinga gaseousnitrogen–oxygenmixtureat1.4 bar.Duetothepreciseknowledgeofthemuonmassthemuonic lineprovidestheenergycalibrationfor thepionictransition.Avalue of(139.57077±0.00018) MeV/c2 (±1.3 ppm)is derived forthe mass ofthe negativelycharged pion,whichis 4.2 ppm largerthanthe presentworldaverage.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

X-ray spectroscopy of exotic atoms allows the determination of the mass of captured negatively charged particle like muons, pions,and antiprotonsfrom the energies of the characteristic X- radiation.X-raytransitionsoccurduring thede-excitationcascade oftheexoticatomwhichisformedatprincipalquantumnumbers ofn16 in thecaseofpions[1,2].The precisedeterminationof the pion mass requires the use ofX-ray lines which are not af- fected either by strong-interaction effects nor by collisions with surroundingatoms.Such conditionsarefoundintheintermediate partofthecascadeforexoticatomsformedingases.

The most recent X-ray measurements were performed at the Paul Scherrer Institute (PSI) and used either a DuMond [3–5] or

* Correspondingauthor.

E-mailaddress:martino.trassinelli@insp.jussieu.fr(M. Trassinelli).

1 Presentaddress:TUMunich,D-85747Garching,Germany.

2 Presentaddress:DAHERNUCLEARTECHNOLOGIESGmbH,D-63457Hanau,Ger- many.

3 Presentaddress:Phys.Depart.,NationalTsingHuaUniv.,Hsinchu300,Taiwan.

4 Presentaddress:Lab.dePhysiquedesLasers,UniversitéParis13,SorbonneParis Cité,CNRS,France.

5 Presentaddress:ESA-ESTEC,POBox299,2200AG,Noordwijk,TheNetherlands.

a Johann-type crystal spectrometer [6]. In the case of the Du- Mond spectrometer, theenergy calibrationforthe pionic magne- sium (4f3d) transition was performed with a nuclear γ-ray, whilefortheJohannset-upKα fluorescenceradiationfromcopper wasusedtodeterminetheenergyofthepionicnitrogen(5g4f) transition.

In the πMg experiment, electron refilling is unavoidable due to the use of a solid state target. Different assumptions on the Kelectron population lead todifferencesin thepion massup to 16 ppm [5].The previous πNexperiment, aswell asthe present one, useda nitrogengastarget atpressures around 1 bar, where electron refillingis unlikely [7,8], i.e.thede-excitation cascadeis decoupled from the environment. The absence of refilling ofthe electrons ejectedalreadyduring theupperpartofthecascadeby internalAugereffectmanifestsintheappearanceofX-raylinesat n5,whichotherwisewouldbeconvertedintoAugertransitions [9–11].Furthermore,alargeDopplerbroadeningwasmeasuredfor (54)transitions[12].ItoriginatesfromCoulombexplosiondur- ing theformationprocess oftheexoticatom withmoleculesand indicates that the velocity at the time of X-ray emission is es- sentiallyunchangedsince thebreakup ofthemolecule. Thus, the http://dx.doi.org/10.1016/j.physletb.2016.06.025

0370-2693/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

584 M. Trassinelli et al. / Physics Letters B 759 (2016) 583–588

Table 1

CalculatedcontributionstothetotalQEDtransitionenergyofμOandπN(5g4f)lines(ineV)[17].Forthepionictransition,theworldaveragepionmassvalueasgiven in[14]isused.TheμOlineconstitutesatripletduetothemuonspin.ThetotaluncertaintyoftheQEDcalculation(excludingtheuncertaintyofthepionmass)is±1 meV.

Transition μ16O π14N

(5g9/24f7/2) (5g7/24f7/2) (5g7/24f5/2) (5g4f)

Coulomb 4022.8625 4022.6188 4023.4124 4054.1180

self energy 0.0028 0.0013 0.0013 0.0001

vac. pol. (Uehling) 0.8800 0.8800 0.8807 1.2485

vac. pol. Wichman–Kroll 0.0007 0.0007 0.0007 0.0007

vac. pol. two-loop Uehling 0.0003 0.0004 0.0004 0.0008

vac. pol. Källén–Sabry 0.0084 0.0084 0.0084 0.0116

relativistic recoil 0.0025 0.0025 0.0025 0.0028

hyperfine structure 0.0008

Total 4023.7502 4023.5079 4024.2983 4055.3801

absenceofscreeningeffectsfromremainingelectronsintheinter- mediatepartoftheatomiccascadeleadstoaunique solutionfor themass[6].Inaddition,indilutetargetsthelineintensityisal- readymostlycollected inthecirculartransitions(n,=n1)(n1,=n2),wherecorrectionsowingtothehadronicpoten- tialarestilltiny.

Fromthe πNexperimentmπ=(139.57071±0.00053)MeV/c2 [6]is obtainedwhich suggests that both K electrons are present when the πMg(4f3d) transition occurs (solution B: mπ = (139.56995±0.00035)MeV/c2 [5]). This is corroborated by the factthattheresult,assuming1 Kelectrononly(solutionA:mπ= (139.56782±0.00037)MeV/c2), is in conflict withthe measure- ment of the muon momentum for charged pion decay at rest

π+μ+νμ [13].ForsolutionA,themass squaredofthemuon neutrinobecomesnegativebysixstandarddeviations,whereasthe average of solution B and the result of the πN(5g4f) mea- surement(mπ =(139.57018±0.00035)MeV/c2 [14]) yields the upperlimitmμν<190 keV/c2 (90%c.l.).

Theexperimentdescribedhereresumesthestrategyofthegas target, but exploits (i) the high precision of 0.033 ppm for the massofthepositivelychargedmuonbeingmμ+=(105.6583715± 0.0000035)MeV/c2[14]and(ii)theuniquefeaturethatin πNand

μO transition energies almost coincide (Table 1). Using a N2/O2 gasmixtureinthetargetallowsthesimultaneousmeasurementof

πNand μOlines,withthemuonictransitionservingasanon-line calibration. Hence, systematic shifts during the unavoidably long measuringperiodsareminimised.

Inthecaseofnitrogenandoxygen, (6h5g),(5g4f),and (4f3d) transitions meet the operating conditions of the crys- talspectrometer. Finally,the(5g4f)transitionwaschosen be- cause:(i)forthe(6h5g)lines(2.2 keV)absorptioninthetarget gas itself and windows significantly reduces the count rate and (ii) the 3d-level energy in πN requires a substantial correction because of the strong interaction. Electromagnetic transition en- ergies(Tables 1 and2)werecalculatedusingamulti-configuration Dirac–Fockapproach[15,16]toaprecisionof±1 meV andinclude relativisticandquantumelectrodynamicscontribution(relativistic recoil, self-energy, vacuum polarisation) as well as the hyperfine structureofpionicnitrogen[17].

Energyshiftsduetonuclearfinitesizearefoundtobeassmall as 4 aeV and 2 peV for the 5g and 4f levels in πN. Values for nuclearmasses,radii,andmomentsweretakenfromrecentcom- pilations [18–20]. The strong-interaction shifts of the πN levels wereestimatedfrominterpolatingthemeasuredhadronic2p-level shiftsin πCand πO[21]andbyusingscalingrelationsbasedon theoverlapofnucleusandahydrogen-likewave functionforthe pionorbit(seeTable 3).Detailsonthecalculationofthetransition energiesmaybefoundelsewhere[22].

The measurement was performed at the high-intensity pion beamlineπE5of thePaul Scherrer Institute(PSI)using aset-up

Table 2

TransitionenergiesEQED [17]andBragganglesBoftheμOandπNlinesused inthefittothe spectrum.Therelativeintensitieswithinthefinestructuremul- tiplets ofμO (FS int.)havebeen fixed inthe fit tothe statistical weight.The BraggangleincludestheindexofrefractionshiftcalculatedwiththecodeXOP[32].

Fortwicethelatticedistance2d=0.768062286(13)nm isassumedatatempera- tureof22.5C[34].Theconversionconstantusedishc=1.239841930(28)nm keV [14].The πN(5g4f)andπN(5f4d)transitionenergiesincludethestrong- interactionshift(seeTable 3).

Transition FS int. EQED/eV B

μ16O(5g7/24f7/2) 1 4023.5079 532151.48 μ16O(5g9/24f7/2) 35 4023.7503 532134.77 μ16O(5g7/24f5/2) 27 4024.2984 532057.01 μ16O(5f5/24d5/2) 1 4025.3956 531941.47 μ16O(5f7/24d5/2) 20 4025.8031 531913.44 μ16O(5f5/24d3/2) 14 4026.9922 531751.70 μ16O(5d5/24p3/2) 9 4028.5625 53163.90 μ16O(5d3/24p1/2) 5 4033.5273 531024.10 μ18O(5g7/24f7/2) 1 4026.6692 531813.90 μ18O(5g9/24f7/2) 35 4026.9132 531757.13 μ18O(5g7/24f5/2) 27 4027.4642 531719.28

π14N(5g4f) 4055.3802 524546.76

π14N(5f4d) 4057.6984 524311.81

π14N(5d4p) QED only 4061.9460 523828.76

π15N(5g4f) 4058.2394 524235.67

π15N(5f4d) 4060.5605 52400.95

similar to the one used by Lenz et al.[6]. Major improvements are: (i) The use ofcyclotron trap II [23] having a larger gap be- tween the magnet coils yielding a substantially increased muon stop rate, (ii) a Bragg crystalofsuperiorquality and(iii)a large- areaX-raydetectorinordertosimultaneouslycoverthereflections of themuonicandpionictransitions (seeFig. 1).In addition,the averageprotoncurrentoftheacceleratorwasabout1.4 mA,which is40%higherthaninthepreviousexperiment.

TheN2/O2gasmixturewasenclosedinacylindricaltargetcell placedatthecentreofthecyclotrontrap.Thecellwallwasmade ofa50 μmthick Kapton® foil.Towardsthecrystalspectrometer a circular7.5 μmMylar® windowwasusedsupportedby astainless steelhoneycombstructurewithafreeareaof90%.Thetargetwas operatedat1.4 barandroomtemperature.

The muons used originate from the decay of slow pions in- sidethecyclotrontrap,becausethestopdensityformuonsatthe high-intensity pion beam is still superior to the one at a dedi- catedmuonchannel.Forthesimultaneousmeasurementcompara- blecountratesarerequiredforthe πNandthe μOline.Thiswas achievedwithaN2/O2 mixtureof10%/90%byadaptingthesetof polyethylene degraders inside the magnetgap and optimised by

(4)

Table 3

Correctionstothemeasuredangledifferencebetweentheπ14N(5g4f)andtheμ16O(5g9/24f7/2)transitionsandassociateduncertainties.A1 ppmchangeinthepion masscorrespondsto4.055 meVintransitionenergy,to0.27arcsecindiffractionangle,ortoadisplacementof3.2 μminthedetectorplane.Contributionstothemass uncertaintyfromlatticeandconversionconstantcancelinleadingorderbecausethemeasurementprincipleisbasedontheangulardifference.Formoredetailsseetext.

Typeofuncertainty μO

/ arcsec

πN / arcsec

Total / arcsec

Uncertainty /ppb

index of refraction shift 13.22 12.94 0.28 ±20

silicon lattice constant ±2

bending correction 14.01 13.71 0.30 ±20

penetration depth correction 0.07 0.07 0 ±4

focal length ±670

temperature correction ±30

CCD alignment ±340

pixel distance ±120

alignment of detector normal +300

detector height offset +350

shape of target window ±100

shape of reflection ±225

individual curvature correction ±150

response function and Doppler broadening +290350

line pattern modelling +190290

fit interval ±15

muon mass ±30

QED energy ±350

conversion constanthc ±2

4f strong interaction 45 μeV 0.003 0.003 ±10

5gstrong interaction 0.2 μeV 0.000 0.000 ±0

K electron screening ±0

total systematic error +1000960

statistical error ±820

meansofanX-raymeasurementusingaSi(Li) semiconductorde- tector.

ThecrystalspectrometerissetupinJohanngeometry[24]us- ingasphericallybentBraggcrystalandoptimisedtotheneedsof exotic-atom X-rayspectroscopy [25]. Such a configuration allows the simultaneous measurement of two different energies within anenergyinterval,thelimitsofwhicharegivenby theextension ofthetargetinthedirectionofdispersionandcorrespondinglyby thesizethe detector.Sphericalbendingleads toa partialvertical focusing[26]whichincreasesthecountrate.

The Bragg crystal was made from a silicon crystal disk of 290 μm thickness and of a diameter of 100 mm. The disk is at- tached to a high-quality polished glass lens defining a spherical segment.Theaverageradiusofcurvatureofthecrystalsurfacewas measured to Rc=(2981.31±0.33)mm by sampling 500 points atthe surface witha mechanicalprecision sensor (performed by CarlZeissAG,D-73447Oberkochen,Germany). Anupperlimit for thecutangle(angle betweencrystalsurface andreflecting lattice planes) was determined in a dedicated measurement to be 120 secondsofarc[27].Hence,thefocalcondition correspondstothe symmetricBraggcasebeingRc·sinB.Themeasurementusesthe secondorderreflectionatthe(110)planes.Analuminiumaperture of90 mm diametercovered theboundaryregionoftheSidiskin ordertoavoidedgeeffects.Forsourcegeometryasgivenhere,the overallefficiencyofthecrystalset-up is5·108.About85%of thereflected intensityiscovered bythe sensitivearea ofthe de- tector.

The detectorwith a total sensitive area of about 48×72 mm2 (width×height) was built up by a 2×3 array of charge-coupled

devices (CCDs) of 24 mm×24 mm (600×600 pixels) with frame storageoption[28].Havingadepletiondepthofabout30 μmthese CCDsreachtheirmaximumindetectionefficiencyofalmost90%at 4 keV.The detectorsurface isorientedperpendiculartothedirec- tion ofthe incoming X-rays.Excellent background conditionsare achieved (i) by using an especially tailoredconcrete shielding of atleast 1 mthickness betweenthe X-raydetectorandthe target region and (ii)by exploitingthe different pixeltopology oflow- energyX-raysandbackgroundevents,whicharemainlycausedby neutroninducedhighenergeticnuclear γ rays[2,6].

TheBraggangleforthe πN(5g4f)transitionandtherebyits energyisdeterminedfromthepositiondifferencetothe μO(5g4f)line.The positionsaredeterminedfromtheprojection ofthe patternon theCCD ontothe directionofdispersion aftercorrec- tion for curvature by means of a parabola fit (Fig. 1). The main transitions μO(5g4f)and πN(5g4f)areseparatedbyabout 25 mm.

About9000eventsforeach elementwere collectedineach of the(5g4f)transitionsduring5 weeksofdatataking.Thecount ratesforthe πNand μOtransitionswereabout15eventsperhour each. Onlya commonsmalldrift wasobserved forthe lineposi- tions oflessthan onepixel intotal.Because ofthesimultaneous measurement the position difference is not affected. Bragg angle dependentcorrectionsaresmallbecausetheleadingordercancels insuchadifferencemeasurementperformedinthesameorderof reflection.

In fourthorder, the Bragg anglesof the Cu Kα linesare very closetotheonesofthe μO(5g4f)transitions.Therefore,inad- dition Cu X-rays were repeatedly recorded asa stability monitor

Références

Documents relatifs

The S2 edge inflection exihibits a shift to higher energy by about 1 eV and occurs at -6552.5 eV which is between that observed for Mn(III) and Mn(1V).. The lower K-edge

The steeper dependance of count rate on size for small particles is due to electrons at the edge of the probe not interacting with the particle. This is well below

By cor- recting the intensities of the X-ray satellites for the atomic vacancy rearrangement processes that take place prior to the X-ray emission, the vacancy distribution at

Pionic atom spectroscopy permits to measure another important quan- tity: the charged pion mass. Orbital energies of pionic atoms depend on the reduced mass of the system.

In conclusion, we present a new measurement of the neg- atively charged pion mass based on Bragg spectroscopy of pionic nitrogen and muonic oxygen using a gaseous target.. The use

In conclusion we performed a first measurement of the ground-state Lamb shift in a heavy H-like ion (Au 78+ ) using a high resolution crystal spectrometer in combina- tion with a

The principle of the experiment is to stop low-energy muons in dilute hydrogen gas, form muonic hydrogen in the 2S state and, delayed with respect to the formation time of the

The world’s most precise value of the rms proton charge radius r p = 0.841 84 (67) fm, which we have obtained from laser spectroscopy of the Lamb shift in muonic hydrogen mp,