Article
Reference
Spectra of non-commutative dynamical systems and graphs related to fractal groups
BARTHOLDI, Laurent, GRIGORCHUK, Rostislav
Abstract
We study spectra of noncommutative dynamical systems, representations of fractal groups, and regular graphs. We explicitly compute these spectra for five examples of groups acting on rooted trees, and in three cases obtain totally disconnected sets.
BARTHOLDI, Laurent, GRIGORCHUK, Rostislav. Spectra of non-commutative dynamical systems and graphs related to fractal groups. Comptes rendus mathématique , 2000, vol.
331, no. 6, p. 429-434
DOI : 10.1016/S0764-4442(00)01658-X arxiv : math/0012174v1
Available at:
http://archive-ouverte.unige.ch/unige:12527
Disclaimer: layout of this document may differ from the published version.
1 / 1
arXiv:math/0012174v1 [math.GR] 18 Dec 2000
Spetra of non-ommutative dynamial systems and
graphs related to fratal groups
Laurent BARTHOLDI, Rostislav I. GRIGORCHUK
SetiondeMathématiques,UniversitédeGenève,CP240,1211 Genève24,Suisse
E-mailaddress: Laurent.Bartholdimath.unige.h
SteklovInstituteofMathematis,Gubkina8,Mosow117966,Russia
E-mailaddress: grigorhmi.ras.ru
(Transmisle2juin2000)
Abstrat. We study spetra of nonommutative dynamial systems, representations of fratal groups, and
regulargraphs. Weexpliitlyomputethese spetra forveexamplesofgroupsatingon rooted
trees,andinthreeasesobtaintotallydisonnetedsets.
Spetres de systèmes dynamiques non-ommutatifs et de graphes
assoiés à des groupesfratals
Résumé. Nousétudionslesspetresdesystèmesdynamiquesnonommutatifs,dereprésentationsdegroupes
fratals,etdegraphesréguliers. Nousalulonsesspetrespourinqexemplesdegroupesagissant
surdesarbresenrainés,etdanstroisasobtenonsdesensemblesomplètementdéonnetés.
Version française abrégée
Le but deettenote est d'étudierle spetrede systèmesdynamiques non ommutatifs, i.e. desystèmes
engendrés par plusieurs transformations qui ne ommutent pas néessairement. Elle résume les résultats
de[1℄.
Soit
G
ungroupeengendréparunensemblesymétriqueniS
.Unsystèmedynamique,noté(S, X, µ)
,estuneationde
G
surunespaemesuréX
préservantlalasse[µ]
delamesureµ
deX
.Ilinduitnaturellement une représentationunitaireπ
deG
dansL 2 (X, µ)
donnéepar(π(g)f )(x) = p
g(x)f (g −1 x)
, oùg(x)
est ladérivéedeRadon-Nikodým
dgµ(x)/dµ(x)
.Lespetrede(S, X, µ)
estlespetredel'opérateurdetypeHekeH π = 1
| S | X
s∈S
π(s) ∈ B (L 2 (X, µ)).
Plusgénéralement,lespetred'unereprésentationunitaire
π : G → U ( H )
d'ungroupeavesystèmegénéra-teurxéestlespetredel'opérateur
H π
ommei-dessus.Ononsidère,pourinqexemplesdegroupesdonnésparleurationsurunarbrerégulierenrainé
T
,leurreprésentation
π
dansL 2 (∂ T , µ)
oùµ
estlamesuredeBernoulliuniforme.Cettereprésentations'approxime parlesreprésentationsπ n
surlessommetsàdistanen
delarainedeT
.Nousmontronsque
π
sedéomposeenunesommedereprésentationsπ n ⊖ π n−1
dedimensionsnies, etspec(π) = S
n≥0 spec(π n )
.H π
a un spetre purement pontuel et son rayon spetral est une valeur propre. On peut dérire ex-pliitement es spetresomme suit. Pour
λ ∈ R
, soitJ (λ)
l'ensemble de Juliadu polynmequadratiquez 7→ z 2 − λ
:J(λ) = r
λ ± q λ ± p
λ ± √ . . .
.
NoteprésentéeparJean-PierreSerre
2000Aadémiedes SienesGroupe Spetrede
H π
DesriptionG [ − 1 2 , 0] ∪ [ 1 2 , 1]
deuxintervallesG ˜ [0, 1]
intervallepositifΓ { 1, 1 4 } ∪ 1 4 (1 ± J (6)) }
union d'un ensemble de Cantor demesurenulleet depointsisolés
Γ { 1, − 1 2 , 1 4 } ∪ 1 4
1 ± q
9
2 ± 2J ( 45 16 )
ensembledeCantordemesurenulle
Γ
identiqueàΓ
Ces aluls impliquent l'existenede graphesà roissanepolynomiale,qui sont lesgraphesde Shreier
degroupesderoissane intermédiaire, et dont lespetredel'opérateurdeMarkovest un quelonquedes
ensemblesi-dessus.Unrésultatanalogueest vraipourlessystèmesdynamiques.
1. Introdution
Thepurposeof thisnoteisthestudyofspetraofnonommutativedynamialsystems(thatis, systems
generated by several transformations that do not neessarily ommute). We produe several examples of
omputationsofsuhspetrawithaninterestingtopologialstruture. Moredetails appearin[1℄.
In the lassial ase dened by asingle aperiodi measure-preserving transformation
T : X → X
, thespetrumoftheorrespondingoperator
1
2 (U + U −1 )
,withU ∈ U (L 2 (X ))
,is[ − 1, 1]
byRohlin'sLemma,butinthenonommutativeasethespetrummayhavegaps, andevenbeaCantorset.
Wealso studyspetraofinniteregulargraphsand produetherstexampleof aregulargraphwhose
spetrumisaCantorset.
Our dynamial systems (with assoiated Heke operator) arise from ations of fratal groups on the
boundary of the regular rooted tree on whih they at. The graphs (with assoiated Markov operator)
whose spetra we onsider are the Shreiergraphs of these groupsoverparabolisubgroups. Inspeial
ases,thesegraphsaresubstitutionalgraphs andhavepolynomialgrowth.
If theunderlying groupisamenable,then thespetrumofthe thedynamialsystemoinides withthe
spetrumoftheorrespondinggraph.
The omputation of theabove spetrais based onoperator reursions that hold for fratal groupsand
involvesa
1
-dimensional and2
-dimensionallassialdynamial systemasanintermediatestep. This leads totheappearaneofJuliasetsofquadratimapsinthedesriptionoftheabovespetra.Both authorswish tothankheartily PierredelaHarpeandAlain Valettefortheirnumerousomments
andontributionstothisnote.
2. Spetraof Dynamial Systems andRepresentations
Let
G
beagroupnitelygeneratedbyasymmetrisetS
. Anon-ommutativedynamialsystem,denoted(S, X, µ)
, isanationofagroupG
(generatedbyS
)onaspaeX
andpreserving themeasurelass[µ]
ofameasure
µ
onX
.Suh adynamialsystemgivesrisetoanaturalunitaryrepresentation
π
ofG
inL 2 (X, µ)
givenby(π(g)f )(x) = p
g(x)f (g −1 x),
where
g(x) = dgµ(x)/dµ(x)
is the Radon-Nikodým derivative. The spetrum of the dynamial system(S, X, µ)
isthespetrumoftheHeketypeoperatorH π = 1
| S | X
s∈S
π(s) ∈ B (L 2 (X, µ))
(thisterminologyomesfrom ananalogywithHekeoperatorsin numbertheory[13℄.) Moregenerally,the
spetrumof aunitary representation
π : G → U ( H )
ofa groupwithagivennite set of generatorsisthespetrumoftheoperator
H π
asabovesee[10℄.Denition. Agraphisapair
G = (V, E)
ofsets(thevertiesand edges),amapα : E → V
(thestartofanedge)andaninvolution
· : E → E
(theinversion). Onedenesthenthe endω(e)
ofanedgebyω(e) = α(e)
.The degreeof avertex is
deg(v) = |{ e ∈ E | α(e) = v }|
. The graphis loallynite ifdeg(v) < ∞
for allv ∈ V
, and is regularifdeg(v)
isonstant overV
. The graph isa tree if in every iruit(e 1 , e 2 , . . . , e n )
of edges with
ω(e i ) = α(e i+1 )
(indies modulon
) there is a redution, i.e. ani
withe i = e i+1
. A graphmorphismisapairof maps between thevertexandedgesets thatommute with
α
and·
.Let
Σ = { 1, . . . , d }
beanitesetofardinalityd
. Thed
-regularrootedtreeT d
isthegraphwithvertexsetΣ ∗
,edgesetΣ ∗ × Σ × {±}
,andmapsα(σ, s, +) = σ
,α(σ, s, − ) = σs
and(σ, s, +) = (σ, s, − )
. Its boundaryis
∂ T = Σ N
,the setof innitesequenesoverΣ
.Suppose nowthat
G
ats by automorphisms ona rooted treeT
. This ation extends to aontinuousationontheboundaryofthetree,whihisaompat,totallydisonnetedspae. Theuniformmeasureon
Σ N
isthemeasureµ
denedontheylindersσΣ N
(forσ ∈ Σ ∗
)byµ(σΣ ∗ ) = d −|σ|
. ItisG
-invariant,andis theuniqueinvariantmeasureifG
atstransitivelyoneahlevelΣ n
ofthetree,orequivalentlyif(S, Σ N , µ)
isergodi. Notethat allothernondegenerateBernoullimeasuresarequasi-invariant.
Foreah
n ∈ N
,letπ n
betheunitaryrepresentation(ofnitedimensiond n
)ofG
inℓ 2 (Σ n )
induedbytheationof
G
on then
-thlevel,andletπ
be theunitaryrepresentationofG
inL 2 (Σ N , µ)
. Thenπ n
is asubrepresentationof
π n+1
and ofπ
, andthespetraofπ n
onvergetothat ofπ
:spec(π) = [
n∈ N
spec(π n ).
3. Spetra of Graphs
Let
G
bealoallynitegraph. TheMarkov operator ofG
istheoperatorM
onℓ 2 (V )
givenby(M f)(v) = 1
deg v X
e∈E: α(e)=v
f (ω(e)).
Theoperator
M
is thetransition operatorforthesimplerandomwalkonG
.The spetral propertiesof
M
areof great importane;for instane, atheorem ofKesten [11℄ (extendedby Dodziuk and others)laimsthat agraph
G
ofbounded degreeis amenableifand onlyif1 ∈ spec(M )
.(Seemoreonamenabilityin Setion5.)
Denition. Let
G
be a group nitely generated by a symmetri setS
, and letH
be any subgroup. TheShreiergraphof
G
withrespettoH
is the graphS (G, H, S)
withvertexsetG/H
and edge setS × G/H
,andmaps
α(s, gH) = gH
and(s, gH) = (s −1 , sgH)
. Ithas anatural base-pointH
.In Subsetion 4.3 the graphs will be labelled. This is simply done by assigning to eah edge
(s, gH)
thelabeling
s
.If
H = 1
,weobtaintheusualCayleygraphof(G, S)
. NotethatS (G, H, S)
isan| S |
-regulargraph,butitsautomorphism groupdoesnot neessarilyattransitively onits verties. Indeed, basiallyanyregular
graphisaShreiergraph[12,Theorem5.4℄.
G
atsbyleft-multipliationonG/H
, thevertexsetofS (G, H, S)
. Theorrespondingunitaryrepresen- tationinℓ 2 (G/H)
isthequasi-regular representationρ G/H
.Suppose nowthat
G
atsonarooted treeT d
. Fix theraye = dd · · · ∈ Σ N
. LetP n
bethestabilizer ofvertexatlevel
n
ofthisray,andletP = T
n∈ N P n
bethestabilizeroftheinniteraye
(itisalledaparabolisubgroup). We write
M n
the Markov operator ofS (G, P n , S)
andM
the Markovoperator ofS (G, P, S)
;theyaretheHeketypeoperatorsassoiatedwiththeationof
G
onΣ n
andΣ N
.4. FratalGroupsandSubstitutional Graphs
Let
G
beagroupatingonatreeT
,andletH = T
s∈Σ Stab G (s)
betherstlevel stabilizer. Restriting theationofH
toeah subtreespannedbysΣ ∗
givesanembeddingψ : H → Aut ( T ) Σ .
Denition. The group
G
is fratalifψ
isa subdiretembeddingofH
inG Σ
, i.e. ifψ(H )
lies inG Σ
anditsprojetion oneah fatorisonto.
Let now
G
be agroup nitely generated by asymmetri setS
, and let(X, x 0 )
be apointed spae onwhih
G
ats. Thegrowth ofX
is thefuntionγ : N → N
givenbyγ(n) = |{ x ∈ X : x = s 1 . . . s n x 0
forsomes i ∈ S }| .
X
haspolynomial growth ifγ(n) ≤ n D
forsome largeenoughD
, has exponential growth ifγ(n) ≥ λ n
forsomesmallenough
λ > 1
,andhasintermediategrowthintheremainingases. ThegrowthofG
isitsgrowthunderitsationonitselfbyleftmultipliation.
Wedesribenowbrieyvearhetypialexamplesof groups.
4.1. The Groups
G
andG ˜
. Therstgroupwasintroduedbytheseondauthorin1980[5℄;bothgroupsaton
T 2
. Leta
be theautomorphismpermuting thetoptwobranhesofT 2
, and denereursivelyb, c, d
by
φ(b) = (a, c)
,φ(c) = (a, d)
andφ(d) = (1, b)
. LetG
bethegroupgeneratedby{ a, b, c, d }
.Dene also
˜ b, ˜ c, d ˜
byφ(˜ b) = (a, ˜ c)
,φ(˜ c) = (1, d) ˜
andφ( ˜ d) = (1, ˜ b)
, and letG ˜
bethe groupgeneratedby{ a, ˜ b, ˜ c, d ˜ }
. ClearlyG ˜
ontainsG
asthesubgrouph a, ˜ b˜ c, ˜ c d, ˜ d ˜ ˜ b i
.4.2.
GGS
Groups. Letd
beaprime number. Denote bya
theautomorphismofT d
permutingyliallythetop
d
branhes. Fixasequeneǫ = (ǫ 1 , . . . , ǫ d−1 ) ∈ ( Z /d) d−1
. Denereursivelytheautomorphismt ǫ
of
T d
,writtent ǫ = (a ǫ 1 , . . . , a ǫ d −1 , t ǫ )
,byt ǫ (σ 1 σ 2 . . . σ n ) =
( σ 1 a ǫ σ 1 (σ 2 . . . σ n )
if1 ≤ σ 1 ≤ d − 1, σ 1 t ǫ (σ 2 . . . σ n )
ifσ 1 = d.
Then
G ǫ
isthesubgroupofAut ( T d )
generatedby{ a, t ǫ }
. ItisalledaGGS
group [3℄.Thefollowingresultsbelongto folklore(see[6℄):
G ǫ
isaninnitegroupifanonlyifǫ 6 = (0, . . . , 0)
. Itisatorsiongroupifandonlyif
P ǫ i = 0
. Theonlythree inniteGGS
groupsford = 3
areasfollows:Let
r
be the automorphism ofT 3
dened reursively byφ(r) = (a, 1, r)
, and letΓ
be the subgroup ofAut ( T 3 )
generatedby{ a, r }
. It wasrstonsideredbyNarainGuptaandJaekFabrykowski[4℄.Dene
s
byφ(s) = (a, a, s)
,andletΓ
bethesubgroupofAut ( T 3 )
generatedby{ a, s }
.Dene
t
byφ(t) = (a, a −1 , t)
,andletΓ
bethesubgroupofAut ( T 3 )
generatedby{ a, t }
;itwasrststudiedinthe80'sbyNarainGuptaandSaid Sidki[8,9℄.
Theorem1. The groups
G, G ˜
and all inniteGGS
groups withd ≥ 3
have intermediate growth. The Shreier graphS (G, P, S)
orresponding toG = G , G ˜
oranyGGS
group has polynomialgrowth.In partiular,
S ( G , P, S)
andS ( ˜ G , P, S)
have lineargrowth, whileS (Γ, P, S )
,S (Γ, P, S )
andS (Γ, P, S)
havepolynomialgrowthofdegree
log 2 (3)
.4.3. Substitutional Graphs. We givea self-ontaineddesription of the Shreier graphs
S (G, P, S)
fortheexamplesabove,intheformofsubstitutionalrules. Inthissubsetion,allgraphsshallhaveabasepoint,
andshallbeedge-labelled;graphembeddingsmustpreservethelabelings.
Denition. Asubstitutionalruleisatuple
(U, R 1 , . . . , R n )
,whereU
isanited
-regularedge-labelledgraph, alledthe axiom,andeahR i
isaruleoftheformX i → Y i
,whereX i
andY i
areniteedge-labelledgraphs.Thegraphs
X i
are requiredtohave noommon label. Furthermore, thereisan inlusion, writtenι i
, of theverties of
X i
inthe vertiesofY i
;the degree ofι i (x)
isthe sameasthe degree ofx
for allx ∈ V (X i )
,andallvertiesof
Y i
not inthe image ofι i
havedegreed
.Given a substitutional rule, one sets
G 0 = U
and onstruts iterativelyG n+1
fromG n
by listing allembeddingsof all
X i
inG n
(noting that theyare disjoint),and replaingthembytheorrespondingY i
. Ifthebase point
∗
ofG n
isinagraphX i
,thebase pointofG n+1
willbeι i ( ∗ )
.Note that this expansionoperation preservesthe degree,so
G n
is ad
-regular nite graphforalln
. Weareinterestedin xed pointsof this iterativeproess, orequivalently in aonvergingsequene of balls of
inreasingradiusin the
G n
, andallalimitgraph(whihexistsby[7℄)asubstitutionalgraph.Theorem2. For the ve examples
G
desribed above, the Shreier graphsS (G, P, S)
are substitutional graphs.Asanillustration,hereisthesubstitutionalruleforthegroup
Γ
:a
a a
ρ σ
τ
-
a a a
2 ρ 1 ρ
0 ρ
a a a
1 σ 0 σ
2 σ
a a a
0 τ 2 τ
1 τ
s s
s
axiom
a a a
2
s
1
s
0
s
5. Amenability and Spetra
Let
G
be agroupatingonasetX
. This ationisamenable in thesense of vonNeumann[14℄ ifthereexistsanitelyadditivemeasure
µ
onX
,invariantundertheationofG
,withµ(X) = 1
.A group
G
isamenable ifitsationonitselfbyleft-multipliationisamenable.We nowstate the main onnetion betweenthe spetraof our representationsand dynamialsystems.
Reall
π
istherepresentationofG
onL 2 (Σ N )
andπ n
istherepresentationofG
onL 2 (Σ n )
. Sineπ n
ontainsπ n−1
wewriteπ n = π n−1 ⊕ π ⊥ n
.Theorem3. Let
G
be agroup atingon aregularrootedtree, withπ
,π n
andπ ⊥ n
beasabove.1.
π
isareduiblerepresentationofinnitedimensionbutsplitsasπ 0 ⊕ L
n≥1 π n ⊥
,soallofitsirreduibleomponents arenite-dimensional. Moreover
spec(π) = S
n≥0 spec(π n )
.However, if
G
isweakbranh (see[2℄), thenρ G/P
isirreduible.2. The representations
π n
andρ G/P n
are equivalent, so their spetra oinide. The spetrumofρ G/P
isontainedin
∪ n≥0 spec(π n )
,andtherefore isontainedin the spetrumofπ
.If moreovereither
P
orG/P
are amenable, these spetra oinide, andifP
is amenable, theyareontainedin thespetrumof
ρ G
.3.
H π
hasapure-pointspetrum,anditsspetralradiusr(H π ) = s ∈ R
isaneigenvalue,whilethespetral radiusr(H ρ G/P )
isnotaneigenvalueofH ρ G/P
. ThereforeH ρ G/P
andH π
aredierentoperatorshavingthe samespetrum.
6. Resultson Spetra
Sineallthegroupsonsideredhaveintermediategrowth,theyareamenableand
spec ρ G/P = spec π
. Wenowdesribeexpliitlythesespetra. For
λ ∈ R
letJ (λ)
betheJuliaset ofthequadratimapz 7→ z 2 − λ
:J (λ) =
s
λ ± r
λ ± q
λ ± √ . . .
.
Group Spetrumof
M
DesriptionG [ − 1 2 , 0] ∪ [ 1 2 , 1]
twointervalsG ˜ [0, 1]
nonnegativeintervalΓ { 1, 1 4 } ∪ 1 4 (1 ± J(6)) }
union of Cantor set of null Lebesguemeasureandset ofisolatedpoints
Γ { 1, − 1 2 , 1 4 } ∪ 1 4 1 ± q
9
2 ± 2J ( 45 16 )
Cantorset ofnullLebesguemeasure
Γ
sameasforΓ
These omputationsimplythefollowingresults:
Theorem4. 1. There are onneted
4
-regular graphs of polynomial growth, whih is are the Shreiergraphs of groups of intermediate growth, and whose Markov operator's spetrum is any of the above
sets.
2. There arenonommutativedynamial systems generatedby
3
(inthe ase ofG
),4
(in the aseofG ˜
)or
2
transformations, whose spetrumisanyof the above sets.These spetraare all omputedusing the sametehnique: onsider the representation
π n
of dimensiond n
, givenbyd n × d n
-permutationmatriesπ n (s)
, foralls ∈ S
. Thesematriessatisfyblokidentities,for instaneforthegroupG
π n (a) =
0 1 d n −1
1 d n −1 0
, π n (b) =
π n−1 (a) 0 0 π n−1 (c)
,
π n (c) =
π n−1 (a) 0 0 π n−1 (d)
, π n (d) =
1 d n −1 0 0 π n−1 (b)
.
Notethatforourveexamples
π n (s)
isexpressed bybloksoftheform0
,1
andπ n−1 (s ′ )
.Dene nowthepolynomial
Q : C S+1 → C
byQ n ( { X s } , λ) = det X
s∈S
X s π n (s) − λ
!
.
Thespetrumof
π n
is{ λ ∈ C | Q n ( |S| 1 , . . . , |S| 1 , λ) = 0 }
. Usingthe aboveblokidentities, it is possible to expressQ n
asrationalexpressionoverQ n−1
,andthereforeto omputeindutivelyQ n
andthespetrumofπ n
. ForthegroupG
,forinstane,wehaveforn ≥ 2
,settingα = X a
andβ = X b = X c = X d
,Q n (α, β, λ) = (3β 2 + 2λβ − λ 2 ) 2 n−2 Q n−1
2α 2
2β 2 λ − λ 2 , λ − β + (λ − β)α 2 3β 2 + 2βλ − λ 2
.
Inallourasesthepolynomials
Q n
anbeexpliitlyomputed;againforthegroupG
,wehavetheLemma1. Dene
Φ 0 = α + 3β − λ, Φ 1 = − α + 3β − λ,
Φ 2 = − α 2 − 3β 2 − 2βλ + λ 2 , Φ n = Φ 2 n−1 − 2(2α) 2 n −2
forn ≥ 3.
Thenfor all
n ∈ N
wehaveQ n (α, β, λ) = Φ 0 Φ 1 · · · Φ n
.We show below theset ofvanishing points of
Q 6 (X a = X a −1 = α, X r = X r −1 = 1, λ)
for thegroupΓ
,andtheShreiergraph
S (Γ, P 6 , { a ±1 , r ±1 )
.λ
α
-2 -1 0 1 2 3 4
-2 -1 1 2
On montrei-dessus l'ensemble despointsd'annulation de
Q 6 (X a = X a −1 = α, X r = X r −1 = 1, λ)
pourlegroupe
Γ
,etlegraphede ShreierS (Γ, P 6 , { a ±1 , r ±1 )
.Referenes
1. LaurentBartholdiandRostislavI.Grigorhuk,OnthespetrumofHeketypeoperatorsrelatedtosomefratalgroups,to
appearinPro.SteklovInst.Math.,1999.
2. ,Sous-groupesparaboliquesetreprésentationsdegroupesbranhés,submitted,2000.
3. GilbertBaumslag,Topisinombinatorialgrouptheory,LeturesinMathematis,ETHZürih,BirkhäuserVerlag,Basel,
1993.
4. JaekFabrykowski andNarainD.Gupta,Ongroupswith sub-exponentialgrowthfuntions,J.IndianMath. So. (N.S.)
49(1985),no.3-4,249256.
5. RostislavI.Grigorhuk,OnBurnside'sproblemonperiodigroups,Funktsional.Anal.iPrilozhen.14(1980),no.1,5354,
Englishtranslation: FuntionalAnal.Appl.14(1980),4143.
6. ,Justinnitebranhedgroups,HorizonsinProniteGroups(DanSegal,MarkusP.F.duSautoy,andAnerShalev,
eds.),Birkhaüser,Basel,2000,pp.121179.
7. RostislavI. Grigorhuk and Andrzejuk, On the asymptoti spetrum of random walks on innite families of graphs,
Proeedingsofthe ConfereneRandomWalksandDisretePotentialTheory (Cortona)(M.Piardelloand W.Woess,
eds.),SymposiaMathematia(CambridgeUniversityPress),2228June1997,(toappear),pp.134150.
8. NarainD.GuptaandSaidN.Sidki,OntheBurnsideproblemforperiodigroups,Math.Z.182(1983),385388.
9. ,Someinnite
p
-groups,AlgebraiLogika22(1983),no.5,584589.10. Pierre de laHarpe, A. Guyan Robertson, and AlainValette, On the spetrum of thesum of generators for a nitely
generatedgroup,IsraelJ.Math.81(1993),no.1-2,6596.
11. HarryKesten,Symmetrirandomwalksongroups,Trans.Amer.Math.So.92(1959),336354.
12. AlexanderLubotzky,Cayleygraphs:Eigenvalues,expandersandrandomwalks,Surveysinombinatoris,1995(Stirling),
CambridgeUniv.Press,Cambridge,1995,pp.155189.
13. Jean-PierreSerre,Répartitionasymptotiquedesvaleurspropresdel'opérateurdeHeke
T p
,J.Amer.Math.So.10(1997),no.1,75102.
14. JohnvonNeumann,ZurallgemeinenTheoriedesMasses,Fund.Math.13(1929),73116and333,=Colletedworks,vol.
I,pages599643.