• Aucun résultat trouvé

PHONON DISPERSION CURVES IN THE MOLECULAR CRYSTALS NAPHTHALENE AND ANTHRACENE MEASURED BY INELASTIC NEUTRON SCATTERING

N/A
N/A
Protected

Academic year: 2021

Partager "PHONON DISPERSION CURVES IN THE MOLECULAR CRYSTALS NAPHTHALENE AND ANTHRACENE MEASURED BY INELASTIC NEUTRON SCATTERING"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00221258

https://hal.archives-ouvertes.fr/jpa-00221258

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

PHONON DISPERSION CURVES IN THE

MOLECULAR CRYSTALS NAPHTHALENE AND

ANTHRACENE MEASURED BY INELASTIC

NEUTRON SCATTERING

B. Dorner, E. Bokhenkov, E. Sheka, S. Chaplot, G. Pawley, J. Kalus, U.

Schmelzer, I. Natkaniec

To cite this version:

(2)

JOURNAL DE P H Y S I Q U E

CoZZoque C6, suppZdment au n012, Tome 4 2 , de'cembre 1981 page C6-602

PHONON DISPERSION CURVES I N THE MOLECULAR CRYSTALS NAPHTHALENE AND ANTHRACENE MEASURED BY I N E L A S T I C NEUTRON SCATTERING

**

**

B . Dorner, E.L. ~okhenkov*, E . F . Sheka*, S.L. Chaplot

,

G . S . Pawley

,

J . ~alus***, U . Schmelzer*** and I . ~atkaniec**** ILL Grenob Ze, France

" ~ n s t

.

Sol. S t a t . Physics, ChernogoZovka, USSR **physics Dept. Univ. Edinburgh, U. K.

***

Physics Dept. Uniu. Bayreuth, F. R. G.

****

I n s t . NucZ. Phys. Krakow, Poland

A b s t r a c t .

-

Wedetermined t h e 12 e x t e r n a l and t h e 4 l o w e s t i n t e r n a l d i s p e r s i o n b r a n c h e s f o r s e v e r a l symmetry d i r e c t i o n s i n n a p h t h a l e n e a t 6 K and a n t h r a c e n e a t 12 K . The zone c e n t r e modes have been a s - s i g n e d unambiguously. The t e m p e r a t u r e dependence w a s s t u d i e d f o r b o t h c r y s t a l s , w h i l e t h e p r e s s u r e dependence o n l y f o r n a p h t h a l e n e . A t c o n s t a n t volume t h e f r e q u e n c i e s o f n a p h t h a l e n e would i n c r e a s e much more w i t h t e m p e r a t u r e t h a n t h o s e o f a n t h r a c e n e .

By i n e l a s t i c n e u t r o n s c a t t e r i n g we d e t e r m i n e d t h e 16 l o w e s t phonon d i s - p e r s i o n b r a n c h e s f o r s e v e r a l symmetry d i r e c t i o n s f o r d e u t e r a t e d naph- t h a l e n e a t 6 K and f o r d e u t e r a t e d a n t h r a c e n e a t 12 K . These two mole- c u l e s c r y s t a l l i z e i n t h e same m o n o c l i n i c s t r u c t u r e P 2 1 / a w i t h two mole- c u l e s p e r u n i t c e l l . Unter t h e assumption o f r i g i d molecules one ex- p e c t s 12 e x t e r n a l modes. T h i s assumption i s a c c e p t a b l y w e l l f u l f i l l e d f o r n a p h t h a l e n e , where a n e n e r g y gap o f a b o u t 1 THz was o b s e r v e d be- tween t h e e x t e r n a l and t h e l o w e s t i n t e r n a l modes w h i l e i n t h e c a s e o f a n t h r a c e n e t h e f o u r l o w e s t i n t e r n a l modes a r e i n t h e r e g i o n o f t h e ex- t e r n a l modes and a s t r o n g i n t e r a c t i o n i s o b s e r v e d , s e e F i g . 1 F i g . 1: The 16 l o w e s t phonon . . ! , d i s p e r s i o n b r a n c h e s i n Anthra- , c e n e a t 12 K . The d o t t e d l i n e s v i s u a l i z e e x p e r i m e n t a l l y de- lZ0 t e r m i n e d a n t i c r o s , s i n g s and e i g e n v e c t o r e x c h a n g e s . Sound v e l o c i t i e s a t 300 K a r e i n - d i c a t e d by s t r a i g h t l i n e s . r z r Y r Y c A r A

ANTISYM SYM SYM ANTlSYM ANTISYM SYM

PHONON WAVEVECTOR

(3)

To perform the experiment it was crucial to have a lattice dyna- mics model calculation beforehand. The model is based on atom-atom potentials between different molecules /1,2/.

With help of the calculated eigenvectors the phonon intensities in different Brillouin zones have been predicted and nicely confirmed

by the experiment ( 3 , 4 ) for the centres of the Brillouin zones. For

finite phonon wavevectors many anticrossings of modes and eigenvector exchanges have been observed and analysed experimentally. For these two molecular crystals we obtained a complete set of experimentally de- termined dispersion curves. All zone centre modes have been assiged un- ambiguously to their groupe theoretical representations. The agreement between measured and calculated /5/ frequencies was qualitatively good but differed by up to 20%. The inclusion of a quadrupol moment /6/ im- proved the agreement very much.

In the case of anthracene we analysed the lowest internal modes

further by an eigenvector determination / 7 / . The four lowest internal

modes correspond to the BjU (Butterfly) and the AU (twist around the long axis) modes of the free molecule.

The temperature dependence at normal pressure has been investi-

gated as well /8,9/. All phonon frequencies decrease with increasing

temperature and the signals broaden such that many branches become un- observable at room temperature. We tried to include anharmonic effects by calculating the third and fourth order terms of the potential experi- enced by a particular mode with its proper eingenvector /lo/. The am-

plitudes of a11 other modes were kept zero. The calculculated anharmo- nic contributions had the right tendency but were much smaller than the observed ones.

The pressure dependence is so far studied only for naphthalene at

100 K and a hydrostatic pressure of 3 K bar /11/. We found very good

agreement between measured mode-Gruneinsenparameters and calculated Fig. 2: Temperature depen- dence of librational fre- quency (2.52 THz at 6 K ) versus temperature dependent

-0.3 - volume. Measured(--- ) and

calculated ( .

....

) Griineisen-

parameters give frequency

-a2 - dependence at const. T.

(4)

C6-604 JOURNAL DE PHYSIQUE

ones /12/. This good agreement sollicitated a calculation for negative pressure, this means for an increased volume. The decrease of the li- bration frequency at normal pressure with increasing temperature is plotted in Fig. 2 versus the temperature dependent volume change to- gether with the calculated ones for the expanded volume at const. tem- perature. Apparently the experimental frequency decreases less than pre-

dicted from the Griineisenparameters. Thus we conclude that in naphtha-

lene frequencies at constant volume would increase with increasing tem- perature. This observation agrees with results from pressure dependent Raman scattering /13/. Encouraged by the good areement between measured and calculated Griineisenparameters for naphthalene we calculated them

for anthracene /9/, and made a comparison like the one in Fig. 2. We

found that in anthracene the frequency shift at const. volume would be smaller than in naphthalene, again in agreement with /13/. Nevertheless we plan to measure the pressure dependence in anthracene as well.

/I/ A.I. Kitaigorodsky; J. Chim. Phys.

63,

9 (1966)

/2/ D.E. Williams; J. Chem. Phys.

45,

3770 (1966),

47,

4680 (1967)

/3/ I. Natkaniec, E.L. Bokhenkov, B. Dorner, J. Kalus, G.A. Mackenzie,

G.3. Pawley, U. Schmelzer and E.F. Sheka; J. Phys. C.

12,

4265

(1980)

/4/ B. Dorner, E.L. Bokhenkov, S.L. Chaplot, J. Kalus, I. Natkaniec,

G.S. Pawley, N. Schmelzer and E.F. Sheka; J. Phys. C submitted

/5/ G.S. Pawley; Phys. Stat. Sol. 20, 347 (1967)

/6/ R. Righini, S. Califano and S.H. Walmsley; Chem. Rphys.

50,

113

(1980)

/7/ S.L. Chaplot, G.S. Pawley, E.L. Bokhenkov, B. Dorner, V.K. Jindal,

J. Kalus, I Natkaniec and E.F. Sheka; Chem. Phys.

57,

407 (1981)

/8/ E.F. Sheka, E.L. Bokhenkov, B. Dorner, J. Kalus, G.A. Mackenzie,

I. Natkaniec, G.S. Pawley and U. Schmelzer; to be published

/9/ V.K. Jindal, J. Kalus, E.L. Bokhenkov, S.L. Chaplot, B. Dorner,

I. Natkaniec, G.S. Pawley and E.F. Sheka; J. Phys. C submitted

/lo/ J. Kalus, B. Dorner, V.K. Jindal, N. Karl, I. Natkaniec, G.S.

Pawley, W. Press and E.F. Sheka; J. Phys. C submitted

/11/ U. Schmelzer, E.L. Bokhenkov, B. Dorner, J. Kalus, G.A. Mackenzie,

I. Natkaniec, G.S. Pawley and E.F. Sheka; J. Phys. C

14,

1025 (1

(1981)

/12/ G. S.Pawley and K. Mika; Phys. Stat. So1.b

-

66, 679 (1374)

Références

Documents relatifs

Résumé. — Les mesures de la diffusion des neutrons ont donné en détail la forme de la fonction de diffusion pour les fluctuations des spins transverses dans la région critique

In fact, almost all the analyses are made with this implicit assumption (for instance real part determination!), and it is normal to do that in the absence of any

combination of rotation of the lipid molecule about the normal plus an out-of-plane diffusion inside a box (model I) and b) a superposition of in- and out-of-plane diffusion of

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Molecular mobility in organic molecular crystals was studied by means of tracer diffusion experiments : self-diffusion of naphthalene into naphthalene single crystals

influence of correlation on the observed diffusion and to be able to obtain the real jump frequencies, the partial correlation factor ~f~) relative to each jump (Tab. V) is

HYDRODYNAMICS OF ACOUSTIC PHONON-MOLECULAR REORIENTATION COUPLING IN PLASTIC CRYSTALS; VH SCATTERING.. 2014 On développe un modèle qui décrit le couplage entre

The acoustic phonon propagation, specially the transverse mode propagating perpendicularly to the planes of molecules, has been observed in the crystalline phase and in both smectic