• Aucun résultat trouvé

1 Exercise 11.1

N/A
N/A
Protected

Academic year: 2022

Partager "1 Exercise 11.1"

Copied!
10
0
0

Texte intégral

(1)

Stochastic Di¤erential Equations Exercises

Exercise 11.1. The stochastic process

Ct=C0e Wt :t 0 ; r0 0

represents the exchange rate evolution, that isCtis the timetvalue in the domestic currency of one unit of the foreign currencyfWt:t 0g is a standard Brownian motion.

a) What is the stochastic di¤erential equation satis…ed byfCt:t 0g.

b) The price evolution of a risky asset, expressed in the foreign currency, is denoted fXt:t 0g. It satis…es the SDE

dXt= Xt dt+ Xt dWt

wherefWt :t 0gis a Brownian motion, independent offWt:t 0g:What is the SDE of the risky asset pricefYt :t 0g, expressed in the domestic currency?

Exercise 11.2.

a) Show that there is a unique solution to

dXt=a(b Xt)dt+ dW(t): b) Find explicitly this solution.

c) What behavior do you expect if the parameters are:.

a = 1; b= 1; = 1; t= 0;01and X0 = 1 a = 1; b= 1; = 1; t= 0;01 and X0 = 1 a = 1; b= 1; = 0;1; t= 0;01 and X0 = 1 a = 1; b= 2; = 0;3; t= 0;01 and X0 = 1

Exercise 11.3. Describe the behavior of the solution of dXt= 1

2 Xt dt+p

Xt(1 Xt)dWt

assuming that X0 is a random variable taken value in the unit interval [0;1]. Explain intuitively why Xt takes value between 0and 1.

(2)

Exercise 11.4. Assume that a particle move randomly in a plan such that its position at time t is given by Wt(1);Wt(2) where W(1) and W(2) are independent Brownian motions.

The distance to the origin is Bt =

r

Wt(1) 2+ Wt(2) 2; t >0:

Knowing that the quadratic covariation of two independent martingale is nil, use Itô’s lemma to show that

dBt= 1 2

1

Btdt+Wt(1)

Bt dWt(1)+ Wt(2)

Bt dWt(2):

Exercise 11.5. Show that the stochastic process fSt:t 0g where St=S0exp

Z t 0

sds

2

2 t+ Wt and W is a( ;F;fFt:t 0g; P) Brownian motion satis…es

dSt= tStdt+ StdWt:

Exercise 11.6. Vasicek model. Show that the stochastic process frt:t 0g where rt= +e t r0 + e t

Z t 0

e sdWs

and W is a( ;F;fFt:t 0g;P) Brownian motion satis…es drt = ( rt)dt+ dWt: Hint : Let Yt =Rt

0 e sdWs and show thatY is an Itô process.

Exercise 11.7. Consider the system of stochastic di¤erential equations:

dXt = ( Xt) dt+ dWt dYt = e e Yt dt+edfWt where the P Brownian motion W and fW are such that

CorrP h

Wt;fWti

= , 8t >0.

(3)

a) Find the unique strong solution of this system.

b) DetermineEP [Xt]:

c) The parameter is called the long term mean and the parameter is the speed of reversion. Justify these statements.

d) DetermineVarP[Xt]: e) Determine CorrP[Xt; Yt]:

(4)

Solutions

1 Exercise 11.1

a) Letf(w) =C0e w. Since d

dwf(w) =C0 e w and d2

dw2f(w) =C0 2e w; f(Wt) =Ct, df

dw(Wt) = Ct and d2f

dw2 (Wt) = 2Ct: Using Itô’s lemma, we get

dCt = Ct dWt+

2

2 Ct dt:

b) The multiplication rule leads to dYt = dXtCt

= Xt dCt+Ct dXt+dhX; Cit

= Xt Ct dWt+

2

2 Ct dt +Ct( Xt dt+ Xt dWt)

= Yt dWt+

2

2 Yt dt+ Yt dt+ Yt dWt

= Yt dWt+ Yt dWt +

2

2 + Yt dt:

2 Exercise 11.2

a) We need to verify that.

(i) jb(x; t) b(y; t)j+j (x; t) (y; t)j K jx yj; 8t 0 (ii) jb(x; t)j+j (x; t)j K (1 +jxj); 8t 0

(iii) E[X02]<1

Veri…cation of (i) :

jb(x; t) b(y; t)j+j (x; t) (y; t)j = ja(b x) a(b y)j+j j

= jaj jx yj:

(5)

Veri…cation of (ii) :

jb(x; t)j+j (x; t)j = ja(b x)j+ jabj+jaj jxj+

max (jabj+ ;jaj) (1 +jxj) LetK = max (jabj+ ;jaj).

Veri…cation of(iii) :because the initial condition is not speci…ed, we need to chose a square integrable random variable X0.

b) Let Zt=Xt b: Itô’s lemma implies that dZt = dXt

= a(b Xt)dt+ dW (t)

= Zt+ dW(t):

The stochastic process Z is an Ornstein-Uhlenbeck process and we have shown that the strong solution is

Zt=Z0e at+ e at Z t

0

easdWs: ReplacingZt with Xt b; we get

Xt b = (X0 b)e at+ e at Z t

0

easdWs:

That is why the solution Is

Xt=X0exp ( at) +b(1 exp ( at)) + exp ( at) Z t

0

exp (as)dWs: Let Yt =Rt

0 exp (as)dWs. Y =fYt:t2[0; T]g is an Itô process1 with Y0 = 0, Ks = 0 and Hs=eas. Moreover,

Xt =X0exp ( at) +b(1 exp ( at)) + exp ( at)Yt:

1Rappel. Le processus stochastiqueX =fXt: 0 t Tgest un processus d’Itô si pour toutt2[0; T]; Xt

P p.s.

= X0+ Z t

0

Ksds+ Z t

0

HsdWs

X0est une variable aléatoireF0 mesurable, les processusK=fKt: 0 t TgetH =fHt: 0 t Tg sontF adaptés,

Z T

0 jKsjds <1et Z T

0

Hs2ds <1P p.s.

Dans le cas qui nous occupe,RT

0 jKsjds=RT

0 0s= 0et RT

0 e2asds= 12e2T aa 1 <1:

(6)

Letf(y; t) = X0e at+b(1 exp ( at)) + e aty and note that

@f

@Y (y; t) = e at

@2f

@Y2 (y; t) = 0 d

dt X0e at+b(1 exp ( at)) + e aty = a X0e at+be at e aty

= a b X0e at b+be at e aty

= a(b f(y; t)):

Since Xt =f(Yt; t), the fourth version of Itô’s lemma2 gives the desired result:

df(Yt; t) = @f

@Y (Yt; t) Ht dWt + @f

@Y (Yt; t) Kt+@f

@t (Yt; t) + 1 2

@2f

@Y2 (Yt; t) Ht2 dt:

dXt = df(Xt; t)

= e at eat dWt+ e at 0 +a(b f(Yt; t)) + 1

20 (eas)2 dt

= dWt+a(b f(Yt; t)) dt

= dWt+a(b Xt) dt:

3 Exercise 11.3

The drift term 12 Xt induce a reversion behavior toward 12. Indeed, if Xt > 12, then

1

2 Xt < 0; implying that the local behavior of X tends to decrease just after t: On the other hand, if Xt< 12, then 12 Xt >0, implying that Xtends to increase. If Xt = 12, then the drift term is nil, having locally no impact on X.

The di¤usion termp

Xt(1 Xt)reaches a maximum atXt= 12. It worth zero whenever Xt= 0 or1. If Xt = 0, the drift term is positive and the di¤usion term is nil, implying that

2Rappel :

df(Yt; t) = @f

@Y (Yt; t) HtdWt + @f

@Y (Yt; t) Kt+@f

@t (Yt; t) +1 2

@2f

@Y2(Yt; t) Ht2 dt:

(7)

Xt+" is strictly positive. If Xt = 1, then the drift term is negative and the di¤usion term is nil, implying that Xt+" <1:

4 Exercise 11.4

Letf(w1; w2) =p

w21 +w22:

@f

@w1 (w1; w2) = w1

pw21+w22 = w1 f(w1; w2);

@f

@w2 (w1; w2) = w2

pw21+w22 = w2 f(w1; w2);

@2f

@w21 (w1; w2) = w22 pw12+w22

3 = w22

(f(w1; w2))3;

@2f

@w22 (w1; w2) = w21 pw12+w22 3

= w21 (f(w1; w2))3; and @2f

@w1@w2 (w1; w2) = w1w2 pw12+w22

3:

(8)

Therefore,

dBt = df Wt(1); Wt(2)

= Wt(1) f Wt(1); Wt(2)

dWt(1)+ Wt(2) f Wt(1); Wt(2)

dWt(2)

+1 2

Wt(2)

2

f Wt(1); Wt(2) 3

d W(1) t+1 2

Wt(1)

2

f Wt(1); Wt(2) 3

d W(2) t

Wt(1)Wt(2) f Wt(1); Wt(2)

3dD

W(1);Wt(2)E

t

= Wt(1) f Wt(1); Wt(2)

dWt(1)+ Wt(2) f Wt(1); Wt(2)

dWt(2)+ 1 2

Wt(1)

2

+ Wt(2)

2

f Wt(1); Wt(2) 3 dt

= Wt(1)

Bt dWt(1)+ Wt(2)

Bt dWt(2)+ 1 2

Bt2 Bt3dt

= Wt(1)

Bt dWt(1)+ Wt(2)

Bt dWt(2)+ 1 2

1 Btdt:

(9)

5 Exercise 11.7

a)

Xt = + (x0 ) exp ( t) + Z t

0

exp ( (t s)) dWs Yt = e+ x0 e exp ( et) +

Z t 0

eexp ( e(t s)) dfWs b)

EP [Xt] = EP + (x0 ) exp ( t) + Z t

0

exp ( (t s)) dWs

= + (X0 ) exp ( t) + EP Z t

0

exp ( (t s)) dWs

| {z }

=0

= + (x0 ) exp ( t):

c) If 0;

tlim!1EP[Xt] = lim

t!1 + (x0 ) exp ( t) = ; that is, 8" >0, 9t( ; ")>0such that 8t > t( ; "), EP[Xt] < ".

Note that if 0 1 < 2, then t( 1; ") > t( 2; "), that is, the larger is, more quickly EP[Xt] revert back to .

d)

VarP + (x0 ) exp ( t) + Z t

0

exp ( (t s)) dWs

= VarP Z t

0

exp ( (t s)) dWs

= EP

" Z t 0

exp ( (t s)) dWs

2#

= EP Z t

0

( exp ( (t s)))2 ds

= Z t

0

( exp ( (t s)))2 ds

=

2

2 1 e 2 t :

(10)

e)

CovP[Xt; Yt] = CovP

"

+ (x0 ) exp ( t) +Rt

0 exp ( (t s)) dWs; e+ x0 e exp ( et) +Rt

0 eexp ( e(t s)) dfWs

#

= CovP Z t

0

exp ( (t s)) dWs; Z t

0 eexp ( e(t s)) dfWs

= EP Z t

0

exp ( (t s)) dWs

Z t

0 eexp ( e(t s)) dfWs

= EP Z t

0

exp ( (t s))eexp ( e(t s)) ds

= e

Z t 0

exp ( ( +e) (t s)) ds

= e

+e 1 e ( +e)t :

CorrP[Xt; Yt] = CovP[Xt; Yt] q

VarP[Xt] q

VarP[Yt]

=

e

+e 1 e ( +e)t q 2

2 (1 e 2 t) qe2

2e(1 e 2et)

= 2 p e

+e

1 e ( +e)t

p(1 e 2 t) (1 e 2et):

Références

Documents relatifs

Implement in Sinalgo the TDMA protocol seen in ANET Class 2.. The sketch of the protocol (in French) can be

On suppose que cette fonction existe et on ne cherchera pas à donner une expression

[r]

Stochastic Modeling: Exercise Class 3.. Olivier

Stochastic Modeling: Exercise Class 4.. Olivier

Stochastic Modeling: Exercise Class 5.. Olivier

If a system being in this state ˆ ρ ψ is measured in the basis {|φi, |ψ ⊥ i}, no measurement outcome can correspond to the orthogonal state |ψ ⊥ i be- cause the

The optimal code for q is given by a simple enumeration of the elements of X ; therefore it is impossible to compress that source..