• Aucun résultat trouvé

Deterministic quadratic semi-blind FIR multichannel estimation : algorithms and performance

N/A
N/A
Protected

Academic year: 2022

Partager "Deterministic quadratic semi-blind FIR multichannel estimation : algorithms and performance"

Copied!
4
0
0

Texte intégral

(1)

ESTIMATION: ALGORITHMS AND PERFORMANCE

Elisabeth de Carvalho

Stanford University

Stanford, CA 94305-9515,USA

carvalho@dsl.stanford.edu

Dirk Slock

Institut Eurecom, B.P. 193

06904 Sophia AntipolisCedex, FRANCE

slock@eurecom.fr

ABSTRACT

Thepurposeofsemi-blindchannelidenticationmethodsis

toexploitthe informationused by blindmethodsandthe

informationcomingfromknownsymbols. Themainfocus

ofthispaperisthestudyofdeterministic quadraticsemi{

blind algorithms which are of particular interest because

oftheir lowcomputationalcomplexity. Theassociatedcri-

teriaare formedas a linearcombinationof ablind and a

trainingsequence based criterion. Through the examples

of Subchannel Response Matching and Subspace Fitting

basedsemi{blindcriteria,westudyhowtoconstructprop-

erlysuchsemi{blindcriteriaandhowtochoosetheweights

ofthelinearcombination. Weprovideaperformancestudy

forthesealgorithmsandgivetheoreticalconditionsforthe

semi{blindperformancetobeindependentoftheweights.

1. INTRODUCTION

Dierent ways of building semi{blind criteria are possi-

ble. Optimal semi{blind methods can take into account

theknowledge ofsymbolsevenarbitrarilydispersedinthe

burst: in[1 ],weproposedoptimalmethodsbasedonMaxi-

mumLikelihood(ML).Thissymbolcongurationisingen-

eral undesirable as the associated semi{blind criteria will

requirecomputationallydemandingalgorithmsbecausethe

structureoftheblindproblemislost.

For grouped knownsymbols (training sequence) com-

putionallylowsolutionscanbebuiltbecausethestructure

of the blind problem is kept. By neglecting some infor-

mationabout the knownor unknownsymbols, ML easily

allows oneto construct semi{blindcriteria that are a lin-

ear combinationof a blindand atrainingsequence based

criterion,withoptimalweightsintheMLsense.

A third way to buildsemi{blind criteria is to linearly

combine agivenblindcriterion and aTS basedcriterion.

Westudyherethe SubchannelResponse Matching(SRM)

andSubspaceFitting(SF)basedsemi{blindcriteriawhich

are of particular interest because they are quadratic and

representclosedformedsolutions;semi{blindSRMinpar-

ticularhasalowcomplexity. WeshowthattheblindSRM

criterionneedsrsttobedenoisedandthencorrectlycom-

binedtothe TScriterion. In[2 ], theSRMcase istreated

butthe criterionis neither denoised nor correctlyweight-

ed. The SF case is treated in [3 ,4]. In [4 ], the optimal

for the performance, whichrepresentsanincreaseincom-

plexity. Here,weprovideasimplesolutiontondthecor-

rectweights.

At last, we provide a performance studyof determin-

istic quadratic semi{blindcriteria. We especially charac-

terizetheirperformanceinthecaseofanasymptoticnum-

berofunknownsymbolsM

U

and nite numberofknown

symbols MK. In [4 ], a similar study was conducted for

M

K

M

U

,butwith M

K

!1,whichdoesnotallowto

draw the conclusionswe get. Here, we give theoretically

foundedconditionsforthesemi{blindcriteriaperformance

tobeindependentoftheweightsofthelinearcombination.

2. PROBLEM FORMULATION

Consider a sequence of symbols a(k) received throughm

channelsoflengthNwithcoeÆcientsh (i):

y(k)= N 1

X

i=0

h(i)a(k i)+v(k); (1)

v(k) isanadditive independent whiteGaussiannoiseand

r

vv

(k i) = Ev(k)v(i) H

= 2

v I

m Æ

k i

. Assumewe receive

M samples,concatenatedinthevectorY

M (k):

Y

M

(k)=TM(h)AM(k)+V

M

(k) (2)

Y

M

(k) =[y T

(k M+1)y T

(k)]

T

, similarly for V

M (k),

andAM(k)=[ a(k M N+2)a(k)]

T

. (:) T

denotestrans-

pose and (:) H

hermitian transpose. The channel trans-

fer functionis H(z)= P

N 1

i=0 h (i)z

i

=[H T

1 (z)H

T

m (z)]

T

.

T

M

(h)isablockToeplitzmatrixlledoutwiththechannel

coeÆcientsgroupedinh=[h T

(N 1)h T

(0)]

T

. Weshall

simplifythenotationin(2)withk=M 1to:

Y = T(h)A+V : (3)

The space spanned by the columnsof T(h)will be called

signal subspace and itsorthogonal complement, the noise

subspace. WeassumethatatrainingsequenceA

TS located

at thebeginningoftheburstispresentintheinputburst.

Y

TS

=TTS(h)AT

S +VT

S

=ATSh+V

TS

is theportion

oftheoutputburstcontainingonlyknownsymbols. Y

B

=

TB(h)AB+VB istherest ofthe outputburst(itcontains

theunknownsymbolsbutalsosomeknownsymbolswhich

(2)

3. SEMI{BLINDSRM

SRM [5] is based on a linear parameterization H

?

(z) of

the noise subspace which satises T(h

?

)T(h) = 0 where

T(h

?

) is the convolution matrix built from H

?

(z) and

spans the entire noise subspace. For m = 2, H

?

(z) =

[ H

2 (z) H

1

(z)]. Form>2[6 ],

H

?

(z)= 2

6

6

6

4 H

2 (z) H

1

(z) 0 0

0 H3(z) H2(z) .

.

.

.

.

.

.

.

. .

.

.

0

H

m

(z) 0 0 H

1 (z)

3

7

7

7

5 :

(4)

Inthenoisefreecase,T(h

?

)Y (=T(h

?

)T(h)A)=0. Us-

ingthecommutativityofconvolutionT(h

?

)Y =Yh,where

YisastructuredmatrixlledoutwiththeelementsofY:

thechannelcoeÆcientscanbeidentieduniquelyfromthis

equationas the minimal left eigenvectorof Y. Whenthe

receivedsignalis noisy,hisobtained bysolvingtheleast{

squaresquadraticcriterionmin

khk=1 kYhk

2

.

Considerthefollowing semi{blindcostfunction:

h H

Y H

B Y

B h+kY

TS T

TS (h)A

TS k

2

: (5)

NotethatotherTSbasedcriteriacanalsobeconsidered[7 ].

AnintuitivewaytoweighbothTSandblindpartsistoas-

sociatethemwiththenumberofdatatheyarebuilt from,

assuggested in[3 ]for the semi{blindsubspace tting. In

theSRMcase,theoptimalwouldthenbeequalto1. In

gure1,weshowtheNMSEforthechannelaveragedover

100Monte{Carlorealizationsofthechannel(withi.i.d.co-

eÆcients)thenoise andthe inputsymbols. TheNMSEis

plotted w.r.t. the value of in dotted lines. For = 1,

semi{blindSRMgivesworseperformancethanTSestima-

tion.

Theblind SRMcriteriongivesunbiasedestimates on-

ly under a norm constraint for the channel [6 ]. As the

semi{blindcriterion is optimized withoutconstraints, the

blindSRM part gives biased estimates which rendersthe

performance of the semi{blind algorithm poor. For the

criterionto beunbiased, the termY H

B

YB needsto be de-

noised. Asymptoticallyinthe numberof data, Y H

B Y

B

!

X H

B

XB+EV H

B

VB, where XB is built from the noise free

signal T

B (h)A

B and V

B

from the noise V

B

; EV H

B V

B

!

2

v

where is a constant. The minimal eigenvalue of

Y H

B

YB,min(Y H

B

YB),isanestimateof 2

v

andthequan-

tityY H

B Y

B

min (Y

H

B Y

B

)Iis thedenoisedSRMHessian.

Oncethecriterionis denoised,the choicefor the constan-

t remains unsolved. To nd it, we refer to semi{blind

DeterministicMLfor h[7 ]. TheblindDMLforhis:

min

h Y

H

P

?

T(h)

Y (6)

where PX is the orthogonal projection onthe columns of

X and P

?

X

= I P

X

is the projection onthe orthogonal

complementofX. Byusingthelinearparameterizationof

thenoisesubspace,(6)becomes:

min

h Y

H

T H

(h

?

)

T(h

?

)T H

(h

?

)

+

T(h

?

)Y

,minh H

Y H

R +

(h)Yh

(7)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

10 −2 10 −1

10 0 Semi−Blind SRM − M=100 − 10 dB

Valeur de α

NMSE

10 known symbols

10 known symbols 20 known symbols

20 known symbols

*

DenoisedSemi-BlindSRM(9) NonDenoisedSemi-BlindSRM(5) Training

Figure1: Semi{blindSRMbuiltasalinearcombinationof

blindSRMandTSbasedcriteria.

NotethatSRMappearsasanon{weightedversionofDML.

In[7 ],thefollowingsemi{blindcriterionbasedonDMLwas

proposed:

h H

Y H

B R

+

B

(h)YBh+kY

TS

TTS(h)ATSk 2

: (8)

Semi{blind DML gives the optimal weights between the

blindandTSpart: webuildnowsemi{blindSRMasanap-

proximationofDML.WeapproximateRB(h)asamultiple

oftheidentitymatrixwithmultipleequaltothemeanofthe

diagonalelements,i.e.

m

2 khk

2

.Thenormofthechannelcan

beestimatedthankstoanestimateofthedenoisedsecond{

ordermomentofadatasampletr(ryy(0))= 2

a khk

2

. After

denoising,thesemi{blindSRMcriterionis:

min

h f

2

m 1

[

khk 2

h H

Y H

B Y

B

min (Y

H

B Y

B )

h+

kY

TS

TTS(h)ATSk 2

g:

(9)

It canbe shownthat replacing khk 2

by a consistent esti-

mate does not change the asymptotic performance. This

algorithmcouldalsobeinterpretedasanapproximationof

thesemi{blindDenoisedIQMLalgorithm presentedin[7 ].

Ingure1,insolidlines,we show theperformance ofthe

correctedsemi{blindcriterion. Thescalarscalestheblind

partin(9). Thevalue =1 givesapproximately theop-

timalperformanceand intheneighborhoodof=1,the

performancehardlydependsonthevalueof.

4. SEMI{BLINDSUBSPACEFITTING

ConsiderthereceivedsignalcovariancematrixoflengthL:

R

Y

L Y

L

= 2

a T

L (h)T

H

L (h)+

2

v

I. LetR

Y

L Y

L

=V

S

S V

H

S +

VNNV H

N

betheeigendecomposition. SgroupstheL+N

1(dimensionofthesignalsubspace)largesteigenvaluesof

R

Y

L Y

L and

N

= 2

v

Ithesmallestones. ThecolumnsofV

S

spanthe signalsubspaceand thecolumnsofVN the noise

subspace. Signal Subspace Fitting (SSF) ts the column

spaceofT(h)tothatofVSthroughthequadraticcriterion:

min

khk 2

=1 kP

b

V

N T(h)k

2

, min

khk 2

=1 h

H

S H

Sh (10)

where b

V

N

is anestimateofV

N

obtained from thesample

covariancematrix.

(3)

0 0.5 1 1.5 2 2.5 3 10

−2

10

−1

10

0

Value of α M=100 − 2 Subchannels − 10dB − 10 known Symbols

L=2N L=7N

L=5N L=4N

L=N L=7N

L=5N L=4N

L=3N L=3N

L=2N

Semi-blindSF(11)

Denoisedsemi-blindSF

0 0.5 1 1.5 2 2.5 3

10

−2

10

−1

10

0

Value of α M=100 − 2 Subchannels − 10dB − 10 known Symbols

L=7N

L=N

Semi-blindSF(12)

Figure2: Semi{blindSF built as a linear combinationof

blindSFandTSbasedcriteria.

Considernowthefollowing semi{blindcostfunction:

MUh H

S H

B

SBh+kY

TS

TTS(h)ATSk 2

: (11)

In[3 ], M

U

was chosen equal to the numberof data on

whichthe blindcriterionis based,i.e. = 1. Ingure 2

(left,dashedlines), we plotthe NMSEof channel estima-

tionw.r.t.fordierentsizesL,forSNR=10dB,10known

symbols. For L = N (thesolid line and dotted line are

superposed), the semi{blindcriterionis relatively insensi-

tiveto thevalueof . ForL larger thanN however, itis

visiblyverysensitiveto itsvalue. Thechoice=1gives

performanceworsethanthatoftrainingsequencebasedes-

timation for L > N. These simulationssuggest that the

linearlycombined semi{blindalgorithmis sensitive tothe

dimensionofthenoisesubspacewhichvarieswhenLvaries.

Weproposeto\denoise"theblindpartoftheSFcrite-

rion,i.e.weforcethesmallesteigenvalueofS H

B S

B

to0via

S H

B S

B

min (S

H

B S

B

)I. Note that theoretically we do not

remove any noise contribution here, but cleanthe matrix

S H

B S

B

. This strategy will be laterdiscussed in section 5.

Theperformance of the denoised semi{blind SF criterion

w.r.t. for 500 Monte{Carlo realizations of the channel,

noiseandinputsymbolsareshowningure2(left)insolid

lines. We notice the signicant eectof the denoising on

thesemi{blindalgorithm performance, butthis algorithm

stilldoesnotgivesuÆcientlygoodperformancefor=1.

We propose here to scale the blind part of the semi{

blindSFcriterionbythedimensionN ofthenoisesubspace.

Theresultingcriterionis:

min

h

MU

N h

H

S H

B SB

^

minI

h+kY

TS

TTS(h)ATSk 2

:

(12)

Ingure2(right),weshowtheperformanceof(12)inthe

caseofrandomchannelswith2subchannels: thesemi{blind

SFcriterion(12)givessatisfactoryresultsfor=1.

5. PERFORMANCE STUDY

Considerthegeneralsemi{blindquadraticcriterion:

min

h n

MUh H

b

QBh+kY

TS

TTS(h)ATSk 2

o

: (13)

b

Q

B

= 2

m [

khk 2

1

M

U

Y H

B Y

B

min (Y

H

B Y

B )I

for semi{blind

SRMand b

QB= 1

N h

S H

B SB

^

min(S H

B SB)I

i

forsemi{blind

SF.WhenthechannelhasNc 1zeros(e.g.duetochan-

nellengthoverestimation), b

QB tendsasymptoticallytoQB

which has Nc null eigenvalues. Let b

QB = c

W1 b

1 c

W H

1 +

c

W2 b

2 c

W H

2

betheeigencompositionof b

QB, b

2!0asymp-

totically. Notethatthe smallest eigenvalueof b

QB is 0for

the semi{blindcriteria proposed. Onecan show that the

elementsof b

2 (not exactlyequalto 0)areoforder1=MU

for bothSRMandSF.

Thesolutionof(13) is:

^

h=

M

U b

Q

B +A

H

TS A

TS

1

A H

TS Y

TS

(14)

We studythe performance ofthe semi{blind criterion

(13) fortheasymptoticcases:

MU and MK innite, with condition p

M

U

M

K

! 0,

whichaccountsforthefactthattheTSpartofthecri-

terionshouldnotbenegligiblew.r.t.theblindpart[8 ].

M

U

innite,M

K nite.

Asimilaranalysisexistsin[4 ]forSFwherethelastasymp-

toticconditionisMKMU,withMK innitehowever.

5.1. MU and MK innite

Inthatcase,itcanbeshownasin[8]that:

C

hh

= M

U Q

B +A

H

TS A

TS

1

2

M 2

U E(

b

Q

B h

o

h oH

b

Q H

B )

+ 2

v A

H

TS A

TS

M

U Q

B +A

H

TS A

TS

1

:

(15)

WedonotprovidehereexpressionsforE(

b

Q

B h

o

h oH

b

Q H

B )for

lack of space. The performance in that case depends on

the value of . In orderto optimize the performance, it

wouldbenecessarytondtheoptimal,whichshouldbe

avoided,becauseoftheadditional computationalcost.

5.2. MU innite,MK nite

LetR 1=2

R H =2

betheCholeskydecompositionofA H

TS ATS.

MU b

QB+A H

TS AT

S

1

=

R H =2

M

U R

1=2

b

Q

B R

H =2

+I

1

R 1=2

: (16)

LettheeigendecompositionofR 1=2

b

QBR H =2

= b

Q 0

B be:

b

Q 0

B

= c

W 0

b

0

c

W 0H

= c

W 0

1 b

0

1 c

W 0H

1 +

c

W 0

2 b

0

2 c

W 0H

2

: (17)

b

0

2

!0asymptoticallyinthenumberofdata.

MUR 1=2

b

QBR H =2

+I

1

=

c

W 0

1

MU b

0

1 +I

1

c

W 0H

1 +

c

W 0

2

MU b

0

2 +I

1

c

W 0H

2

=

c

W 0

2

M

U b

0

2 +I

1

c

W 0H

2

(18)

at rst orderin1=

p

M

U . When

b

0

2

6=0, as the non{zero

element of b

0

2

are of order1=M

U ,M

U b

0

2

is of the same

orderasI,andtheperformancedependson.When b

0

2

=

0, c

W 0

2

MU b

0

2 +I

1

c

W 0H

2

= c

W 0

2 c

W 0H

2

and we can show

that the performance are independent of , and at rst

orderin1=M

U

,thecovariancematrixoftheestimationerror

h=

^

h h o

(h o

isthetruevalueofthethechannel)is:

Chh=

2

W2

W H

A H

ATSW2

1

W H

(19)

(4)

0 1 2 3 4 5 6 7 8 9 10 10 −2

10 −1 10 0

M=100 − 2 Subchannels − 10dB − 10 known symbols

Value of α

D=3 D=4 D=5

D=2 D=1

Figure3:Semi{blindSRM:D=1{5eigenvaluesforcedto0.

Thisexpression can be interpreted as the performance of

the estimationof the zeros of the channelby trainingse-

quence with perfect knowledge of the irreducible part of

thechannel.

For b

0

2

=0,whenconsideringexpression(15),withMK

nite,we nd expression(19): the asymptotic expression

(15)inMK andMUisvalidwhenMK isnite.Sothereis

a continuity between both expressions (15) and (19) and

expression (15) is valid in any case and should be used

to characterize the performance of the semi{blind criteri-

a.ThisisnottruewhentheNcsmallesteigenvaluesof b

QB

arenot exactly equalto 0: thereis adiscontinuityinthe

expressions, andboth analysesdonot coincide. Ingener-

al,inthis last case, itmay notbe obviousto know which

analysisbetweenM

K

inniteorM

K

niteisappropriate.

Inpractice the performance for small MK is notcon-

stant w.r.t. evenwhen b

0

2

=0. For arandomly chosen

channel,ingeneral,thematrix b

Q

B

exhibitsmorethanN

c

\small" eigenvalues (theextra smalleigenvalues are suÆ-

cientlysmall to inuence the performance). We take the

exampleof semi{blindSRM. Toforcen smallesteigenval-

uesto0,weconsiderthequantityY H

B

YB nI,wheren

isthe largest ofthe n smallest eigenvalues ofY H

B Y

B ,and

forcethe negative eigenvaluesto 0. For randomly chosen

channels of length 5 (soa priori irreducible channels) we

force1to5eigenvaluestozero: ingure3,weshowthere-

sultingNMSEfor100runsofthechannel,noiseandinput

symbols.Foranumberof3to5eigenvaluesforcedto0,we

seethat the performance are not dependent onthe value

of. TheproposedDML,SRMand SFbasedalgorithms

forcetozero only1eigenvalue andas alreadystatedhave

theirperformancedependenton. Howeverthealgorithms

wereconstructed(weighted)suchthattheoptimalisap-

proximatelyequalto 1: thissolutionispreferable because

itis lesscomplex. This analysis shows us the importance

oftheeigenvaluesof b

QB inthebehaviorofthesemi{blind

algorithms.

5.3. OptimalWeighted

BlindSRMandSFcriteriaareoftheformminhh H

U H

B UBh.

Theoptimally weighted version is min

h h

H

U H

B W

+

B (h)U

B h

withW +

B

(h)=EUBh o

h oH

U H

B

andgivesbetterperformance

than the non{weighted version. When M

K and M

U are

weightedsemi{blindcriterionis:

min

h

h H

U H

B W

+

B UBh+

1

2

v kY

TS

TTS(h)ATSk 2

(20)

Fortheseasymptoticconditions,ndingtherightscalefac-

tortooptimizetheperformanceofthenon{weightedpart

of the criterionis diÆcult as w mentionedin section 5.1,

howeverndingtherightweightingmatrixiseasier.

In fact, semi{blind DML (6) is built as anoptimally

weightedcombinationoftheblindandTScriteriaandSRM

canbeseenasanapproximationofthisweightedcriterion.

WehavenottestedtheweightedversionoftheSFcriterion:

the introduction of N may perhaps be explained by the

blindweightingmatrix.

6. CONCLUSION

Inthispaper,wehavepresentedtwoquadraticsemi{blind

channel estimation criteria basedona linearcombination

ofa blind and aTS criterion. We have seen that it may

bediÆculttoconstructasemi{blindcriterionthisway. A

performanceanalysishasshowntheimportanceofthesmall

eigenvaluesoftheHessianoftheblindpartofthecriterion.

Wehavestudiedconditionsforthesemi{blindperformance

tobeindependentfromtheweightsassociatedtotheblind

andTSparts.

7. REFERENCES

[1] E.deCarvalhoandD.T.M.Slock.Maximum-Likelihood

FIRMulti-ChannelEstimationwithGaussianPriorfor

theSymbols.InProc.ICASSP97Conf.,Munich,Ger-

many,April1997.

[2] G.LiandZ.Ding.ASemi-BlindChannelIdentication

MethodforGSMReceivers.InProc.ICASSP98Conf.,

Seattle,WA,May12-151998.

[3] A. Gorokhov and P. Loubaton. Semi{Blind Second{

OrderIdenticationofConvolutiveChannels. InProc.

ICASSP97Conf.,Munich,Germany,April1997.

[4] V.Buchoux,O.Cappe,A.Gorokhov,andE.Moulines.

On the Performance of Semi-Blind Subspace Based

Channel Estimation. Accepted for publication, IEEE

TransactionsonSignalProcessing.

[5] M.GurelliandC.L.Nikias. ANew Eigenvector-Based

AlgorithmforMultichannelBlindDeconvolutionofIn-

putColoredSignals. InProc.ICASSP,pages448{451,

1993.

[6] J.Ayadiand D.T.M. Slock. Cramer-Rao Boundsand

Methods for KnowledgeBased Estimation of Multiple

FIRChannels.InProc.SPAWC97Conf.,Paris,France,

April1997.

[7] J. Ayadi, E. de Carvalho, and D.T.M. Slock. Blind

andSemi-BlindMaximumLikelihoodMethodsforFIR

MultichannelIdentication.InProc.ICASSP98Conf.,

Seattle,USA,May 1998.

[8] E.deCarvalhoandD.T.M. Slock. AsymptoticPerfor-

manceofMLMethodsforSemi-BlindChannelEstima-

tion.InProc.AsilomarConferenceonSignals,Systems

&Computers,PacicGrove,CA,Nov.1997.

Références

Documents relatifs

known symbols are grouped in a training sequence: the suboptimal semi{blind cri-.. teria appear as a linear combination of a training sequence criterion and a

[r]

We present linear (in terms of subchannel impulse responses) noise subspace parameterizations and we prove that using a specic parameterization, which is minimal in terms of the

Blind identi- fiability in the deterministic model (i.e. identifiability up to a scale factor) requires the channel to be irreducible and the burst length and the number of

For the PRP-OFDM, after initial acquisition, the channel es- timate is then refined by a MMSE based semi-blind procedure using an averaging window of 72 and 20 OFDM symbols.. In

Identifiability conditions for blind and semi–blind channel estimation for both models are given in terms of characteristics of the channel, received data burst length, input

In the Gaussian symbols case on the other hand, robustness to channel length overdetermination and channel zeros arises, and the channel unidentifiablity gets reduced to a block

Blind channel estimation techniques have also been devel- oped for time-varying channels, by using so-called Basis Expansion Models (BEMs), in which the time-varying chan-