• Aucun résultat trouvé

Climate change and the evolutionary challenge of Mediterranean biodiversity

N/A
N/A
Protected

Academic year: 2021

Partager "Climate change and the evolutionary challenge of Mediterranean biodiversity"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-02737804

https://hal.inrae.fr/hal-02737804

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Climate change and the evolutionary challenge of Mediterranean biodiversity

Bruno Fady, Alberte Bondeau, Marc Bally, Wolfgang Cramer, Thierry Gauquelin, Jean-Pierre Féral, Anne-Christine Monnet, Séverine Thomas,

France van Wambeke, Anne Chenuil, et al.

To cite this version:

Bruno Fady, Alberte Bondeau, Marc Bally, Wolfgang Cramer, Thierry Gauquelin, et al.. Climate change and the evolutionary challenge of Mediterranean biodiversity. 2. Joint Congress on Evolution-ary Biology (EVOLUTION 2018), Aug 2018, Montpellier, France. 2018. �hal-02737804�

(2)

Climate change and the evolutionary

challenge of Mediterranean biodiversity

B. Fady, M. Bally, A. Bondeau, F. Carlotti, A. Chenuil,

W. Cramer, J-P. Féral, T. Gauquelin, A-C. Monnet,

S. Thomas, F. Van Wambeke, D. Aurelle

bruno.fady@inra.fr

F. Zuberer / CNRS C. Pujos / ONF

(3)

Climate change and the evolutionary

challenge of Mediterranean biodiversity

Ecological gradients and genetic adaptation to climate

change in the Mediterranean

(4)

3 / 14

The Mediterranean paradox: High (taxonomic, genetic, functional) biodiversity despite long-term human pressure

✔ Land: 1.8 % of earth’s land mass; 20 % of flowering plants and ferns;

5,500 endemic plant species.

✔ Sea: 0.8% of the surface of the global ocean; 4 to 18% of the world

biodiversity

✔ Birth of agriculture: 10-12,000 years ago

✔ Total current population: 500 millions + ~270 millions tourists annually

www.iucn.org Current climate change pattern: ~+0.2°C / decade 2nd half 20th century, increased summer drought

(Coll et al., PloS-ONE 2010; Médail & Quézel, AMBG 1997;

(5)

4 / 14

Climate change in the Mediterranean: unprecedented biome composition change is expected

(Guiot & Cramer, Science 2016)

Left:

Percentage of land that underwent a biome composition change during the Holocene based on pollen archives compared to present day composition. Right: Biome composition change that can be expected under different climate change scenarios

(6)

5 / 14 Mediterranean terrestrial forests display one of the lowest

velocity of climate change worldwide.

=> a wealth of highly diverse landscapes and micro-habitats

(7)

6 / 14

Strong temperature

stratification of shallow sea water during the summer in the north-western

Mediterranean

http://t-mednet.org/

(8)

7 / 14

Looking for differentiation and signatures of selection in

Mediterranean marine and terrestrial forests along ecological gradients

→ Mediterranean ecological gradients = strong potential for local adaptation (temperature, light, drought, etc)

(9)

8 / 14

Similarities between Mediterranean marine and terrestrial forests:

- sessile engineer species: long-lived

anthozoans or algae, conifers and broadleaves - “pulse like” recruitment;

- propagule dispersal possible across entire gradient;

- range shift limitations under climate change: * marine: no possibility of northward

expansion;

* terrestrial: no possibility of upward expansion on low mountains;

- mortality linked to heat wave events (T° + pathogens).

(Cailleret et al., GCB 2016; Garrabou et al., SciRep 2017; Ledoux et al., MolEcol 2010; Linares et al., Ecology 2007; Nathan & Muller-Landau, TREE 2000)

(10)

9 / 14

Mediterranean marine forests : gorgonians - evolution along depth / temperature gradient - thermotolerance differences (shallow > deep) - variable differentiation between depths

(Crisci et al., SciRep 2017; Haguenauer et al., JEMBE 2013; Pivotto et al., RSOS 2015)

-> determinism / heritability of fitness differences?

Cumulative necrosis risk response to experimental thermal stress (27°C) time (d) 40 m depth colonies 20 m depth

colonies Eunicella cavolini

(11)

10 / 14

Mediterranean marine forests :

- genomic (RAD-Seq) structure along depth gradients (8-40 m) in Corallium rubrum;

- significant differentiation among sites (++) and different depths (+);

- Higher differentiation between shallow than between deep populations.

(Pratlong et al., BioRXiv2018)

=> Barriers to gene flow in shallow populations / cryptic species? F

FSTST

Outlier loci, see poster P-0585, S. 66 (Aurelle et al.) on Sunday

(12)

11 / 14

Evidence of signature of selection for drought and frost along steep ecological gradients in the conifer tree Abies alba in southern France

(13)

12 / 14

Modeling the rate of adaptive evolution of spring leaf unfolding after 5 generations along a steep altitudinal gradient (Fagus

sylvatica)

(Oddou-Muratorio & Davi, EvolApplic 2014)

(A): Neutral

(B): adaptive evolution

(C): adaptive evolution without mortality

8 de gr ee d ay s = 5 d ay s

(14)

13 / 14

Conclusion (1) - implications for research:

Rapid local adaptation at short spatial scale is possible along steep ecological gradients.

Experimental design for detecting local adaptation: genome scan

replicates sensu Lotterhos & Whitlock (MolEcol 2015) and reciprocal transplants.

See project GenTree:

http://www.gentree-h2020.eu/

Mediterranean = steep ecological gradients = ideal biome for research on signatures of selection and local adaptation!

(15)

14 / 14

Conclusion (2) – Evolutionary application for in situ conservation:

Conservation planning needs to focus on areas where

there are

steep ecological gradients

which can foster natural selection and adaptation (e.g.

coastal depth gradients; mountain sides).

See session S76. Evolutionary management of wild populations Wed, 22 August, starting 09:25 (Rabelais room)

Références

Documents relatifs

The interplay between the mean flow, mesoscale stirring and bathymetry gen- erates complex and peculiar horizontal transport patterns in the Mediterranean that contributes to

Identification of HEDGE and BED priority sites independently of Aïchi targets: HEDGE and BED hotspots were defined as areas where HEDGE and BED, respectively, contained at least

Of course, if moving robot e is not allowed, then the adversary can schedule robot c in F 2 to reach F 10, and then, it schedules all robots, where only robot b moves

2017), we (1) identified the sites that were most affected by climate or land cover change, (2) evaluated the protection coverage of the reported Mediterranean wetlands and how

Cette méthode est applicable aux problèmes d’optimisation globale, le principe de cette méthode est de partir d’un minimiseur local de f , puis on construit une fonction auxiliaire

The objective of Agroguayule project (co-financing ADEME, Call for projects GRAINE) is to select lines that combine good adaptation to the Mediterranean climate (dry and

L’inventaire archéologique des bassins du Loup et de La Cagne a été réalisé par Laurence Lautier dans le cadre d’une thèse de Doctorat actuellement en cours 4 , pour le

Parmi eux, les modèles auto-régressifs à régime markovien (swit hing Markov AR model) sont les plus populaires.. Leur