• Aucun résultat trouvé

Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions

N/A
N/A
Protected

Academic year: 2022

Partager "Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions"

Copied!
4
0
0

Texte intégral

(1)

Ann. I. H. Poincaré – AN 25 (2008) 215–218

www.elsevier.com/locate/anihpc

Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions

M. Jazar

a,,1

, R. Kiwan

b

aMathematics department, Lebanese University, P.O. Box 826, Tripoli, Lebanon

bLaboratoire de Mathématiques et Physique Théorique, Université de Tours, UMR 6083 du CNRS, Parc de Grandmont, 37200 Tours, France Received 9 November 2006; accepted 4 December 2006

Available online 8 January 2007

Abstract

In this paper we give a positive answer to the conjecture proposed in [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39] by El Soufi et al. concerning the finite time blow-up for solutions of the problem (1), (2) below. More precisely, we give a direct proof of [A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow- up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39, Theorem 1.1] and the conjecture given for the casep >2.

©2007 Elsevier Masson SAS. All rights reserved.

Résumé

Dans cet article on donne une réponse positive à la conjecture proposeé dans [A. El Soufi, M. Jazar, R. Monneau, A Gamma- convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst.

H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39] par El Soufi et al. concernant l’explosion en temps fini des solutions du problème (1), (2) ci-dessous. Plus précisément, on donne une preuve directe du [A. El Soufi, M. Jazar, R. Monneau, A Gamma- convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst.

H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39, Theorem 1.1] ainsi que la conjecture énoncée pour le casp >2.

©2007 Elsevier Masson SAS. All rights reserved.

Consider a bounded regular (of classC2) domainΩinRN, and study the solutionsu(x, t )of the following equation for somep >1 (denoting the mean value |Ω1|

Ωf by

Ωf for a general functionf):

⎧⎪

⎪⎪

⎪⎪

⎪⎩

utu= |u|p

Ω

|u|p onΩ,

∂u

∂n=0 on∂Ω

(1)

* Corresponding author.

E-mail addresses:mjazar@ul.edu.lb (M. Jazar), kiwan@lmpt.univ-tours.fr (R. Kiwan).

1 The first author is supported by a grant from Lebanese University.

0294-1449/$ – see front matter ©2007 Elsevier Masson SAS. All rights reserved.

doi:10.1016/j.anihpc.2006.12.002

(2)

216 M. Jazar, R. Kiwan / Ann. I. H. Poincaré – AN 25 (2008) 215–218

with the initial condition

⎧⎪

⎪⎩

u(x,0)=u0(x) onΩ, with

Ω

u0=0. (2)

Without loss of generality, we may assume that the measure ofΩ is 1:|Ω| =1 (see [1]).

In this short note we show the following theorem:

Theorem 1(Sufficient condition for blow-up,p >1). Letp >1and letube a solution of (1),(2)withu0C(Ω), u0≡0. If the energy ofu0,

E(u0):=

Ω

1

2|∇u0|2− 1

p+1|u0|p+1 dx is non-positive, that is

E(u0)0, (3)

then the solution does not exist inL((0, T );L2(Ω))for allT >0.

We refer to [1] for the motivation and references concerning the study of Eq. (1) above. In particular, we have the following local existence result

Theorem 2(Local existence result,1< p <+∞).[1, Theorem 2.2]For everyu0C(Ω)there is a0< tmaxsuch that the problem(1),(2)has a unique mild solution, i.e. a unique solution

uC

[0, tmax);C

Ω

C1

(0, tmax);C

Ω

C

(0, tmax);D of the following integral equation

u(t )=et u0+ t 0

e(ts)f u(s)

ds

on[0, tmax), with f

u(s)

=u(s)p− −

Ω

u(s)p.

Moreover, we have

Ω

u(t )=0 for allt∈ [0, tmax) (4)

and iftmax<then

tlimtmax

u(t )

L(Ω)= ∞.

Proof of Theorem 1. We start with the following Lemma 1.For allt we have

E u(t )

=E(u0)t

0

Ω

u2t. (5)

(3)

M. Jazar, R. Kiwan / Ann. I. H. Poincaré – AN 25 (2008) 215–218 217

Proof. A direct computation yields d

dtE u(t )

= −

Ω

ut

u+up

= −

Ω

u2t. Thus, integrating from 0 tot one gets (5). 2 Lemma 2.Define the two functions

m(t ):=1 2

Ω

u2(t )dx and h(t ):=

t 0

m(s)ds.

Then the two functions satisfy

m(t )(p+1) t 0

Ω

u2t dx, (6)

m(t )λ(p−1)m(t ), (7)

p+1 2

h(t )h(0)2

h(t )h(t ). (8)

Proof. We have m(t )=

Ω

utu

=

Ω

u

u+ |u|p

|u|p

= −

Ω

u2+

Ω

u|u|p

Ω

u

Ω

|u|p,

m(t )= −(p+1)E(u)+p−1 2

Ω

u2. (9)

From one side, this last equality implies that

m(t )(p+1)E(u)= −(p+1)E(0)+(p+1) t 0

Ω

u2t by using Lemma 1, and by the hypothesis (3) we get (6).

On the other side, (9), (3) and Poincaré’s inequality gives m(t )

p−1 2

Ω

u2λ(p−1) 2

Ω

u2=λ(p−1)m(t ), which is (7). Now,

h(t )h(0)= t 0

m(s)ds= t 0

Ω

uut

t

0

Ω

u2 1/2t

0

Ω

u2t 1/2

(4)

218 M. Jazar, R. Kiwan / Ann. I. H. Poincaré – AN 25 (2008) 215–218

2

p+1 1/2

h(t )1/2

m(t )1/2

= 2

p+1 1/2

h(t )1/2

h(t )1/2

; but, by (6)

h(t )h(0)= t 0

m(s)ds(p+1) t 0

Ω

u2t 0.

Therefore p+1

2

h(t )h(0)2

h(t )h(t ). 2

Proof of the theorem. Assume that the solution exists for allt, then (7) implies that

tlim→∞h(t )= lim

t→∞m(t )= +∞. (10)

Thus, for all 0< B < p+1, there existsTBsuch that, for alltTB Bh(t )2(p+1)

h(t )h(0)2

. Hence, by (8), we have for alltTB

Bh(t )22h(t )h(t ).

Consider now the functionH (t )= [h(t )]qfor someq >0 to be determined later. We have H(t )=qh(t )(q+2)

(q+1)h2(t )h(t )h(t ) qh(t )(q+2)

2(q+1)

B −1 h(t )h(t ),

fortTB. In order to chooseHconcave on[TB,), takeBandq >0 such thatq < p21and 2(q+1) < B < p+1.

Consequently,H is a positive concave function on[TB,+∞[and, by (10), limt→∞H (t )=0, which is a contradic- tion. 2

References

[1] A. El Soufi, M. Jazar, R. Monneau, A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (1) (2007) 17–39.

Références

Documents relatifs

CNRS–Institut Denis Poisson (UMR7013) Universit´ e de Tours, Universit´ e d’Orl´ eans.. Parc Grandmont, 37200

CNRS–Institut Denis Poisson (UMR7013) Universit´ e de Tours, Universit´ e d’Orl´ eans.. Parc Grandmont, 37200

Moreover, we prove under further assumptions on the exponents p ij , that the blow-up time for the numerical solution converges to the one of the continuous problem under

Malheureusement, les déclarations du Président de la République jeudi dernier concernant une éventuelle transformation du CNRS en agence de moyens, suivies de votre

DESIGN GRAPHIQUE et PHOTO BOUTEILLER COMMUNICATION BESANÇON - IMPRESSION UFC -

DESIGN GRAPHIQUE et PHOTO BOUTEILLER COMMUNICATION BESANÇON - IMPRESSION UFC -

Abstract: In order to transfer the notion of entropy and Fisher information to the world of free probability, Voiculescu introduced certain non-commutative derivatives to define

As a result we prove that for any countable discrete amenable group, there exists a sequence of finitely supported positive definite functions tending to 1 pointwise, so that