• Aucun résultat trouvé

Observation of Two Resonances in the $\Lambda_b^0 \pi^\pm$ Systems and Precise Measurement of $\Sigma_b^\pm$ and $\Sigma_b^{*\pm}$ properties

N/A
N/A
Protected

Academic year: 2021

Partager "Observation of Two Resonances in the $\Lambda_b^0 \pi^\pm$ Systems and Precise Measurement of $\Sigma_b^\pm$ and $\Sigma_b^{*\pm}$ properties"

Copied!
16
0
0

Texte intégral

(1)

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP-2018-243 LHCb-PAPER-2018-032 October 12, 2018

Observation of two resonances in the

Λ

0

b

π

±

systems and precise

measurement of Σ

b

±

and Σ

b

∗±

properties

LHCb collaboration†

Abstract

The first observation of two structures consistent with resonances in the final states Λ0bπ− and Λ0bπ+ is reported using samples of pp collision data collected by the LHCb experiment at √s = 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb−1. The ground states Σb± and Σb∗± are also confirmed and their masses and widths are precisely measured.

Submitted to Phys. Rev. Lett.

c

2018 CERN for the benefit of the LHCb collaboration, CC-BY-4.0 licence.

Authors are listed at the end of this Letter.

(2)
(3)

Bottom baryons are composed of a b quark and two lighter quarks (bqq0). In the constituent quark model [1, 2], such baryon states form multiplets according to the symmetries of their flavor, spin, and spatial wave functions [3]. The Λ0b baryon is the lightest of the bottom baryons and forms an isospin (I) singlet (bud) with spin-parity JP = 12+. Two I = 1 triplets with JP = 12+ (Σb) and JP = 32

+

b∗) are expected, with the spin of the flavor-symmetric qq0 diquark Sqq0 = 1. Four of those six states, the Σ± b

and Σb∗± baryons (uub and ddb), have been observed by the CDF collaboration [4, 5] and reported briefly in a previous LHCb paper [6]. Beyond these ground states, radially and orbitally excited states are expected at higher masses, but only a few excited baryons have been observed in the bottom sector [7–10]. The search for and study of these states will cast light on the internal mechanisms governing the dynamics of the constituent quarks [11, 12].

In this Letter, we report the observation of structures in both the Λ0

bπ+and Λ0bπ

mass

distributions (charge conjugation is implied throughout this article) using pp collision data collected by the LHCb experiment at √s = 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb−1. We refer to these new states as Σb(6097)

±

in the rest of the Letter. We also measure precisely the masses and widths of the Σb± and Σb∗± ground states.

The LHCb detector [13, 14] is a single-arm forward spectrometer covering the pseudorapidity range 2 < η < 5, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the pp interaction region [15], a large-area silicon-silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes [16] placed downstream of the magnet. The tracking system provides a measurement of the momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV (natural units with c = ~ = 1 are used throughout this Letter). The momentum scale is calibrated using samples of J/ψ → µ+µand B+ → J/ψ K+

decays collected concurrently with the data sample used for this analysis [17, 18]. The relative accuracy of this procedure is estimated to be 3 × 10−4 using samples of other fully reconstructed b-hadron, K0

S, and narrow Υ resonance decays. The minimum distance

of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of (15 + 29/pT) µm, where pT is the component of the momentum transverse to

the beam, in GeV. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors [19]. The online event selection is performed by a trigger [20] which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. The software trigger requires a two-, three- or four-track secondary vertex with significant displacement from all primary pp interaction vertices. A multivariate algorithm [21] is used for the identification of secondary vertices consistent with the decay of a b hadron. Simulated data samples are produced using the software packages described in Refs. [22–26].

Samples of Λ0

b candidates are formed from Λ+cπ

combinations, where the Λ+

c baryon

is reconstructed in the pK−π+ final state. All charged particles used to form the b-hadron

candidates are required to have particle-identification information consistent with the appropriate mass hypothesis. Misreconstructed tracks are suppressed by the use of a neural network trained to discriminate between real and fake particles [27]. To suppress prompt background, all Λ0b decay products are required to have significant χ2IP with respect to all

(4)

) [MeV] − π + c Λ ( m 5500 5600 5700 5800 5900 Candidates / (5 MeV) 0 5000 10000 15000 20000 25000 30000 LHCb − π + c Λ → 0 b Λ − K + c Λ → 0 b Λ Part. Reco. Combinatorial

Figure 1: Mass distribution for the selected Λ0b → Λ+

cπ− candidates. The points show experi-mental data.

PVs in the event, where χ2IP is the difference in χ2 of the vertex fit of a given PV, when a particle is included or excluded from the fit. The reconstructed Λ+

c vertex is required to

have a good fit quality and to be significantly displaced from all PVs in the event. The reconstructed Λ+c mass must be within a mass window of ±25 MeV of its known value [28]. Pion candidates that have large χ2

IP with respect to all PVs are combined with Λ+c

candidates to form Λ0

b candidates, requiring good vertex-fit quality and separation of the Λ0b

decay point from any PV in the event. A Boosted Decision Tree (BDT) discriminant [29,30] is used to further reduce the background. The BDT exploits nineteen topological variables, including the χ2

IP and pT values of all the particles in the decay chain, the χ2 values of

the Λ0b and Λ+c decay vertices, their flight-distance significance, and the angle between their momentum and direction of flight, defined by their production and decay vertices. The BDT is trained using simulated Λ0

b signal decays and Λ0b candidates in data in the

sideband 5800 < m(Λ0b) < 6000 MeV. The signal candidates are refitted constraining the mass of the Λ+

c to its known value [28] in order to improve the mass resolution [31].

The mass distribution of the selected Λ0

b → Λ+cπ −, Λ+

c → pK

π+ candidates is shown in

Fig. 1. The mass spectrum is fitted with an asymmetric resolution function for the signal component [32], plus a misreconstructed Λ0

b → Λ+cK

component whose yield is fixed

relative to that of Λ0

b → Λ+cπ

, an exponential function for the combinatorial background

and an empirical function for partially reconstructed backgrounds as described in Ref. [32]. The resulting Λ0

b signal yield is 234,270 ± 900.

The Λ0

b candidates contained in a ±50 MeV window around the peak maximum

are then combined with a prompt pion, hereafter referred to as πs±, to form Σb± → Λ0bπ± combinations (along with Σ∓b → Λ0

bπ∓). Initially, pT(πs±) > 200 MeV and

Q ≡ m(Λ0 bπ

±) − m(Λ0

b) − m(π

±) < 200 MeV are required, where the Λ0 bπ

± mass is

re-computed constraining the masses of the Λ+

c and Λ0b baryons to their known values [28].

Then the search is extended to higher masses up to Q = 600 MeV, observing an ad-ditional peak in both Λ0

and Λ0

bπ+ spectra. A tighter transverse momentum cut

pT(π±s) > 1000 MeV is applied to remove the background from prompt pions.

The signal yields and parameters of the Σb±, Σb∗± and Σb(6097) ±

resonances are determined with extended unbinned maximum-likelihood fits to the Q-value distribution. All signal components are modeled as relativistic Breit–Wigner functions [33] including Blatt–Weisskopf form factors [34] with a radius of 4 GeV−1. The orbital angular momentum

(5)

Table 1: Summary of the results of the fits to the Q ≡ m(Λ0bπ±) − m(Λ0b) − m(π±) mass spectra. Q0 and Γ are the mean and the width of the Breit–Wigner function. The quoted uncertainties are statistical only.

State Q0 [MeV] Γ [MeV] Yield

Σb− 56.45 ± 0.14 5.33 ± 0.42 3270 ± 180 Σb∗− 75.54 ± 0.17 10.68 ± 0.60 7460 ± 300 Σb+ 51.36 ± 0.11 4.83 ± 0.31 3670 ± 160 Σb∗+ 71.09 ± 0.14 9.34 ± 0.47 7350 ± 260 Σb(6097) − 338.8 ± 1.7 28.9 ± 4.2 880 ± 100 Σb(6097) + 336.6 ± 1.7 31.0 ± 5.5 900 ± 110 l between the Λ0 b baryon and π ±

s candidate is taken to be 1 in all cases. The relativistic

Breit–Wigner functions are convolved with the detector resolution and corrected for a small distortion in the shape induced by the pT requirement on the π±s meson. The resolution

models are determined from simulation, in which the three signal resonances are generated at the Q values found in data. The root-mean-square values of the resolution functions for Σb, Σb∗, and Σb(6097) are 0.99, 1.13 and 2.35 MeV, respectively, all below the visible

widths of the mass peaks and consistent with a resolution that scales as √Q. Different empirical parameterizations are used for the two mass ranges. For 0 < Q < 200 MeV the background shape is described by a smooth threshold function [10, 35, 36], while for 0 < Q < 600 MeV a sigmoid function is used, as in Refs. [37, 38]. The background shapes are validated by using candidates in the data sidebands for a wide range of pT

requirements. All of the masses, widths, and yields are free to vary in the fit, as are the background parameters; the resolutions of the signal components are fixed to the values found in simulation. The fit models are validated with pseudoexperiments and no significant bias is found on any of the free parameters.

The fits to the data sample are shown in Fig. 2 and the resulting parameters of interest are summarized in Table 1. The fit results are also used to determine mass differences and isospin splittings (given below). The two new peaks in Λ0

and Λ0

bπ+ distributions have

local statistical significances of 12.7σ and 12.6σ, respectively, based on the differences in log-likelihood between a fit with zero signal and the nominal fit.

Several sources of systematic uncertainty are considered. The dominant source of systematic uncertainty on the mass measurements comes from the knowledge of the momentum scale. This uncertainty is evaluated by adjusting the momentum scale by the 3 × 10−4 relative uncertainty from the calibration procedure [18] and rerunning the mass fit. This procedure is also validated using a control sample of approximately 3 million D∗+ → D0π+ decays, with D0 → Kπ+. The momentum-scale uncertainties

largely cancel in the mass differences and splittings. A second uncertainty arises from the parameterization of the background and is estimated by varying the function used (e.g. polynomial background functions of different order and other empirical curves). An additional source of uncertainty on the determination of the natural widths arises from known differences in resolution between data and simulation. These are expected to agree within 5%, based on previous studies [8, 10, 36], and this assumption has been validated with the D∗+ → D0π+control sample. Systematic uncertainties on the widths are assessed

(6)

[MeV] Q 0 50 100 150 200 Candidates / (2 MeV) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 LHCb − π 0 b Λ (a) − π 0 b Λ → − b Σ − π 0 b Λ → − * b Σ Background [MeV] Q 0 50 100 150 200 Candidates / (2 MeV) 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 LHCb + π 0 b Λ (b) + π 0 b Λ → + b Σ + π 0 b Λ → *+ b Σ Background [MeV] Q 0 200 400 600 Candidates / (6 MeV) 0 50 100 150 200 250 300 350 400 450 LHCb − π 0 b Λ (c) − π 0 b Λ → − b Σ − π 0 b Λ → − * b Σ − π 0 b Λ → − (6097) b Σ Background [MeV] Q 0 200 400 600 Candidates / (6 MeV) 0 50 100 150 200 250 300 350 400 450 LHCb + π 0 b Λ (d) + π 0 b Λ → + b Σ + π 0 b Λ → *+ b Σ + π 0 b Λ → + (6097) b Σ Background

Figure 2: Mass distribution for selected Λ0bπ± candidates. The points show experimental data. The left (right) column shows Λ0bπ− (Λ0bπ+) combinations. The top row shows the fits to the lower-mass states Σb± and Σb∗±. The lower row presents the fits to the new mass peaks with the requirement pT(π±s) > 1000 MeV.

masses and widths arise from the assumed Breit–Wigner parameters. The resonant states are assumed to decay to Λ0

± with angular momentum l = 1. For the Σ

b(6097) ±

states, fits assuming l = 0, 2, 3 are also performed and the largest changes to the fitted parameters with respect to the nominal fit are assigned as systematic uncertainties. The systematic uncertainties are summarised in Table 2; in all cases they are much smaller than the statistical uncertainties. All numerical results for the measured masses and widths are presented in Table 3. The mass values m are obtained using the most precise LHCb combination for the Λ0

b mass, m(Λ0b) = 5619.62 ± 0.16 ± 0.13 MeV [39], which dominates

by far the current world average [40]. The correlated uncertainties, mainly deriving from the knowledge of the momentum scale which is a common source of systematic uncertainty in all LHCb mass measurements, are propagated as described in Ref. [41]. The isospin splittings of the new states are consistent with zero, although with large experimental uncertainty.

In summary, the first observation of two new mass peaks in the Λ0

bπ+ and Λ0bπ −

systems is reported. These structures are consistent with single resonances described by relativistic Breit–Wigner functions. The ground-state Σb± and Σb∗± baryons are also confirmed and their masses and widths precisely measured. These values are in good agreement with those measured by the CDF collaboration [5], with precision improved by a factor of 5. We also quote the mass differences and isospin splittings, for which most of the systematic uncertainties cancel.

(7)

Table 2: Summary of the systematic uncertainties on the measured masses and widths. Q0 and Γ are the mean and the width of the Breit–Wigner function. All values are in MeV.

Σb− Σb∗− Σb(6097) − Source Q0 Γ Q0 Γ Q0 Γ p scale 0.046 0.036 0.047 0.071 0.130 0.013 Resolution 0.001 0.038 0.001 0.033 0.003 0.108 Spin assign. 0.370 0.462 Radius 0.003 0.101 0.010 0.017 0.080 0.081 Background 0.021 0.351 0.033 0.315 0.184 0.798 Total 0.051 0.369 0.058 0.325 0.440 0.932 Σb+ Σb∗+ Σb(6097)+ Source Q0 Γ Q0 Γ Q0 Γ p scale 0.039 0.046 0.047 0.045 0.128 0.090 Resolution 0.001 0.040 0.001 0.038 0.002 0.086 Spin assign. 0.113 0.342 Radius 0.001 0.061 0.003 0.002 0.001 0.031 Background 0.027 0.357 0.026 0.256 0.207 0.598 Total 0.047 0.367 0.053 0.263 0.268 0.701

Table 3: Masses and widths of the Σb(6097)±, Σb∗± and Σb± baryons. Isospin splittings ∆(X±) = m(X+) − m(X−) and mass differences are also calculated. The first uncertainty is statistical, the second systematic. The systematic uncertainty on m includes the uncertainty from the knowledge of the Λ0

b mass [39].

Quantity Value [MeV]

m(Σb(6097) − ) 6098.0 ± 1.7 ± 0.5 m(Σb(6097)+) 6095.8 ± 1.7 ± 0.4 Γ(Σb(6097) − ) 28.9 ± 4.2 ± 0.9 Γ(Σb(6097) + ) 31.0 ± 5.5 ± 0.7 m(Σb−) 5815.64 ± 0.14 ± 0.24 m(Σb∗−) 5834.73 ± 0.17 ± 0.25 m(Σb+) 5810.55 ± 0.11 ± 0.23 m(Σb∗+) 5830.28 ± 0.14 ± 0.24 Γ(Σb−) 5.33 ± 0.42 ± 0.37 Γ(Σb∗−) 10.68 ± 0.60 ± 0.33 Γ(Σb+) 4.83 ± 0.31 ± 0.37 Γ(Σb∗+) 9.34 ± 0.47 ± 0.26 m(Σb∗−) − m(Σb−) 19.09 ± 0.22 ± 0.02 m(Σb∗+) − m(Σb+) 19.73 ± 0.18 ± 0.01 ∆(Σb(6097) ± ) −2.2 ± 2.4 ± 0.3 ∆(Σb±) −5.09 ± 0.18 ± 0.01 ∆(Σb∗±) −4.45 ± 0.22 ± 0.01

(8)

In the heavy-quark limit, five Σb(1P ) states are expected. Several predictions of their

masses have been made [11, 12, 42, 43], but some or all of these states may be too wide to be accessible experimentally [42]. Since the expected density of baryon states is high, it cannot be excluded that the new structures seen are the superpositions of more than one (near-)degenerate state. Taking into account that the predicted mass and width depend on the as-yet-unknown spin and parity, the newly observed structures are compatible with being 1P excitations. Other interpretations, such as molecular states, may also be possible [44].

Acknowledgements

We thank Jonathan L. Rosner and Marek Karliner for useful discussions on the interpreta-tion of the theoretical predicinterpreta-tions. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany); EPLANET, Marie Sk lodowska-Curie Actions and ERC (European Union); ANR, Labex P2IO and OCEVU, and R´egion Auvergne-Rhˆone-Alpes (France); Key Research Program of Frontier Sciences of CAS, CAS PIFI, and the Thousand Talents Program (China); RFBR, RSF and Yandex LLC (Russia); GVA, XuntaGal and GENCAT (Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory

(9)

References

[1] M. Gell-Mann, A schematic model of baryons and mesons, Phys. Lett. 8 (1964) 214. [2] G. Zweig, An SU3 model for strong interaction symmetry and its breaking; Version 1,

Tech. Rep. CERN-TH-401, CERN, Geneva, Jan, 1964.

[3] E. Klempt and J.-M. Richard, Baryon spectroscopy, Rev. Mod. Phys. 82 (2010) 1095, arXiv:0901.2055.

[4] CDF collaboration, T. Aaltonen et al., Observation of the heavy baryons Σb and Σb∗,

Phys. Rev. Lett. 99 (2007) 202001, arXiv:0706.3868.

[5] CDF collaboration, T. Aaltonen et al., Measurement of the masses and widths of the bottom baryons Σb± and Σb∗±, Phys. Rev. D85 (2012) 092011, arXiv:1112.2808. [6] LHCb collaboration, R. Aaij et al., Evidence for the strangeness-changing weak decay

Ξb−→ Λ0 bπ

, Phys. Rev. Lett. 115 (2015) 241801, arXiv:1510.03829.

[7] LHCb collaboration, R. Aaij et al., Observation of excited Λ0

b baryons, Phys. Rev.

Lett. 109 (2012) 172003, arXiv:1205.3452.

[8] LHCb collaboration, R. Aaij et al., Observation of a new Ξb− resonance, Phys. Rev. Lett. 121 (2018) 072002, arXiv:1805.09418.

[9] CMS collaboration, S. Chatrchyan et al., Observation of a new Ξb baryon, Phys. Rev.

Lett. 108 (2012) 252002, arXiv:1204.5955.

[10] LHCb collaboration, R. Aaij et al., Observation of two new Ξb− baryon resonances, Phys. Rev. Lett. 114 (2015) 062004, arXiv:1411.4849.

[11] K. Thakkar, Z. Shah, A. K. Rai, and P. C. Vinodkumar, Excited state mass spectra and Regge trajectories of bottom baryons, Nucl. Phys. A965 (2017) 57, arXiv:1610.00411.

[12] D. Ebert, R. N. Faustov, and V. O. Galkin, Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture, Phys. Rev. D84 (2011) 014025, arXiv:1105.0583.

[13] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

[14] LHCb collaboration, R. Aaij et al., LHCb detector performance, Int. J. Mod. Phys. A30 (2015) 1530022, arXiv:1412.6352.

[15] R. Aaij et al., Performance of the LHCb Vertex Locator, JINST 9 (2014) P09007, arXiv:1405.7808.

[16] R. Arink et al., Performance of the LHCb Outer Tracker, JINST 9 (2014) P01002, arXiv:1311.3893.

[17] LHCb collaboration, R. Aaij et al., Measurements of the Λ0b, Ξb−, and Ωb− baryon masses, Phys. Rev. Lett. 110 (2013) 182001, arXiv:1302.1072.

(10)

[18] LHCb collaboration, R. Aaij et al., Precision measurement of D meson mass differ-ences, JHEP 06 (2013) 065, arXiv:1304.6865.

[19] M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C73 (2013) 2431, arXiv:1211.6759.

[20] R. Aaij et al., The LHCb trigger and its performance in 2011, JINST 8 (2013) P04022, arXiv:1211.3055.

[21] V. V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, JINST 8 (2013) P02013, arXiv:1210.6861.

[22] T. Sj¨ostrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175; T. Sj¨ostrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710.3820.

[23] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.

[24] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.

[25] P. Golonka and Z. Was, PHOTOS Monte Carlo: A precision tool for QED corrections in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.

[26] Geant4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270; Geant4 collaboration, S. Agostinelli et al., Geant4: A simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.

[27] M. De Cian, S. Farry, P. Seyfert, and S. Stahl, Fast neural-net based fake track rejection in the LHCb reconstruction, LHCb-PUB-2017-011.

[28] Particle Data Group, C. Patrignani et al., Review of particle physics, Chin. Phys. C40 (2016) 100001.

[29] B. P. Roe et al., Boosted decision trees as an alternative to artificial neural networks for particle identification, Nucl. Instrum. Meth. A543 (2005) 577.

[30] Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.

[31] W. D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth. A552 (2005) 566, arXiv:physics/0503191.

[32] LHCb collaboration, R. Aaij et al., Measurement of CP observables in B± → D(∗)K±

and B± → D(∗)π± decays, Phys. Lett. B777 (2017) 16, arXiv:1708.06370.

[33] J. D. Jackson, Remarks on the phenomenological analysis of resonances, Il Nuovo Cimento 34 (1964) 1644.

[34] J. M. Blatt and V. F. Weisskopf, Theoretical nuclear physics, Springer, New York, 1952.

(11)

[35] LHCb collaboration, R. Aaij et al., First observation of the decay Bs2∗ (5840)0

B∗+K− and studies of excited B0

s mesons, Phys. Rev. Lett. 110 (2013) 151803,

arXiv:1211.5994.

[36] LHCb collaboration, R. Aaij et al., Observation of five new narrow Ω0

c states decaying

to Ξ+ c K

, Phys. Rev. Lett. 118 (2017) 182001, arXiv:1703.04639.

[37] LHCb collaboration, R. Aaij et al., Measurement of the relative rate of prompt χc0,

χc1 and χc2 production at

s = 7 TeV , JHEP 10 (2013) 115, arXiv:1307.4285. [38] LHCb collaboration, R. Aaij et al., Measurement of the cross-section ratio

σ(χc2)/σ(χc1) for prompt χc production at

s = 7 TeV , Phys. Lett. B714 (2012) 215, arXiv:1202.1080.

[39] LHCb collaboration, R. Aaij et al., Observation of the decays Λ0

b → χc1pK− and

Λ0b → χc2pK−, Phys. Rev. Lett. 119 (2017) 062001, arXiv:1704.07900.

[40] Particle Data Group, M. Tanabashi et al., Review of particle physics, Phys. Rev. D98 (2018) 030001.

[41] LHCb collaboration, R. Aaij et al., Observation of Λ0b → ψ(2S)pK− and Λ0b → J/ψ π+πpKdecays and a measurement of the Λ0

b baryon mass, JHEP 05 (2016)

132, arXiv:1603.06961.

[42] M. Karliner and J. L. Rosner, Prospects for observing the lowest-lying odd-parity Σc

and Σb baryons, Phys. Rev. D92 (2015) 074026, arXiv:1506.01702.

[43] M. Karliner and J. L. Rosner, Scaling of P-wave excitation energies in heavy-quark systems, arXiv:1808.07869.

[44] W. H. Liang, C. W. Xiao, and E. Oset, Baryon states with open beauty in the extended local hidden gauge approach, Phys. Rev. D89 (2014) 054023.

(12)

LHCb collaboration

R. Aaij27, C. Abell´an Beteta44, B. Adeva41, M. Adinolfi48, C.A. Aidala74, Z. Ajaltouni5, S. Akar59, P. Albicocco18, J. Albrecht10, F. Alessio42, M. Alexander53, A. Alfonso Albero40, G. Alkhazov33, P. Alvarez Cartelle55, A.A. Alves Jr41, S. Amato2, S. Amerio23, Y. Amhis7, L. An3, L. Anderlini17, G. Andreassi43, M. Andreotti16, J.E. Andrews60, R.B. Appleby56, F. Archilli27, P. d’Argent12, J. Arnau Romeu6, A. Artamonov39, M. Artuso61, K. Arzymatov37, E. Aslanides6, M. Atzeni44, B. Audurier22, S. Bachmann12, J.J. Back50, S. Baker55,

V. Balagura7,b, W. Baldini16, A. Baranov37, R.J. Barlow56, S. Barsuk7, W. Barter56, F. Baryshnikov70, V. Batozskaya31, B. Batsukh61, V. Battista43, A. Bay43, J. Beddow53, F. Bedeschi24, I. Bediaga1, A. Beiter61, L.J. Bel27, S. Belin22, N. Beliy63, V. Bellee43, N. Belloli20,i, K. Belous39, I. Belyaev34,42, E. Ben-Haim8, G. Bencivenni18, S. Benson27, S. Beranek9, A. Berezhnoy35, R. Bernet44, D. Berninghoff12, E. Bertholet8, A. Bertolin23, C. Betancourt44, F. Betti15,42, M.O. Bettler49, M. van Beuzekom27, Ia. Bezshyiko44, S. Bhasin48, J. Bhom29, S. Bifani47, P. Billoir8, A. Birnkraut10, A. Bizzeti17,u, M. Bjørn57, M.P. Blago42, T. Blake50, F. Blanc43, S. Blusk61, D. Bobulska53, V. Bocci26, O. Boente Garcia41,

T. Boettcher58, A. Bondar38,w, N. Bondar33, S. Borghi56,42, M. Borisyak37, M. Borsato41, F. Bossu7, M. Boubdir9, T.J.V. Bowcock54, C. Bozzi16,42, S. Braun12, M. Brodski42,

J. Brodzicka29, A. Brossa Gonzalo50, D. Brundu22, E. Buchanan48, A. Buonaura44, C. Burr56, A. Bursche22, J. Buytaert42, W. Byczynski42, S. Cadeddu22, H. Cai64, R. Calabrese16,g, R. Calladine47, M. Calvi20,i, M. Calvo Gomez40,m, A. Camboni40,m, P. Campana18, D.H. Campora Perez42, L. Capriotti15, A. Carbone15,e, G. Carboni25, R. Cardinale19,h, A. Cardini22, P. Carniti20,i, L. Carson52, K. Carvalho Akiba2, G. Casse54, L. Cassina20, M. Cattaneo42, G. Cavallero19,h, R. Cenci24,p, D. Chamont7, M.G. Chapman48, M. Charles8, Ph. Charpentier42, G. Chatzikonstantinidis47, M. Chefdeville4, V. Chekalina37, C. Chen3, S. Chen22, S.-G. Chitic42, V. Chobanova41, M. Chrzaszcz42, A. Chubykin33, P. Ciambrone18, X. Cid Vidal41, G. Ciezarek42, P.E.L. Clarke52, M. Clemencic42, H.V. Cliff49, J. Closier42, V. Coco42, J.A.B. Coelho7, J. Cogan6, E. Cogneras5, L. Cojocariu32, P. Collins42, T. Colombo42, A. Comerma-Montells12, A. Contu22, G. Coombs42, S. Coquereau40, G. Corti42, M. Corvo16,g, C.M. Costa Sobral50, B. Couturier42, G.A. Cowan52, D.C. Craik58, A. Crocombe50,

M. Cruz Torres1, R. Currie52, C. D’Ambrosio42, F. Da Cunha Marinho2, C.L. Da Silva75, E. Dall’Occo27, J. Dalseno48, A. Danilina34, A. Davis3, O. De Aguiar Francisco42,

K. De Bruyn42, S. De Capua56, M. De Cian43, J.M. De Miranda1, L. De Paula2,

M. De Serio14,d, P. De Simone18, C.T. Dean53, D. Decamp4, L. Del Buono8, B. Delaney49, H.-P. Dembinski11, M. Demmer10, A. Dendek30, D. Derkach37, O. Deschamps5, F. Desse7, F. Dettori54, B. Dey65, A. Di Canto42, P. Di Nezza18, S. Didenko70, H. Dijkstra42, F. Dordei42, M. Dorigo42,x, A. Dosil Su´arez41, L. Douglas53, A. Dovbnya45, K. Dreimanis54, L. Dufour27, G. Dujany8, P. Durante42, J.M. Durham75, D. Dutta56, R. Dzhelyadin39, M. Dziewiecki12, A. Dziurda29, A. Dzyuba33, S. Easo51, U. Egede55, V. Egorychev34, S. Eidelman38,w,

S. Eisenhardt52, U. Eitschberger10, R. Ekelhof10, L. Eklund53, S. Ely61, A. Ene32, S. Escher9, S. Esen27, T. Evans59, A. Falabella15, N. Farley47, S. Farry54, D. Fazzini20,42,i, L. Federici25, P. Fernandez Declara42, A. Fernandez Prieto41, F. Ferrari15, L. Ferreira Lopes43,

F. Ferreira Rodrigues2, M. Ferro-Luzzi42, S. Filippov36, R.A. Fini14, M. Fiorini16,g, M. Firlej30, C. Fitzpatrick43, T. Fiutowski30, F. Fleuret7,b, M. Fontana22,42, F. Fontanelli19,h, R. Forty42, V. Franco Lima54, M. Frank42, C. Frei42, J. Fu21,q, W. Funk42, C. F¨arber42,

M. F´eo Pereira Rivello Carvalho27, E. Gabriel52, A. Gallas Torreira41, D. Galli15,e, S. Gallorini23, S. Gambetta52, Y. Gan3, M. Gandelman2, P. Gandini21, Y. Gao3, L.M. Garcia Martin73, B. Garcia Plana41, J. Garc´ıa Pardi˜nas44, J. Garra Tico49, L. Garrido40, D. Gascon40, C. Gaspar42, L. Gavardi10, G. Gazzoni5, D. Gerick12, E. Gersabeck56, M. Gersabeck56, T. Gershon50, D. Gerstel6, Ph. Ghez4, S. Gian`ı43, V. Gibson49, O.G. Girard43, L. Giubega32,

(13)

K. Gizdov52, V.V. Gligorov8, D. Golubkov34, A. Golutvin55,70, A. Gomes1,a, I.V. Gorelov35, C. Gotti20,i, E. Govorkova27, J.P. Grabowski12, R. Graciani Diaz40, L.A. Granado Cardoso42, E. Graug´es40, E. Graverini44, G. Graziani17, A. Grecu32, R. Greim27, P. Griffith22, L. Grillo56, L. Gruber42, B.R. Gruberg Cazon57, O. Gr¨unberg67, C. Gu3, E. Gushchin36, Yu. Guz39,42, T. Gys42, C. G¨obel62, T. Hadavizadeh57, C. Hadjivasiliou5, G. Haefeli43, C. Haen42, S.C. Haines49, B. Hamilton60, X. Han12, T.H. Hancock57, S. Hansmann-Menzemer12, N. Harnew57, S.T. Harnew48, T. Harrison54, C. Hasse42, M. Hatch42, J. He63, M. Hecker55, K. Heinicke10, A. Heister10, K. Hennessy54, L. Henry73, E. van Herwijnen42, M. Heß67, A. Hicheur2, R. Hidalgo Charman56, D. Hill57, M. Hilton56, P.H. Hopchev43, W. Hu65, W. Huang63, Z.C. Huard59, W. Hulsbergen27, T. Humair55, M. Hushchyn37, D. Hutchcroft54, D. Hynds27, P. Ibis10, M. Idzik30, P. Ilten47, K. Ivshin33, R. Jacobsson42, J. Jalocha57, E. Jans27, A. Jawahery60, F. Jiang3, M. John57, D. Johnson42, C.R. Jones49, C. Joram42, B. Jost42, N. Jurik57, S. Kandybei45, M. Karacson42, J.M. Kariuki48, S. Karodia53, N. Kazeev37, M. Kecke12, F. Keizer49, M. Kelsey61, M. Kenzie49, T. Ketel28, E. Khairullin37, B. Khanji42, C. Khurewathanakul43, K.E. Kim61, T. Kirn9, S. Klaver18, K. Klimaszewski31, T. Klimkovich11, S. Koliiev46, M. Kolpin12, R. Kopecna12, P. Koppenburg27, I. Kostiuk27, S. Kotriakhova33, M. Kozeiha5, L. Kravchuk36, M. Kreps50, F. Kress55, P. Krokovny38,w, W. Krupa30, W. Krzemien31, W. Kucewicz29,l, M. Kucharczyk29, V. Kudryavtsev38,w, A.K. Kuonen43, T. Kvaratskheliya34,42, D. Lacarrere42, G. Lafferty56, A. Lai22, D. Lancierini44, G. Lanfranchi18, C. Langenbruch9, T. Latham50, C. Lazzeroni47, R. Le Gac6, A. Leflat35, J. Lefran¸cois7,

R. Lef`evre5, F. Lemaitre42, O. Leroy6, T. Lesiak29, B. Leverington12, P.-R. Li63, T. Li3, Z. Li61, X. Liang61, T. Likhomanenko69, R. Lindner42, F. Lionetto44, V. Lisovskyi7, X. Liu3, D. Loh50, A. Loi22, I. Longstaff53, J.H. Lopes2, G.H. Lovell49, D. Lucchesi23,o, M. Lucio Martinez41, A. Lupato23, E. Luppi16,g, O. Lupton42, A. Lusiani24, X. Lyu63, F. Machefert7, F. Maciuc32, V. Macko43, P. Mackowiak10, S. Maddrell-Mander48, O. Maev33,42, K. Maguire56,

D. Maisuzenko33, M.W. Majewski30, S. Malde57, B. Malecki29, A. Malinin69, T. Maltsev38,w, G. Manca22,f, G. Mancinelli6, D. Marangotto21,q, J. Maratas5,v, J.F. Marchand4, U. Marconi15, C. Marin Benito7, M. Marinangeli43, P. Marino43, J. Marks12, P.J. Marshall54, G. Martellotti26, M. Martin6, M. Martinelli42, D. Martinez Santos41, F. Martinez Vidal73, A. Massafferri1, M. Materok9, R. Matev42, A. Mathad50, Z. Mathe42, C. Matteuzzi20, A. Mauri44, E. Maurice7,b, B. Maurin43, A. Mazurov47, M. McCann55,42, A. McNab56, R. McNulty13, J.V. Mead54, B. Meadows59, C. Meaux6, F. Meier10, N. Meinert67, D. Melnychuk31, M. Merk27, A. Merli21,q, E. Michielin23, D.A. Milanes66, E. Millard50, M.-N. Minard4, L. Minzoni16,g, D.S. Mitzel12, A. Mogini8, J. Molina Rodriguez1,y, T. Momb¨acher10, I.A. Monroy66, S. Monteil5,

M. Morandin23, G. Morello18, M.J. Morello24,t, O. Morgunova69, J. Moron30, A.B. Morris6, R. Mountain61, F. Muheim52, M. Mulder27, C.H. Murphy57, D. Murray56, A. M¨odden10, D. M¨uller42, J. M¨uller10, K. M¨uller44, V. M¨uller10, P. Naik48, T. Nakada43, R. Nandakumar51, A. Nandi57, T. Nanut43, I. Nasteva2, M. Needham52, N. Neri21, S. Neubert12, N. Neufeld42, M. Neuner12, R. Newcombe55, T.D. Nguyen43, C. Nguyen-Mau43,n, S. Nieswand9, R. Niet10, N. Nikitin35, A. Nogay69, N.S. Nolte42, D.P. O’Hanlon15, A. Oblakowska-Mucha30,

V. Obraztsov39, S. Ogilvy18, R. Oldeman22,f, C.J.G. Onderwater68, A. Ossowska29,

J.M. Otalora Goicochea2, P. Owen44, A. Oyanguren73, P.R. Pais43, T. Pajero24,t, A. Palano14, M. Palutan18,42, G. Panshin72, A. Papanestis51, M. Pappagallo52, L.L. Pappalardo16,g,

W. Parker60, C. Parkes56, G. Passaleva17,42, A. Pastore14, M. Patel55, C. Patrignani15,e, A. Pearce42, A. Pellegrino27, G. Penso26, M. Pepe Altarelli42, S. Perazzini42, D. Pereima34, P. Perret5, L. Pescatore43, K. Petridis48, A. Petrolini19,h, A. Petrov69, S. Petrucci52,

M. Petruzzo21,q, B. Pietrzyk4, G. Pietrzyk43, M. Pikies29, M. Pili57, D. Pinci26, J. Pinzino42, F. Pisani42, A. Piucci12, V. Placinta32, S. Playfer52, J. Plews47, M. Plo Casasus41, F. Polci8, M. Poli Lener18, A. Poluektov50, N. Polukhina70,c, I. Polyakov61, E. Polycarpo2, G.J. Pomery48, S. Ponce42, A. Popov39, D. Popov47,11, S. Poslavskii39, C. Potterat2, E. Price48,

(14)

J. Prisciandaro41, C. Prouve48, V. Pugatch46, A. Puig Navarro44, H. Pullen57, G. Punzi24,p, W. Qian63, J. Qin63, R. Quagliani8, B. Quintana5, B. Rachwal30, J.H. Rademacker48, M. Rama24, M. Ramos Pernas41, M.S. Rangel2, F. Ratnikov37,ab, G. Raven28,

M. Ravonel Salzgeber42, M. Reboud4, F. Redi43, S. Reichert10, A.C. dos Reis1, F. Reiss8, C. Remon Alepuz73, Z. Ren3, V. Renaudin7, S. Ricciardi51, S. Richards48, K. Rinnert54, P. Robbe7, A. Robert8, A.B. Rodrigues43, E. Rodrigues59, J.A. Rodriguez Lopez66, M. Roehrken42, S. Roiser42, A. Rollings57, V. Romanovskiy39, A. Romero Vidal41,

M. Rotondo18, M.S. Rudolph61, T. Ruf42, J. Ruiz Vidal73, J.J. Saborido Silva41, N. Sagidova33, B. Saitta22,f, V. Salustino Guimaraes62, C. Sanchez Gras27, C. Sanchez Mayordomo73,

B. Sanmartin Sedes41, R. Santacesaria26, C. Santamarina Rios41, M. Santimaria18, E. Santovetti25,j, G. Sarpis56, A. Sarti18,k, C. Satriano26,s, A. Satta25, M. Saur63,

D. Savrina34,35, S. Schael9, M. Schellenberg10, M. Schiller53, H. Schindler42, M. Schmelling11, T. Schmelzer10, B. Schmidt42, O. Schneider43, A. Schopper42, H.F. Schreiner59, M. Schubiger43, M.H. Schune7, R. Schwemmer42, B. Sciascia18, A. Sciubba26,k, A. Semennikov34,

E.S. Sepulveda8, A. Sergi47,42, N. Serra44, J. Serrano6, L. Sestini23, A. Seuthe10, P. Seyfert42, M. Shapkin39, Y. Shcheglov33,†, T. Shears54, L. Shekhtman38,w, V. Shevchenko69, E. Shmanin70, B.G. Siddi16, R. Silva Coutinho44, L. Silva de Oliveira2, G. Simi23,o, S. Simone14,d, I. Skiba16, N. Skidmore12, T. Skwarnicki61, M.W. Slater47, J.G. Smeaton49, E. Smith9, I.T. Smith52, M. Smith55, M. Soares15, l. Soares Lavra1, M.D. Sokoloff59, F.J.P. Soler53, B. Souza De Paula2, B. Spaan10, E. Spadaro Norella21,q, P. Spradlin53, F. Stagni42, M. Stahl12, S. Stahl42,

P. Stefko43, S. Stefkova55, O. Steinkamp44, S. Stemmle12, O. Stenyakin39, M. Stepanova33, H. Stevens10, A. Stocchi7, S. Stone61, B. Storaci44, S. Stracka24, M.E. Stramaglia43,

M. Straticiuc32, U. Straumann44, S. Strokov72, J. Sun3, L. Sun64, K. Swientek30, T. Szumlak30, M. Szymanski63, S. T’Jampens4, Z. Tang3, A. Tayduganov6, T. Tekampe10, G. Tellarini16, F. Teubert42, E. Thomas42, J. van Tilburg27, M.J. Tilley55, V. Tisserand5, M. Tobin30, S. Tolk42, L. Tomassetti16,g, D. Tonelli24, D.Y. Tou8, R. Tourinho Jadallah Aoude1, E. Tournefier4, M. Traill53, M.T. Tran43, A. Trisovic49, A. Tsaregorodtsev6, G. Tuci24,p, A. Tully49, N. Tuning27,42, A. Ukleja31, A. Usachov7, A. Ustyuzhanin37, U. Uwer12, A. Vagner72, V. Vagnoni15, A. Valassi42, S. Valat42, G. Valenti15, R. Vazquez Gomez42, P. Vazquez Regueiro41, S. Vecchi16, M. van Veghel27, J.J. Velthuis48, M. Veltri17,r, G. Veneziano57, A. Venkateswaran61, T.A. Verlage9, M. Vernet5, M. Veronesi27,

N.V. Veronika13, M. Vesterinen57, J.V. Viana Barbosa42, D. Vieira63, M. Vieites Diaz41, H. Viemann67, X. Vilasis-Cardona40,m, A. Vitkovskiy27, M. Vitti49, V. Volkov35, A. Vollhardt44, D. Vom Bruch8, B. Voneki42, A. Vorobyev33, V. Vorobyev38,w, J.A. de Vries27,

C. V´azquez Sierra27, R. Waldi67, J. Walsh24, J. Wang61, M. Wang3, Y. Wang65, Z. Wang44, D.R. Ward49, H.M. Wark54, N.K. Watson47, D. Websdale55, A. Weiden44, C. Weisser58,

M. Whitehead9, J. Wicht50, G. Wilkinson57, M. Wilkinson61, I. Williams49, M.R.J. Williams56, M. Williams58, T. Williams47, F.F. Wilson51,42, J. Wimberley60, M. Winn7, J. Wishahi10, W. Wislicki31, M. Witek29, G. Wormser7, S.A. Wotton49, K. Wyllie42, D. Xiao65, Y. Xie65, A. Xu3, M. Xu65, Q. Xu63, Z. Xu3, Z. Xu4, Z. Yang3, Z. Yang60, Y. Yao61, L.E. Yeomans54, H. Yin65, J. Yu65,aa, X. Yuan61, O. Yushchenko39, K.A. Zarebski47, M. Zavertyaev11,c, D. Zhang65, L. Zhang3, W.C. Zhang3,z, Y. Zhang7, A. Zhelezov12, Y. Zheng63, X. Zhu3, V. Zhukov9,35, J.B. Zonneveld52, S. Zucchelli15.

1Centro Brasileiro de Pesquisas F´ısicas (CBPF), Rio de Janeiro, Brazil

2Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

3Center for High Energy Physics, Tsinghua University, Beijing, China

4Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IN2P3-LAPP, Annecy, France

5Clermont Universit´e, Universit´e Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France

6Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

(15)

8LPNHE, Sorbonne Universit´e, Paris Diderot Sorbonne Paris Cit´e, CNRS/IN2P3, Paris, France

9I. Physikalisches Institut, RWTH Aachen University, Aachen, Germany

10Fakult¨at Physik, Technische Universit¨at Dortmund, Dortmund, Germany

11Max-Planck-Institut f¨ur Kernphysik (MPIK), Heidelberg, Germany

12Physikalisches Institut, Ruprecht-Karls-Universit¨at Heidelberg, Heidelberg, Germany

13School of Physics, University College Dublin, Dublin, Ireland

14INFN Sezione di Bari, Bari, Italy

15INFN Sezione di Bologna, Bologna, Italy

16INFN Sezione di Ferrara, Ferrara, Italy

17INFN Sezione di Firenze, Firenze, Italy

18INFN Laboratori Nazionali di Frascati, Frascati, Italy

19INFN Sezione di Genova, Genova, Italy

20INFN Sezione di Milano-Bicocca, Milano, Italy

21INFN Sezione di Milano, Milano, Italy

22INFN Sezione di Cagliari, Monserrato, Italy

23INFN Sezione di Padova, Padova, Italy

24INFN Sezione di Pisa, Pisa, Italy

25INFN Sezione di Roma Tor Vergata, Roma, Italy

26INFN Sezione di Roma La Sapienza, Roma, Italy

27Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands

28Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam,

Netherlands

29Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Krak´ow, Poland

30AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science,

Krak´ow, Poland

31National Center for Nuclear Research (NCBJ), Warsaw, Poland

32Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania

33Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia

34Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia

35Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia

36Institute for Nuclear Research of the Russian Academy of Sciences (INR RAS), Moscow, Russia

37Yandex School of Data Analysis, Moscow, Russia

38Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia

39Institute for High Energy Physics (IHEP), Protvino, Russia

40ICCUB, Universitat de Barcelona, Barcelona, Spain

41Instituto Galego de F´ısica de Altas Enerx´ıas (IGFAE), Universidade de Santiago de Compostela,

Santiago de Compostela, Spain

42European Organization for Nuclear Research (CERN), Geneva, Switzerland

43Institute of Physics, Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Lausanne, Switzerland

44Physik-Institut, Universit¨at Z¨urich, Z¨urich, Switzerland

45NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine

46Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine

47University of Birmingham, Birmingham, United Kingdom

48H.H. Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom

49Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom

50Department of Physics, University of Warwick, Coventry, United Kingdom

51STFC Rutherford Appleton Laboratory, Didcot, United Kingdom

52School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

53School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

54Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

55Imperial College London, London, United Kingdom

56School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

57Department of Physics, University of Oxford, Oxford, United Kingdom

58Massachusetts Institute of Technology, Cambridge, MA, United States

59University of Cincinnati, Cincinnati, OH, United States

(16)

61Syracuse University, Syracuse, NY, United States

62Pontif´ıcia Universidade Cat´olica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to 2

63University of Chinese Academy of Sciences, Beijing, China, associated to3

64School of Physics and Technology, Wuhan University, Wuhan, China, associated to3

65Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to3

66Departamento de Fisica , Universidad Nacional de Colombia, Bogota, Colombia, associated to8

67Institut f¨ur Physik, Universit¨at Rostock, Rostock, Germany, associated to 12

68Van Swinderen Institute, University of Groningen, Groningen, Netherlands, associated to27

69National Research Centre Kurchatov Institute, Moscow, Russia, associated to34

70National University of Science and Technology ”MISIS”, Moscow, Russia, associated to 34

71National Research University Higher School of Economics, Moscow, Russia, Moscow, Russia

72National Research Tomsk Polytechnic University, Tomsk, Russia, associated to 34

73Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain,

associated to 40

74University of Michigan, Ann Arbor, United States, associated to 61

75Los Alamos National Laboratory (LANL), Los Alamos, United States, associated to 61

aUniversidade Federal do Triˆangulo Mineiro (UFTM), Uberaba-MG, Brazil

bLaboratoire Leprince-Ringuet, Palaiseau, France

cP.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia

dUniversit`a di Bari, Bari, Italy

eUniversit`a di Bologna, Bologna, Italy

fUniversit`a di Cagliari, Cagliari, Italy

gUniversit`a di Ferrara, Ferrara, Italy

hUniversit`a di Genova, Genova, Italy

iUniversit`a di Milano Bicocca, Milano, Italy

jUniversit`a di Roma Tor Vergata, Roma, Italy

kUniversit`a di Roma La Sapienza, Roma, Italy

lAGH - University of Science and Technology, Faculty of Computer Science, Electronics and

Telecommunications, Krak´ow, Poland

mLIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain

nHanoi University of Science, Hanoi, Vietnam

oUniversit`a di Padova, Padova, Italy

pUniversit`a di Pisa, Pisa, Italy

qUniversit`a degli Studi di Milano, Milano, Italy

rUniversit`a di Urbino, Urbino, Italy

sUniversit`a della Basilicata, Potenza, Italy

tScuola Normale Superiore, Pisa, Italy

uUniversit`a di Modena e Reggio Emilia, Modena, Italy

vMSU - Iligan Institute of Technology (MSU-IIT), Iligan, Philippines

wNovosibirsk State University, Novosibirsk, Russia

xSezione INFN di Trieste, Trieste, Italy

yEscuela Agr´ıcola Panamericana, San Antonio de Oriente, Honduras

zSchool of Physics and Information Technology, Shaanxi Normal University (SNNU), Xi’an, China

aaPhysics and Micro Electronic College, Hunan University, Changsha City, China

abNational Research University Higher School of Economics, Moscow, Russia

Figure

Figure 1: Mass distribution for the selected Λ 0 b → Λ + c π − candidates. The points show experi- experi-mental data.
Table 1: Summary of the results of the fits to the Q ≡ m(Λ 0 b π ± ) − m(Λ 0 b ) − m(π ± ) mass spectra.
Figure 2: Mass distribution for selected Λ 0 b π ± candidates. The points show experimental data.
Table 2: Summary of the systematic uncertainties on the measured masses and widths. Q 0 and Γ are the mean and the width of the Breit–Wigner function

Références

Documents relatifs

Dynamic LCI (DLCI) Life cycle inventory (LCI) that is calculated from supply and value chains where dynamic of systems or temporal differentiation is considered, resulting in

Then we concatenate the pose map, the predicted object normal map, the texture code map z, the semantic label map, and the instance boundary map together, and feed them to the

The conventional optical flow constraint relation ( 1 ) is in fact defined as the differential of a function known only on spatial and temporal discrete point positions (related to

L’analyse et la conception d’un système de chauffage par induction des matériaux composites nécessitent une modélisation 3D des phénomènes électromagnétiques et thermiques

For this reason, two different ceria-based catalyst morphologies have been investigated in this work, for the soot oxidation reaction: first, a ceria catalyst was prepared by solution

aureoviride applied to sandy Entisol on the initial melon plant growth and to assess the changes in chemical, microbiological, and enzyme activities regarding

Fast (1978), constate que l’aération hypolimnètique crée un habitat convenable pour les poissons des eaux froides dans différents lacs où aucune aération au

Four criteria are used in evaluating the new approach: (i) power level of the noise, (ii) orthogonality of the sampled modeshapes, (iii) number of data snapshots,