• Aucun résultat trouvé

Discrete Splittings of the Necklace

N/A
N/A
Protected

Academic year: 2022

Partager "Discrete Splittings of the Necklace"

Copied!
15
0
0

Texte intégral

(1)

Frédéri Meunier

Deember 1,2007

Abstrat

ThispaperdealswithdiretproofsandombinatorialproofsofthefamousNeklae

theoremofAlon,GoldbergandWest. Thenewresultsareadiretprooffortheaseof

twothievesandthreetypesofbeads,andaneientonstrutiveproofforthegeneral

asewithtwothieves. Thislastproof usesatheoremofKyFanwhihisaversionof

Tuker'slemmaonerningubialomplexesinsteadofsimpliialomplexes.

KeyWords: onstrutiveproof;ubialomplex;splittingneklaes.

1 Introdution

A lassialappliation oftheBorsuk-Ulamtheoremis theSplitting Neklaetheorem (see

the book of Matou²ek [10℄). Provedrst by Goldberg andWest in 1985 [9℄, this theorem

got asimplerproof in 1986,foundbyAlon andWest andusing theBorsuk-Ulamtheorem

[4℄.

Twothieveshavestolenapreiousneklae,whihhas

n

beads. These beads belong to

t

dierenttypes. Assume thatthereisanevennumberofbeadsofeahtype,say

2a i

beads

of type

i

, for eah

i ∈ {1, 2, . . . , t}

, where

a i

is a nonzero integer. Remark that we have

2 P t

i=1 a i = n

.

Thebeads are xed onan openhainmade of gold. An exampleisgivenin Figure 1.

Thedierenttypesareenodedbythenumbers1,2,3.

Aswedonotknowtheexatvalueofeahtypeofbeads,afairdivisionoftheneklae

onsistsofgivingthesamenumberofbeadsofeahtypetoeahthief. Thenumberofbeads

of eah type is even, hene suh adivision is alwayspossible: utthe hain at the

n − 1

possiblepositions. But thehain is made ofgold! It isa shamethat wedamageit. Isn't

it possibletodo thedivision withlessuts? Theansweris yes, asshownby thefollowing

theorem provedbyGoldbergandWest:

Theorem 1 Afairdivisionof theneklaewith

t

typesofbeads betweentwothievesanbe

done with nomorethan

t

uts.

In 1987, Alon proved the following generalization, for aneklaehaving

qa i

beads for

eahtype

i

,

a i

integer,using ageneralizationoftheBorsuk-Ulamtheorem [1℄:

Theorem 2 A fair division of the neklae with

t

types of beads between

q

thieves an be

done with nomorethan

t(q − 1)

uts.

LVMT,EoleNationaledesPontsetChaussées,6-8avenueBlaisePasal,CitéDesartesChamps-sur-

Marne,77455Marne-la-Valléeedex2,Frane. E-mail:frederi.meunierenp.fr

(2)

Figure1: Anopenneklae,with12beads,of3dierenttypes,tobedividedbetweenAlie

and Bob.

2 1 2 1 3 1 3 1 3 2 3 2

.

.

.

.

.

.

.

.

. .

. . . . . . . . .

.

.

.

.

.

.

.

.

N

^ ?

Alie Bob Alie Bob

Figure2: Afairdivision betweenAlieandBob.

For

q = 2

,thislasttheoremoinideswithTheorem1. Furthermore,thisboundistight, evenwhen

a 1 = a 2 = . . . = a t = 1

: onsidertheneklaeforwhihallthebeadsoftherst

typeome rst,then allbeads oftheseond type,thenallbeads ofthethird type,andso

on.

Exept for partiular ases, all known proofs of this theorem are topologial and use

ontinuous tools. Setion 2is devoted to diret and non-topologial proofs for partiular

ases ofthese theorems: oneonthem isthe rstproof ofthis typeforthe ase

q = 2

and

t = 3

.

In Setion 3, we give apurely ombinatorial 1

and onstrutive proof for the omplete

ase

q = 2

(althoughthetopologialinspirationremainsnotable).

It uses a ubial version of Tuker's lemma found by Ky Fan (Theorem 3), involving

ubial omplexes instead of simpliial omplexes. We give a onstrutive proof of this

theorem (suh aproof wasnot known before thepresent paper; nevertheless, ourproof is

inspiredbytheonstrutiveproofgivenbyPresottandSuforaombinatorialgeneralization

of Tuker'slemmafound byKyFan, [13℄)and showthat it suitsto theneklaeproblem.

It givesaneientalgorithmforthedivisionoftheneklaebetweentwothieves: ontrary

to the known algorithm, our result needs no approximation or rounding method and no

arbitrarilynetriangulationoftheross-polytope. Furthermore,the

d

-ubesofourubial

omplexhaveasimpleinterpretation: eah

d

-ubeorrespondstothehoieof

d

beads. We

will also see that our method gives also an almost-fair division of the neklae between

two thieves whenthe numberof beads in any typeis not neessarilyeven(2-splittings in

theterminologyofAlon,Moshkovitzand Safra[3℄).

2 Diret proofs

2.1 A diret proof for

t ≤ 2

and any

q

This proofwasrstgivenin thepaperbyEpping,HohstättlerandOertel[7℄. This paper

deals with dierent aspets of a paint shop problem: one of the ases orresponds to the

Neklae theorem presented as aonjeture (Conjeture 10) by the authors who did not

1

AordingtoZiegler[15℄,a ombinatorialproofinatopologialontextisaproof usingno simpliial

approximation,nohomology,noontinuousmap.

(3)

theneklae,see [11℄.

If

t = 1

,i.e.,ifthebeadsareonlyof onetype,thesolutionisstraightforward: splitthe neklaein

q

partsofthesamesize,whihneeds

q − 1

uts(andhasomplexity

O(q)

).

If

t = 2

: the proofworksby indution on

q

. For

q = 1

, thereis nothingto prove. Let

usnowsupposethat

q ≥ 2

. We(virtually)splittheneklaeinto

q

disjointsub-neklaesof

a 1 + a 2

onseutivebeads;theneklaeisopen andhorizontal;thebeadsgetthenumbers 1to

n

,from lefttoright.

If oneofthese

q

sub-neklaesontains

a 1

beads of type 1and

a 2

beads of type2, we

removethissub-neklae,andgiveitto oneofthethieves,andbyindution,weknowthat

thereisafairsplittingoftheremainingin

2(q −2)

uts;alltogether,thisgives

2 + 2(q −2) = 2(q − 1)

uts.

Hene, we an assume that there is no suh sub-neklae among the

q

sub-neklaes.

Thus, thereisatleastonesub-neklaewhihontainsstritlymorethan

a 1

beadsoftype

1,andanotherwhihhasstritlylessthan

a 1

beadsoftype1. Let'salltherstsub-neklae

M +

andtheseond one

M

.

Ifweslideawindowofsize

a 1 + a 2

overtheneklae,startingat

M

untilwereah

M +

using movesofexatlyonebead,thewindowwillontain

a 1

beadsof type1at leastone.

The

a 1 + a 2

beadsofthewindowanbegiventooneofthethieves,andthenbyindution,

asbefore,

2 + 2(q − 2) = 2(q − 1)

utsaresuient.

The time omplexity an be omputed as follows: eah bead reeives the number of

beadsofeahofthetwotypespreedingitontheneklae(thebeaditselfinluded),whih

anbedonein

O(n)

operations: so,whenweonsiderasub-neklae,weknowimmediately howmanybeadsofeahtypeareinthissub-neklae;adihotomyallowsustondasub-

neklaehaving

a 1

beadsoftype1and

a 2

beadsoftype2in

O(log n)

. Thetotalomplexity

is thus:

O(n + q log n)

.

2.2 A diret proof for the ase

a 1 = a 2 = . . . = a t = 1

, any

t

and any

q

Weonsider the beads oneafter theother; from left to right. Wealwayshavea urrent

thief. Whenonsideringthe

k

thbead,wehekiftheurrentthiefhasabeadofthistype

ornot.

Ifhedoes: wehangetheurrentthief andtakeathiefnothavingabeadof thistype,

wegivethebeadtothisnewurrentthief andgotothenextbead.

Ifhedoesnot: wegivethebeadto theurrentthief andgotothenextbead.

Thisproedureensuresadivisionin atmost

t(q − 1)

uts: indeed, weneverhangethe

urrent thief when wemeet the rst bead of a given type. A hange of the urrentthief

is preisely aut ofthe neklae. Thenumberof utsis thus less thanorequalto

n

, the

number of all beads, minus

t

, the number of rst meetings of a type of beads: in total:

n − t = qt − t = t(q − 1)

.

Moreover,thisalgorithmisgreedyandhasomplexity

O(n)

.

2.3 A diret proof for

t = 3

and

q = 2

2.3.1 Main steps

The neklae is identied with the interval

]0, n[⊂ R

. The beads are numbered with the

integers

1, 2, . . . , n

,fromlefttoright. The

k

thbeadoupiesuniformlytheinterval

]k−1, k[

.

For

S ⊆]0, n[

, wedenote by

φ i (S)

thequantity ofbeads oftype

i

in positions inluded

in

S

. Morepreisely,wedenote by

1 i (u)

themappingwhihindiates ifthereis abeadof

(4)

type

i

at point

u

of

]0, n[

:

1 i (u) =

1

ifthe

⌈u⌉

thbeadisoftype

i 0

ifnot.

Wehavethen

φ i (S) :=

Z

S

1 i (u)du.

If there is a window of

n/2

beads induing a fair division, there is nothing to prove.

Thus, we anassumethat there is no

x

suh that

φ i (]x, x + n/2[) = a i

for all

i = 1, 2, 3

.

Moreover,weanalsoassumethat

φ 1 (]0, n/2[) > a 1

. Thesetwoassumptionsarealledthe starting assumptions.

First, we unite the types 2 and 3 in a single type, alled type 2'. Hene, we dene

φ 2 := φ 2 + φ 3

.

Then,webuildagraph

G

,whosevertiesaretriples

(c 1 , c 2 , c 3 )

,suhthat

• c 1

,

c 2

and

c 3

areintegers,

• 0 ≤ c 1 ≤ c 2 ≤ c 3 ≤ n

,

• φ 1 (]0, c 1 [∪]c 2 , c 3 [) = a 1

and

φ 2 (]0, c 1 [∪]c 2 , c 3 [) = a 2 + a 3

.

Distint triples

(c 1 , c 2 , c 3 )

and

(d 1 , d 2 , d 3 )

are neighbors in

G

if

|c i − d i | ≤ 1

for all

i = 1, 2, 3

.

Vertiesof

G

orrespondthusto utsofthe neklaegivingthesamenumberof beads

to eah thief,and dividingfairly thebeads oftype1. Withoutlossofgenerality,wedeide

that Aliegetsthepart

]0, c 1 [∪]c 2 , c 3 [

andBob theremaining.

Remarkthatthestartingassumptionimpliesthatthereisnovertexoftheform

(0, c 2 , n)

.

Inthenextparagraph,thefollowinglemmaisproved:

Lemma 2.1 Thefollowing holdsunder thestarting assumptions:

(i) Theverties

(c 1 , c 2 , c 3 )

of odddegree haveeither

c 1 = 0

or

c 3 = n

.

(ii) Thenumberofvertiesofodddegreesuhthat

c 1 = 0

idoddandequalsthe numberof

vertiesofodd degreesuhthat

c 3 = n

.

Theendoftheproofisthenstraightforward. Wesplitthesetofvertiesofodddegrees

of

G

into twodisjoint subsets

A

and

B

:

A

is the set of vertiesof odddegrees suh that

φ 3 (]0, c 1 [∪]c 2 , c 3 [) < a 3

and

B

thesetofvertiesofodddegreessuhthat

φ 3 (]0, c 1 [∪]c 2 , c 3 [) >

a 3

(aording tothestartingassumptions,there isnovertex

(c 1 , c 2 , c 3 )

of odddegreesuh

that

φ 3 (]0, c 1 [∪]c 2 , c 3 [) = a 3

). Hene

|A| = |B|

and this number isodd. This impliesthat

there isa pathin

G

that links a vertex in

A

to avertexin

B

.

φ 1

and

φ 2 = φ 2 + φ 3

are

onstanton

G

. Moreover,thevalueof

φ 3

fortwoadjaentvertiesdiersbyat mostone.

Hene,weneessarilyhaveavertexonthis pathsuhthat

φ 1 = a 1

,

φ 2 = a 2

and

φ 3 = a 3

.

2.3.2 Proof ofLemma2.1 (

t = 3

and

q = 2

)

Intheproof, wedistinguishtheverties

(c 1 , c 2 , c 3 )

aordingtothetypeofbeadsadjaent

to thepoint where the neklaeis ut. Below, therst

|

represents

c 1

, theseond one

c 2

andthethird one

c 3

. Thenumbersonbothsidesofthe

j

thline

|

showthetypeofthebead

whihisontheleftsideofpoint

c j

andthetypeontherightsideofpoint

c j

. Forinstane:

. . . 1

|{z}

Alie

| 2 . . . 2

| {z }

Bob

| 1 . . . 1

| {z }

Alie

| 2 . . .

| {z }

Bob

.

(5)

This vertexis ofdegree0,beausenomoveofa

|

anbeompensatedby anothermovein

order to maintainthe numberof beads of types1 and2' reeivedby eah thief. Another

exampleisthefollowing(where

c 1 = 0

):

|1 . . . 1|1 . . . 1|2 . . . .

Thedegreeofsuhavertexequals3. Indeed,thereare3neighbors:

|1 . . . |11 . . . |12 . . . , 1| . . . 11| . . . 1|2 . . .

and

1| . . . 1|1 . . . |12 . . .

Inanyofthese threeases,themoveofautisompensatedbyanothermove.

Let us ompute the degree of a vertex

(c 1 , c 2 , c 3 )

in general. Three ases have to be

distinguished

1.

c 1 = 0

: the vertexis of theform:

|a . . . b|c . . . d|e . . .

with

a, b, c, d, e ∈ {1, 2 }

. Four

subaseshavetobedistinguished,thehekingbeingeasy:

If

b 6= e

and

c = d

,thedegreeis1if

a 6= c

and3ifnot.

If

b 6= e

and

c 6= d

,thedegreeis1if

b = c

and3ifnot.

If

b = e

and

c = d

, the degreeis 4if

a = b = c

, 2 if

a 6= b

, and 0if

a = b

and

b 6= c

.

If

b = e

and

c 6= d

,thedegreeis2.

2.

c 3 = n

: thisasean betreatedexatlyastheasebefore.

3.

c 1 > 0

and

c 3 < n

: we enumerate subases while avoiding subases whih an be

dedued from theothers bysymmetries ortheexhange of 1and 2': wegiveonlya

fewsubases,forthehekingisalwaysstraightforward:

Subase

. . . 1|1 . . . 1|1 . . . 1|1 . . .

: thedegreeequals6.

Subase

. . . 1|1 . . . 1|1 . . . 1|2 . . .

: thedegreeequals4.

Subase

. . . 1|1 . . . 1|1 . . . 2 |1 . . .

: thedegreeequals4.

Subase

. . . 1|1 . . . 1|1 . . . 2 |2 . . .

: thedegree equals2. Indeed, there areexatly

twoneighbors:

. . . 11| . . . 11| . . . 2 |2 . . .

and

. . . |11 . . . |11 . . . 2 |2 . . .

.

Subase

. . . 1|1 . . . 1|2 . . . 2 |1 . . .

: thedegreeequals2.

Subase

. . . 1|1 . . . 2 |1 . . . 1|2 . . .

: thedegreeequals2.

Subase

. . . 1|1 . . . 1|2 . . . 2 |2 . . .

: thedegreeequals2. Indeed,there areexatly

twoneighbors:

. . . 1|1 . . . 12 | . . . 2 2 | . . .

et

. . . |11 . . . |12 . . . 2 |2 . . .

.

Subase

. . . 1|1 . . . 2 |1 . . . 2 |2 . . .

: thedegreeequals2.

Subase

. . . 1|2 . . . 2 |1 . . . 1|2 . . .

: thedegreeequals0.

Subase

. . . 1|2 . . . 1|2 . . . 2 |1 . . .

: thedegreeequals4.

Alldegreesareeven.

(6)

It followsthat a vertex of odd degreeis neessarily suh that

c 1 = 0

or

c 3 = n

. This

provespoint(i) ofLemma 2.1. Notethat avertex hasan odd degreeifand only if

b 6= e

(withthenotationsdenedin therstaseabove).

Weprovenowthat: Thereisan odd numberof vertiesof odd degree suhthat

c 1 = 0

.

Let

ǫ > 0

be averysmall real. We rst show that a vertex has an odd degreeif the

followingholds: oneof theintervals

]c 2 − 1, c 3 − 1 + ǫ[

and

]c 2 , c 3 + ǫ[

hasaproportion of

beads of type1stritly smallerthan

a 1

a 1 +a 2 +a 3

and theother hasaproportionof beads of

type1stritlygreaterthan

a 1

a 1 +a 2 +a 3

. Formally,wearegoingto showthat theoddverties

(0, c 2 , c 3 )

aresuhthat

φ 1 (]c 2 − 1, c 3 − 1 + ǫ[)

a 1 + a 2 + a 3 + ǫ − a 1

a 1 + a 2 + a 3

and

φ 1 (]c 2 , c 3 + ǫ[)

a 1 + a 2 + a 3 + ǫ − a 1

a 1 + a 2 + a 3

haveoppositesigns.

Thistwoquantitiesarerespetivelyequalto

a 1 + 1 {b=1} − (1 − ǫ) 1 {d=1}

a 1 + a 2 + a 3 + ǫ − a 1

a 1 + a 2 + a 3

and

a 1 + ǫ1 {e=1}

a 1 + a 2 + a 3 + ǫ − a 1

a 1 + a 2 + a 3

,

where

b

,

d

, and

e

are beads in positionsspeiedin therstaseabove,and

1 P

takesthe

value1(resp. 0)if

P

istrue(resp. false). It iseasy to seethat these twoquantities have

oppositesignsifandonlyif

b 6= e

. Hene theyhaveoppositesignsifandonlyifthevertex

hasodddegree.

We show now that there is an odd number of suh verties. With the same kind of

argumentsasin Subsetion2.1,i.e., withtheinterval

]c 2 , c 3 + ǫ[

movingfrom lefttoright,

wesee thatthereisanoddnumberofsuh situations,forthesignof

φ 1 (]u, u + a 1 + a 2 + a 3 + ǫ[)

a 1 + a 2 + a 3 + ǫ − a 1

a 1 + a 2 + a 3

hangesstritlywhentheinterval

]u, u + a 1 + a 2 + a 3 + ǫ[

movesfrom

]0, a 1 + a 2 + a 3 + ǫ[

to

]a 1 + a 2 + a 3 , n + ǫ[

(this isatruefor

ǫ = 0

, aordingto thestartingassumptions,and thus forall

ǫ > 0

smallenough). Hene, thereis anoddnumberof verties ofodddegree

suhthat

c 1 = 0

.

By symmetry, there is also an odd number of verties of odd degree having

c 3 = n

.

Furthermore,wehavethe followingequivalene, sinethe ondition

b 6= e

is the samefor

theverties

(0, c 2 , c 3 )

and

(c 2 , c 3 , n)

:

deg(0, c 2 , c 3 )

odd

⇔ deg(c 2 , c 3 , n)

odd

.

Thelemmaisproved.

2.3.3 Final omments

Let'sgiveanillustrationofthisprooffortheexampleofFigure1.

Theorrespondinggraph

G

isillustratedin Figure3. Thereisapath(atually,many) linking vertex

(0, 4, 10)

, whih gives more beads of type 3 to Alie, to vertex

(4, 10, 12)

,

(7)

(1, 4, 9) (0, 4, 10) (0, 5, 11) (1, 5, 10)(2, 6, 10) (3, 7, 10) (4, 8, 10) (5, 9, 10) (4, 9, 11)(4, 10, 12) (5, 10, 11)

(5, 11, 12) (5, 8, 9)

(3, 6, 9) (2, 7, 11) (1, 2, 7)

(5, 6, 7)

(3, 4, 7)

Figure3: Graph

G

orrespondingto theexample(with

t = 3

and

q = 2

)ofFigure1.

whih givesmore beads of type3 to Bob. The verties

(1, 5, 10)

and

(2, 6, 10)

lie on this

pathandprovidefairdivisions.

On the other hand, it is not lear whether it is possible to derive from this proof an

eientalgorithmthatwouldhaveabetteromplexitythan

O(n 3 )

(

G

mightbenotexpliitly

omputed).

Furthermore,themethod istedious. Is itpossibletondsomesimpliation?

3 Ky Fan's ubial theorem and onstrutive proof for

two thieves

3.1 Preliminaries

Wegivenow aonstrutiveand ombinatorial proof of Theorem 1. We ould think that

suh aproofould be easilydedued from Tuker'slemma. Indeed,Theorem 1isadiret

appliation of Borsuk-Ulam's theorem, whih has a onstrutive proof through Tuker's

lemma. ThisisdoneforinstanebySimmonsandSuin[14℄,buttheresultisnotompletely

satisfatorybeausethismethodrequiresatriangulation

T

ofthe

(t + 1)

-dimensionalross- polytopesuh thatthediameter ofanysimplexin

T

is a

O(1/(nt))

, andthen itrequiresa

rounding method.

Ourmethoddoesnotpresentthosediulties. Itbasesitselfonatheorem(Theorem3)

foundbyKyFanin 1960whihisaubialversionofTuker'slemma[8℄. Wegivebelowa

onstrutiveproofofthistheorem. Theubialomplexweneedisompletely natural.

3.2 Notation and denitions

Let

C

beaube,

∂C

theboundaryof

C

, and

V (C)

thesetofvertiesof

C

.Twofaetsofa

d

-ubearesaidto beadjaent iftheirintersetion isa

(d − 2)

-ube. Foragivenfaet

σ

of

C

,there isonlyonenon-adjaentfaet. Twonon-adjaentfaetsareopposite.

Aubialomplex isaolletion

C

ofubesembeddedinaneulidianspaesuh that

if

τ ∈ C

andif

σ

isafaeof

τ

then

σ ∈ C

and

if

σ

and

σ

arein

C

,then

σ ∩ σ

isafae ofboth

σ

and

σ

.

Aubialomplexissaidto bepureifallmaximalubeswithrespettoinlusionhave

samedimension.

(8)

V ( C )

isthesetofvertiesoftheubialomplex

C

.

A

d

-dimensional ubial pseudo-manifold

M

is apure

d

-dimensional ubialomplexin whiheah

(d − 1)

-dimensionalubeisontainedin atmosttwo

d

-dimensionalubes. The boundaryof

M

,denotedby

∂ M

,isthesetofall

(d−1)

-ubes

σ

suhthat

σ

belongstoexatly

one

d

-dimensionalubeof

M

.

Letus denoteby

C d

theubialomplexwhih istheunionofthe ube

d := [−1, 1] d

and allitsfaes(seeFigure6).

Let

k ≥ 0

be an integer. Given

k

distint integers

i 1 , i 2 , . . . , i k

, eah of them in

{1, 2, . . . , d}

,and

k

numbers

ǫ 1 , ǫ 2 , . . . , ǫ k

,eahofthembelongingto

{−1, +1}

,wedenote

F

i 1 i 2 . . . i k

ǫ 1 ǫ 2 . . . ǫ k

:= {(x 1 , x 2 , . . . , x d ) ∈ d : x i j = ǫ j

for

j = 1, 2, . . . , k},

whihisa

(d − k)

-faeof

d

. For

k = 0

,thisfaeis

d

itself.

We endow

d

with hemispheres. These hemispheres are denoted

+H 0

,

−H 0

,

+H 1

,

−H 1

,

. . .

,

+H d−1

,

−H d−1

.

+H i

(resp.

−H i

)isthesetofpoints

(x 1 , x 2 , . . . , x d )

of

d

suh

that

x i+1 ≥ 0

(resp.

x i+1 ≤ 0

),and suh that, if

i ≤ d − 2

, then

x j = 0

for

j > i + 1

(in

Figure 4,thehemispheresof

3

arehighlighted).

Thearrier hemisphere ofaubeis thehemisphereofsmallestpossibledimensionon-

tainingit.

Observation2.1 For

i ∈ {0, 1, . . . , d − 1}

,

H i

is homeomorphi tothe ball

B i

,

(+H i ) ∪ (−H i )

is homeomorphi to the

i

-dimensional sphere

S i

, if

i ≥ 1

,

∂(+H i ) = ∂(−H i ) = (+H i−1 ) ∪ (−H i−1 )

and

H d−1 ∪ −H d−1 = ∂ d

.

Let

C

and

D

be ubial omplexes, and let

λ : V ( C ) → V ( D )

bea map.

λ

is alled a

ubial mapif

λ

satisesthefollowingonditions:

1. forevery

σ ∈ C

,thereis a

τ ∈ D

suhthat

λ(V (σ)) ⊆ V (τ)

2.

λ

takesadjaentvertiestoadjaentvertiesorbothto thesamevertex.

Byaslightabuseof notation,wewrite

λ : C → D

. Weemphasizethefatthat

λ(V (σ))

in

thedenition aboveisnotneessarilythevertexsetofaube.

AordingtoLemma18ofthepaperofEhrenborgandHetyei[6℄,if

λ : V ( n ) → V ( n )

is anon-injetiveubialmap andif

ρ

isafaetof

n

,then thereare0,2or4faets

σ

of

n

suhthat

λ(V (σ)) = V (ρ)

. Itimpliesthefollowinglemma:

Lemma 2.2 Let

λ : V ( d ) → V ( m )

be a ubial map (from

C d

into

C m

), with

m ≥ d

,

and let

ρ

be a

(d − 1)

-fae of

m

. If

λ

is not injetive, there are

0

,

2

or

4

faets

σ

of

d

suhthat

λ(V (σ)) = V (ρ)

. Moreover,ifthereare

4

suhfaetsandif

σ

isoneofthem,then

the faetopposite to

σ

isalsoone ofthese

4

faets.

Proof: Let

λ : V ( d ) → V ( m )

beanon-injetiveubialmapandlet

ρ

bea

(d−1)

-fae

of

m

. Ifthere is nofaet

σ

suh that

λ(V (σ)) = V (ρ)

, there isnothing to prove. Solet

us assumethat there is afaet

σ

of

d

suh that

λ(V (σ)) = V (ρ)

. Wewant toapply the

result ofLemma 18of [6℄, whihis validif

λ : V ( d ) → V ( d )

. Let usprovethat wean

makethisassumption,thatis,that thereisa

d

-faeof

m

whihontainstheimageof

λ

.

If

λ(V ( d )) = V (ρ)

,any

d

-faeontaining

ρ

ontainstheimageof

λ

.

If not, there is

v ∈ V ( d ) \ V (σ)

suh that

λ(v) ∈ / V (ρ)

. Let

w

be thevertex of

σ

whihisadjaentto

v

,andlet

w

bethesinglevertexof

σ

suhthat

d(w, w ) = d − 1

,

where

d(·, ·)

isthedistaneinthe1-skeletonofaube,ountedinnumberofedges. It

(9)

isstraightforwardtohekthat

d(λ(w ), λ(v)) = d

(taketheminimalfae ontaining

both

ρ

and

λ(v)

). Let

v

beanyvertexof

d

,wehavethefollowinghainofinequalities:

d = d(v, w ) = d(v , v)+d(v , w ) ≥ d(λ(v ), λ(v))+d(λ(v ), λ(w )) ≥ d(λ(v), λ(w )) = d.

Hene,

d(v , v) = d(λ(v ), λ(v))

and

d(v , w ) = d(λ(v ), λ(w ))

. It impliesthat

λ(v )

,

forany

v

in

d

,isin the

d

-ubeof

m

ontaining

ρ

and

λ(v)

.

Weanthus assumethat

λ : V ( d ) → V ( d )

.

Ifthere are4faetssuhthat

λ(V (σ)) = V (ρ)

(inthis aseonehasneessarily

d ≥ 2

),

at least two of them, say

σ

and

σ

, are adjaent. Let

σ ′′

be another faet adjaent to

σ

and

σ

. Let

x ∈ V (σ ∩ σ ′′ ) \ V (σ)

, and let

y

be the vertex adjaentto

x

in

σ

. Wehave

y ∈ σ ∩ σ ∩ σ ′′

, and

λ(x)

adjaent to

λ(y)

. Moreover,let

z

bethe vertexof

σ

suh that

λ(z) = λ(x)

(whihexistsbyinjetivity).

z

isadjaentto

y

in

σ

andannotbein

σ

. Hene

z

istheonlyvertexof

σ

whihisatdistane1of

y

andnotin

σ

. Itimpliesthat

z

isin

σ ′′

.

As

λ(z) = λ(x)

andas

z

and

x

aretwodierentvertiesof

σ ′′

,

λ(V (σ ′′ )) 6= V (ρ)

. A faet

σ ′′

adjaentto

σ

andto

σ

annotsatisfy

λ(V (σ ′′ )) = V (ρ)

.

3.3 Ky Fan's ubial formula

Supposethat wehaveaubialmap

λ

of

M

,a

t

-dimensional ubialpseudo-manifold, into

C m

, theubialomplexmadeby

m

anditsfaes.

Wedenoteby

α λ

i 1 i 2 . . . i m−t

ǫ 1 ǫ 2 . . . ǫ m−t

thenumberofthose

t

-ubes

σ

of

M

suhthat

the verties of

σ

are mapped under

λ

in a one-to-one way onto the verties of the

t

-fae

F

i 1 i 2 . . . i m−t

ǫ 1 ǫ 2 . . . ǫ m−t

(if

m = t

,thisfaeis

m

itself).

Wewilllatermakeuseofthefollowingtheorem(forthease

m = t

),whoseonstrutive

proofisgivenbelow.

Theorem 3 Let

M

betheubialpseudo-manifoldwithoutboundaryobtainedbysubdividing

∂ C t+1

bymeansof thehyperplanes

x i = n j

where

i ∈ {1, 2, . . . , t + 1}

and

j ∈ {−n + 1, −n + 2, . . . , −1, 0, 1, . . . , n − 2, n − 1}

. Let

λ

beaubial map from

M

into

C m

,with

m ≥ t

. If

λ

is antipodal(i.e. if

λ(−x) = −λ(x)

),then wehave

if

m > t

,

X

ǫ 2 ,...,ǫ m−t =−1,+1

α λ

t + 1 t + 2 . . . m +1 ǫ 2 . . . ǫ m−t

= 1

mod

2.

if

m = t

,thereisa

t

-ube

σ

of

M

suhthat

λ(V (σ)) = V ( C m )

.

For

t = 2

and

n = 2

,

M

isillustratedinFigure4.

3.4 Construtive proof of Theorem 3

Wefollow roughlythe method found by Presott and Su [13℄ for provinga similar result

onerningsimpliialomplexes.

A

d

-ubeof

M

(with

0 ≤ d ≤ t

)issaidtobefullifitsimageunder

λ

is oftheform

F

d + 1 d + 2 . . . m ǫ 1 ǫ 2 . . . ǫ m−d

.

(10)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. .

. .

. .

. .

. . .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.. .. . .. . .. .. . .. .. . .. . .. .. . .. . .. .. . .. . .. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .. .. . .. . .. .. . .. . .. .. . .. . .. .. . .. .. . .. . .. .. . .. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .. . .. .. . .. . .. .. . .. . .. .. . .. .. . .. . .. .. . .. . .. ..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. . .. . .. .. . .. . .. .. . .. .. . .. . .. .. . .. . .. .. . .. .

. . .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

. . .

. . .

. .

. . .

. .

. .

. .

. . .

. . .

. . .

. . .

. . .

.

. . .

. .

. .

. .

. . .

. .

. .

. .

. .

. . .

. .

. .

. . .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.. .. . .. . .. .. . .. .. . .. . .. .. . .. . .. .. . .. . .. ..

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

I

I

?

K

+H 0

−H 0

+H 1

−H 1

+H 2

−H 2

- 6

x 1

x 2

x 3

Figure4: Anillustrationof

M

for

n = 2

and

t = 2

.

(11)

A

d

-ubeof

M

issaidtobealmost-fullifitisnotfullbutoneofitsfaetsisfull.

Exeptintheasewhen

d = m = t

,oneandenethesignofafull

d

-ubeasthevalue

of

ǫ 1

in theexpressionsabove.

Lemma 3.1 For analmost-full

d

-ube

τ

,thereareonly threepossibilities:

1. eitheritsvertiesaremappedunder

λ

inaone-to-onewayontothevertiesofa

d

-fae

(withthe entries

j

and

ǫ j−d+1

deleted)

F

d . . . ˆ j . . . m

ǫ 1 . . . ˆ ǫ j−d+1 . . . ǫ m−d+1

,

2. or

λ

isnot injetive on the vertexset of

τ

and

τ

has exatly twofull faets, eah of

themhavingthe samesign,

3. or

λ

is notinjetive on the vertex set of

τ

and

τ

has exatly four full faets,eah of

them having the same sign. Moreover, in this ase, if

σ ⊆ τ

is a full faet, then the

opposite of

σ

isalsoafullfaet.

Proof: Firstremarkthat if

λ

isinjetive,theimage of

τ

is a

d

-fae (thiseasyassertion

anbeprovedbyindution). Sine

τ

isnotfull, thisimage hasneessarilytheform given

in point1.

Hene,oneanassumethat

λ

isnotinjetive. Taketwofullfaets of

τ

, say

σ

and

σ

.

Sinetheyarefull,

λ

isinjetiveoneahofthem.

λ(V (σ))

and

λ(V (σ ))

arethevertexsets

of

(d − 1)

-faes.Theyhaveanon-emptyintersetion,otherwise

λ

wouldhavebeeninjetive

on

τ

. Moreover,aordingtothedenitionofafullube,theimageoftwofullubesofthe

samedimensionare parallel. But,twoparallel faesof aubehavingsamedimensionand

a nonemptyintersetion areequal. Thus,

λ(V (σ)) = λ(V (σ ))

, and there isa

(d − 1)

-fae

ρ

suh that forall full faets

σ

of

τ

, onehas

λ(V (σ)) = V (ρ)

. This settles thestatement

aboutthesign. Lemma2.2allowsto onlude.

Wean then extendthe notionof sign to almost-full ubes: thesign of analmost-full

d

-ubeisthesignofanyofitsfullfaets.

Aubeissaidto beagreeableifitssignmathesthesignofitsarrierhemisphere.

Wedenethefollowinggraph

G

. Aube

σ

witharrierhemisphere

±H d

isanodeof

G

ifitisoneofthefollowing:

(1) anagreeablefull

(d − 1)

-ube,

(2) anagreeablealmost-full

d

-ube,or

(3) afull

d

-ube.

Twonodes

σ

and

τ

areadjaentin

G

ifallthefollowinghold:

(a)

σ

isafaetof

τ

,

(b)

σ

isfull,

()

τ

hasthedimensionofitsarrierhemisphere, and

(d) thesignofthearrierhemisphereof

τ

mathesthesignof

σ

.

Welaim that

G

isa graphin whih everyvertex hasdegree1, 2,or 4. Furthermore, a vertex hasdegree 1ifand only ifits arrierhemisphere is

±H 0

, orifit is afull

t

-ube.

Using antipodality, we willthen show that thepoint

H 0

is neessarilylinkedby apathin

G

to afull

t

-ube.

Toseewhy, let'sonsiderthethreekindsofnodesin

G

:

(1)An agreeablefull

(d − 1)

-ube

σ

,witharrierhemisphere

±H d

,isafaetofexatlytwo

d

-ubes,eahofwhih mustbeafulloranagreeablealmost-full ubein thesamearrier.

(12)

Thissatisestheadjaenyonditions(a)(d)with

σ

,hene

σ

hasdegree2in

G

. Theube

σ

annotbeadjaentin

G

toanyofitsfaets,otherwiseitwouldontraditondition().

(2) An agreeablealmost-full

d

-ube

σ

, whose arrierhemisphere is

±H d

, is adjaent in

G

to its twoor four faets that are full

(d − 1)

-ubes see Lemma 3.1. A full faet of

σ

is

automatiallyanodeof

G

,sineifitisnotagreeable,thenitisarriedby

∓H d−1

thesign

ofthearrierofthisfullfaetisthentheoppositeofthesignof

σ

. (Adjaenyondition(d)

is satised beause

σ

isagreeable and beause anagreeable almost-full

d

-ube hasalways

thesamesignasitsfullfaets).

(3)Exeptif

d = 0

,afull

d

-ube

σ

witharrier

±H d

hasexatlyonefaet

τ

thatisfulland

whose signisthesameasthearrierhemisphereof

σ

. Hene

σ

isadjaentto

τ

in

G

.

Ontheotherhand,

σ

isthefaet ofexatlytwo

(d + 1)

-ubesin

+H d+1 ∪ −H d+1

: one

in

+H d+1

andonein

−H d+1

, but

σ

is adjaentin

G

to exatlyoneof them: whih one is

determined bythesignof

σ

,sineadjaenyondition(d)mustbesatised.

Finally,

σ

is of degree2or4in

G

unless

d = 0

or

σ

isafull

t

-ube: if

d = 0

,

σ

is the

point

±H 0

andithasnofae,hene

σ

hasdegree1;andif

σ

is afull

t

-ube,then

σ

isnot

thefaetofanyotherube,andisthereforeofdegree1.

Everynodein

G

hasdegree2or4,exeptforthepoints

±H 0

andforthefull

t

-ubes.

Wetransform

G

intoanew graph

G

: wereplaeeah node

v

ofdegree4in

G

by two

nodes

v

and

v ′′

,andwereplaethefouredges,byfournewedges: twolinking

v

andapair

of oppositefullfaets,andtwolinking

v ′′

andtheotherpairofoppositefullfaets.

In

G

,allvertiesareofdegree1or2,hene

G

istheunionofdisjointpathsandyles.

Notethattheantipodeofapathin

G

isalsoapathin

G

. Nopathanhaveantipodal

endpoints, otherwise it should be its own antipode and have a node oran edge whih is

antipodal to itself. Hene the number of endpoints is a multiple of four. Sine exatly

twoendpointsare

H 0

and

−H 0

,therearetwieanoddnumberofendpointswhih arefull

t

-ubes. If

m > t

,half ofthemhaveapositivesign(if

m = t

,afull

t

-ubehasnosign).

A path of

G

starting in

H 0

an not terminate in

−H 0

, but in afull

t

-ube. Thus we

haveanalgorithmwhih allowstondafull

t

-ube. It isillustratedinFigure 5.

3.5 Splitting the neklae between Alie and Bob

We an easily dedue Theorem 1 from Theorem 3. Indeed let

m = t

, and let

x :=

(x 1 , x 2 , . . . , x t+1 )

be avertex of

M

. We order the

x i

in the inreasing order of their ab-

solute value. When

|x i | = |x i ′ |

, weput

x i

before

x i ′

if

i < i

. Thisgivesapermutation

π

suhthat

|x π(1) | ≤ |x π(2) | ≤ . . . ≤ |x π(t+1) | = 1.

Then, wedene

λ = (λ 1 , λ 2 , . . . , λ t ) : M → C t

asfollows: weuttheneklaeat points

n|x i |

(atmost

t

aredierentfrom 1). Byonvention,

x π(0) := 0

; wedene:

λ i (x) :=

+1

if

P t

j=0

sign

(x ǫ(j) )φ i

n|x π(j) |, n|x π(j+1) |

> 0

−1

ifnot,

for

i = 1, 2, . . . , t

, where

ǫ(j)

is thesmallestinteger

k

suh that

|x k | ≥ |x π(j+1) |

, and with

theonventionsign

(0) := 0

.

This formula anbe understood as follows:

λ i

equals

+1

(resp.

−1

) if the rst thief

gets stritlymore(resp. stritlyless) beads oftype

i

thantheseondone,whenweutat

points

n|x j |

oftheneklae,andwhenthesignof

x k

showsthethiefwhogetsthe

(j + 1)

th

sub-neklae,where

k

isthesmallestintegersuhthat

n|x k |

isgreaterthanorequaltothe

oordinateofanypointofthesub-neklae.

(13)

(+1, +1, +1)

(+1, −1, +1) (−1, −1, +1)

(+1, −1, −1) (−1, −1, −1)

(+1, +1, −1) (−1, +1, −1)

Figure 5: Illustration of the onstrutive proof of Theorem 3. The triples indiate the

orrespondinglabelontheubeimage oftheFigure 6.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. . .. .. . .. .. . .

6

+

-

x 1

x 2

x 3

(−1, −1, −1)

k s ?

-

6 (−1, −1, +1)

(−1, +1, −1) (+1, +1, +1) (−1, +1, +1)

(+1, +1, −1) (+1, −1, −1)

(+1, −1, +1)

Figure6: An illustrationof

C m

for

m = 3

.

(14)

Theonlyproblemwiththisdenitionisthat

λ

maynotbeantipodal: if

X t

j=0

sign

(x ǫ(j) )φ i

n|x π(j) |, n|x π(j+1) |

= 0,

then

λ i (x) = λ i (−x) = −1

. This anbe avoided by a slight generi perturbation of the valueofallthebeads: adivisionusingutsbetweenbeadsanthennotbefairwithrespet

to anytypeofbead 2

.

λ

isaubialmap. Indeed,therstonditiondeningubialmapsistriviallysatised

andtheseondonefollowsfromthefattheimagesby

λ

oftwoadjaentvertiesof

M

have at mostoneoordinatethatdiersevenintheasewhenthereis

j

suhthat

ǫ(j)

diers.

Theorem 3 showsthat there is a

t

-ube

σ

whose imageby

λ

is

t

. Oneof thevertiesof

this

t

-ubeorrespondsto afairdivision. Indeed,for anyvertex

x

of suh a

σ

, moving to

eahofthe

t

adjaentvertiesof

x

hangesthevalueofeahofthe

t

omponentsof

λ(x)

.

Theonstrutiveproof given abovefor Theorem3 suitsto theneklae problem. The

ubialomplexisompletelynaturalinthisontext: a

k

-ube(

k ≤ t

)orrespondspreisely

tothehoieof

k

beads. Moreover,itisstraightforwardtohekifa

k

-ubeisfullinterms

of beads. WehavethusaonstrutiveproofofTheorem1.

3.6 General disrete neklae splitting theorem

In[3℄,Alon,MoshkovitzandSafraprovethefollowingextensionofTheorem2(withows).

Supposethattheneklaehas

n

beads,eahofaertaintype

i

,where

1 ≤ i ≤ t

. Suppose

there are

A i

beadsoftype

i

,

1 ≤ i ≤ t

,

P t

i=1 A i = n

,where

A i

isnotneessarilyamultiple

of

q

. A

q

-splittingof theneklaeisapartitionofitinto

q

parts,eahonsistingofanite

number of non-overlapping sub-neklaes of beads whose unionaptures either

⌊A i /q⌋

or

⌈A i /q⌉

beads oftype

i

,forevery

1 ≤ i ≤ t

.

Theorem 4 Everyneklaewith

A i

beads oftype

i

,

1 ≤ i ≤ t

,has a

q

-splittingrequiringat

most

t(q − 1)

uts.

For

q = 2

, theproofof thepreeding setion showssomethingmore. Theproofis still

valid,evenifthe

A i

'sarenoteven. If

A i

isodd,the

(t − 1)

-faetof

t

whose

i

thoordinate

isequalto1(resp.

−1

). orrespondtodivisiongiving

⌈A i /2⌉

beadsoftype

i

toAlie(resp.

Bob)and

⌊A i /2⌋

beadsoftype

i

toBob(resp. Alie). Wehavethusthefollowingtheorem,

also withaonstrutiveproof:

Theorem 5 Every neklae with

A i

beads of type

i

,

1 ≤ i ≤ t

, has a

2

-splitting requiring

atmost

t

uts. Moreover, for eahtype

i

of beadssuhthat

A i

isodd,we anhoosewhih

thief gets

⌈A i /2⌉

beadsof type

i

.

NotethatthistheoremanalsobederivedfromtheproofofAlon,MoshkovitzandSafra.

4 Open questions

There arealotof questionsthatremainopen.

1. Isitpossibleto extendthediretproofsofSetion 2.1to otherases?

2

Ifonedoesnotwanttouseaperturbation,thereisanotherwayforavoiding0:hooseapartiularbead

ofeahtypeanddene

λ i ( x ) := +1

(resp.

− 1

)iftherstthiefgetsstritlymore(resp. stritlyless)beads

oftype

i

thantheseondthief,oriftherstthiefandtheseondonegetthesamenumberofbeadsoftype

i

andtherstonegets(resp. doesnotget)thepartiularbeadoftype

i

.

(15)

forinstaneinthepaperofAlon[2℄.

3. Whatistheomplexityofthefollowingproblem?

INPUT: A neklae, with

t

beads,

qa i

beads of eah type (

a i

is an integer), and

q

thieves,

TASK: Findafairdivisionoftheneklaeusingnomorethan

t(q − 1)

uts,

This questionis still open(for moreaboutproblems of this type,see Papadimitriou

[12℄). Theorrespondingoptimizationproblem,namelyndingtheminimumnumber

ofutsprovidingafair division,isNP-hard,evenif

q = 2

and

a 1 = a 2 = . . . = a t = 1

(see[5℄,[11℄).

4. IsthereananalogueofTheorem 5foranynumber

q

ofthieves?

Referenes

[1℄ N. Alon,Splittingneklaes,Advanes inMath.,63(1987),247-253.

[2℄ N.Alon,Non-onstrutiveproofsinombinatoris,Pro. oftheInternational Congress

of Mathematiians,Kyoto 1990,Japan,Springer Verlag,Tokyo, pp.1421-1429,1991.

[3℄ N. Alon, D. Moshkovitz and S. Safra, Algorithmi Constrution of Sets for

k

-

Restritions,toappearinThe ACM Transations onAlgorithms.

[4℄ N. Alon and D. West, The Borsuk-Ulam theorem and bisetion of neklaes, Pro.

Amer.Math. So., 98(1986),623-628.

[5℄ P. S. Bonsma, T. Epping and W. Hohstättler, Complexity results on restrited in-

stanesofapaintshopproblemforwords,DisreteAppliedMathematis,to appear.

[6℄ R.EhrenborgandG.Hetyei,GeneralizationsofBaxter'stheoremandubialhomology,

J. CombinatorialTheory,SeriesA, 69(1995),233-287.

[7℄ T.Epping,W.HohstättlerandP.Oertel,Complexityresultsonapaintshopproblem,

DisreteApplied Mathematis,136(2004),217-226.

[8℄ K.Fan,Combinatorialpropertiesofertain simpliialandubialvertexmaps,Arh.

Math., 11(1960),368-377.

[9℄ C.H. GoldbergandD. West,Bisetionofirleolorings,SIAMJ.Algebrai Disrete

Methods,6(1985),93-106.

[10℄ J.Matou²ek,UsingtheBorsuk-Ulamtheorem,Springer-Verlag,Berlin-Heidelberg-New

York,2003.

[11℄ F.MeunierandA.Sebö,Paintshop,oddyleandsplittingneklae,submitted.

[12℄ C.Papadimitriou,Ontheomplexityoftheparityargumentandotherineientproofs

ofexistene,J. ComputerandSystem Sienes,48(1994),498-532.

[13℄ T. Presottand F.E. Su,A onstrutiveproofof KyFan'sgeneralizationof Tuker's

lemma,J. Combin. Theory,Series A,111(2005),257-265.

[14℄ F. W. Simmons and F. E. Su, Consensus-halving via theorems of Borsuk-Ulam and

Tuker,Mathematial soialsienes,45 (2003),15-25.

[15℄ G.M.Ziegler,GeneralizedKneseroloringtheoremswithombinatorialproofs,Inven-

tionesMathematiae,147(2002),671-691.

Références

Documents relatifs

The need of next generation Semantic Web applications for a new kind of infras- tructure motivated the development of Watson: a gateway that realizes a single access point to

This growth deeply transformed the FT field, especially through an institutionalisation and a professionalization of the FT movement (Gendron, et al., 2009a;

The polynomials P m b (n) are 2m + 1-degree integer valued polynomials, which connect discrete convolution [BDM11] of power with Binomial theorem [AS72].. Definitions, Notations

Social psychology, drawing on a long tradition of research on stereotypes (implicit personality theory, beliefs about certain categories of people or groups) and

The polar quotient corresponding to branches of ri and the multiplicity of ri can be explicitly computed in terms of the minimal set of generators of the

come, chew and munch on this meat; come and drink this rich soup; come and seek this egg, that has no opening; ...come and listen to the teachings of the Buddhist and Bonpo

Chefetz I, Holmberg JC, Alvero AB, et al 2011 Inhibition of Aurora-A kinase induces cell cycle arrest in epithelial ovarian cancer stem cells by affecting NFκB pathway.. Zheng F-M,

Thus our algorithm shows that if we just want an aristotelian proportional fair division it is not necessary to use an envy-free algorithm which uses an exponential number of