• Aucun résultat trouvé

The wheat genome: swimming in an ocean of transposable elements

N/A
N/A
Protected

Academic year: 2021

Partager "The wheat genome: swimming in an ocean of transposable elements"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02820796

https://hal.inrae.fr/hal-02820796

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The wheat genome: swimming in an ocean of transposable elements

Frédéric Choulet, Thomas Wicker, Etienne Paux, Cyrille Saintenac, Pierre Sourdille, Beat Keller, Rudi Appels, Catherine Feuillet

To cite this version:

Frédéric Choulet, Thomas Wicker, Etienne Paux, Cyrille Saintenac, Pierre Sourdille, et al.. The wheat genome: swimming in an ocean of transposable elements. ICTE 2008: International Congress on Transposable Elements, Apr 2008, Saint Malo, France. �hal-02820796�

(2)

IC

TE

2008: International Congress on Transposable Elements – Saint Malo, France, April 21-23, 2008

Frédéric CHOULET1, Thomas WICKER2, Etienne PAUX1, Cyrille SAINTENAC1, Pierre SOURDILLE1, Beat KELLER2,

Rudi APPELS3 and Catherine FEUILLET1

1 UMR INRA/UBP 1095 Génétique, Diversité et Ecophysiologie des Céréales, 63100 Clermont-Ferrand, France 2 Institute of Plant Biology, University Zurich, 8008 Zurich, Switzerland

3 Molecular Plant Breeding CRC, State Agriculture Biotechnology Centre, Murdoch University, Perth, WA 6150, Australia

With 17 Gb and an hexaploid structure, the bread wheat (Triticum aestivum L.) genome composition and organization is largely unknown and its molecular characterization remains a challenge. Our current knowledge is limited to the analysis of small fragments (150 kb) and random BAC end sequences.

contig size 3.165 Mb predicted genes 50 Sn2 Sr2 Rph7 Stb2 Yr Stagonospora nodorum Puccinia graminis Puccinia hordei Septoria tritici Puccinia striiformis Fhb1 Fusarium graminearum R locus (12 cM) 20 Mb chr 3B 1000 Mb Transposable elements: Gypsy Gypsy Copia Copia LINE LINE CACTA CACTA MITE MITE Unclassified Unclassified Retrotransposons DNA transposons

The

The

wheat

wheat

genome: swimming in an ocean of Transposable Elements

genome: swimming in an ocean of Transposable Elements

•••• Sequencing, annotation and marker development at the Rph7-Fhb1 locus

•••• Establishment of a physical map of the 3B chromosome

The R locus:

A cluster of at least 6 fungal disease resistance loci has been identified on the short arm of chromosome 3B in hexaploid wheat.

15 contigs (~20 Mb in total) are located in this region and 2 contigs spanning disease resistance loci are

currently under sequencing and

annotation.

One of them represents 3,2 Mb and spans the Rph7 and Fhb1 resistance loci.

INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE

INSTITUT NATIONAL DE LA RECHERCHE AGRONOMIQUE

Centre de Clermont

Centre de Clermont--FerrandFerrand--TheixTheix UMR INRA

UMR INRA--UBP 1095, UBP 1095, GGéénnéétiquetique DiversitDiversitéé et et EcophysiologieEcophysiologie des des CCéérrééalesales http://www1.clermont.inra.fr/umr1095/

http://www1.clermont.inra.fr/umr1095/

Using a chromosome-specific approach, we have constructed an integrated physical map of the largest wheat chromosome, 3B (1 Gb), to enhance our knowledge of the structure, function and evolution of the wheat genome.

• 57,000 fingerprinted BACs (8x coverage)

• 1,033 contigs (82% of the chromosome)

• 1,400 molecular markers

• 678 cytogenetically-anchored contigs

chr 3B 1000 Mb

Cytogenetic bins

BAC contigs locus pathogen

TE (and derivatives) 609

- TEs represents 60% of the sequence, the majority of them being

LTR-retrotransposons (72%) and CACTA family DNA transposons (20%). The

curated annotation has lead to detect 609 TEs and truncated derivatives showing variable levels of nested structure.

- The genes and TEs are not randomly distributed along the locus: the length of intergenic regions varies from 500 bps to 283 kb.

LINE MITE unclass. CACTA copia genes gypsy ISBP markers SSR markers c f t 6 0 2 5 c f t 6 0 2 6 c f t 6 0 1 5 c f t 6 0 9 5 c f t 6 0 1 6 c f t 6 0 8 4 c f t 6 0 0 5 c f t 6 0 6 3 c f t 6 0 6 4 c f t 6 0 8 9 c f t 6 0 0 0 c f t 6 0 9 0 c f t 6 0 6 5 c f t 6 0 6 6 c f t 6 0 9 1 c f t 6 0 0 1 c f t 6 0 0 2 c f t 6 0 0 3 c f t 6 0 0 4 c f t 6 0 9 2 c f t 6 0 8 7 c f t 6 0 8 8 c f t 6 0 2 9 c f t 6 0 9 7 c f t 6 0 3 1 c f t 6 0 9 8 c f t 6 0 9 9 c f t 6 1 0 0 c f t 6 1 0 2 c f t 6 0 3 4 c f t 6 1 0 4 c f t 6 0 3 6 c f t 6 1 0 6 c f t 6 1 1 7 c f t 6 0 4 2 c f t 6 0 7 1 c f t 6 0 7 2 c f t 6 0 4 4 c f t 6 0 5 8 c f t 6 0 5 9 c f t 6 0 8 1 c f t 6 0 6 0 c f t 6 0 7 6 c f t 6 0 1 9 c f t 6 0 6 1 c f t 6 0 6 2 c f t 6 0 0 6 c f t 6 0 0 9 c f t 6 0 1 0 c f t 6 0 1 1 c f t 6 0 0 7 c f t 6 0 1 2 c f t 6 0 1 3 c f t 6 0 1 8 Rph7 Fhb1 genes density (/100 kb) 1 0 2 3

This project aims at sequencing and annotating the first Mb-sized contigs available from the hexaploid wheat genome. Preliminary analyses of this 3.2Mb region revealed the presence of 61 different families of repeated elements, of which 15 are represented by more than 10 copies. Furthermore, the 2 major families (Fatima and Sabrina, LTR-retrotransposons) alone represent 84 TE copies and cover 15% of the contig.

In addition, these first large wheat genome sequences are an important resource for new TE discovery. Here, about 30 annotated features are potentially unknown TEs. Deeper analyses now remain to be done to confirm, classify and characterize these new elements. Thus, the sequencing of large contigs provides additional insights, compared to random BAC sequencing, into the genome structure and composition and supports the discovery of new TEs.

The high TE content of the wheat genome can be exploited as an endless source of molecular markers (ISBP: Insertion Site Based Polymorphism). Here, a potential of more than 1200 ISBPs (2 markers per TE) can be designed along the 3.2 Mb.

The data generated by this project provides original and new data on the wheat genome structure, function and evolution at a scale of Mb-sized contigs that has never been studied in wheat so far. In addition, it will allow the cloning of economically important disease resistance genes and QTL and enable the development of perfect markers for marker-assisted selection of these genes.

Références

Documents relatifs

To this end, the volume represents a contribution to the growing literature that seeks to shed light on the EU’s institutional development through comparative assessment.. The book

Une semblable activité a également été tenue le 26 août 2014, au moment de la diffusion de l’avis intitulé Améliorer l’enseignement de l’anglais, langue seconde, au primaire

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In contrast, approximately 50% of the 1CTA cells remained Ki67 positive 72 ‐hr postinfection with the genotoxic Salmonella (Figure 4a), and this effect was not associated

Frick and Grohe [14,15,17] have defined Fixed Parameter Tractable (FPT for short) algorithms for FO model-checking problems on classes of graphs that may have unbounded degree

La cartographie des acteurs qui s’engagèrent dans cette opposition montre une alliance entre des institutions médicales et des sociétés savantes de

Während sich die interne Wissenschaftskommunikation (unter Fachleuten) auf Differenzierung, Festlegung und Abgrenzung der Begrifflichkeiten stützt, zeichnet sich die externe

Die Studie stellt dar, dass MI bei Jugendlichen mit DMT1 signifikante Auswirkungen auf die Adhärenz, das Selbstmanagement und das HbA1c haben kann.. Jedoch weisen die Autorinnen darauf