• Aucun résultat trouvé

The oldest stars

N/A
N/A
Protected

Academic year: 2021

Partager "The oldest stars"

Copied!
2
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Skygazing: Astronomy through the seasons, 2017-03-28

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/23001756

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

The oldest stars

Tapping, Ken

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=29560d85-cf6c-4b0f-8230-72c3f56b201c https://publications-cnrc.canada.ca/fra/voir/objet/?id=29560d85-cf6c-4b0f-8230-72c3f56b201c

(2)

THE OLDEST STARS

Ken Tapping, 28thMarch, 2017

Our Sun formed some 4.5 billion years ago, from the collapse of a big cloud of gas and dust. This material also formed the Earth and other planets. However, although that was definitely the

beginning for us, the universe began just under 14 billion years ago, almost 9 billion years earlier, in an event we call – inaccurately – the Big Bang. Logic suggests there must have been earlier generations of stars. Evidence for this starts here on Earth. Our planet formed from the same birth cloud as the Sun, and is made of silicon, oxygen, iron, carbon and all the other elements. All living creatures are made from those raw materials. When we analyze the light from the Sun, we see evidence the Sun contains the same mixture. The universe started very hot and very dense. It expanded and cooled, and eventually reached a temperature where the primordial soup of elementary particles could form at least the toughest atoms: hydrogen, helium and some lithium. By the time the temperature had fallen to where other atoms could form, all the raw

materials had been used up. Consequently, the first stars formed from the collapse of clouds made up from just those three ingredients.

Stars produce energy by turning hydrogen into other elements. When stars die, these waste product elements are ejected into space, enriching the clouds of material from which new stars form. Interestingly, the elements produced by a star’s energy production stay in the centre. They don’t find their way to their outer parts – the parts we can observe. Any elements we detect must have come from the birth cloud, which contained elements produced by earlier generations of stars. Since the light from the most distant galaxies takes billions of years to get here, we see them as they were billions of years ago, when they were younger. As we push outwards to greater and greater distances, we see how things were further and further into the past. The most distant galaxy

found so far was detected with the Hubble Space Telescope. It is called GN-z11, and we see it as it was a mere 400 million years after the Big Bang. It is brimming over with hot, young stars, all busily producing the ingredients for making planets. The very oldest stars we have found so far lie in the central parts of our own galaxy, the Milky Way. By looking at the relative concentrations of

radioactive elements and their decay products, we deduce the stars to be 13.2 billion years old, having formed only a few hundred million years after the Big Bang. These are dwarf stars, which have extremely long lives. Their brighter siblings blew up long ago.

These ancient stars did not manufacture those radioactive elements themselves; they inherited them. Moreover, since the very first stars in the universe formed 200 million years after the Big Bang, there were only a few hundred million years for stars to make the elements and then blow up, dispersing their material into space and enriching the potential birth clouds for following generations of stars, and possibly for making planets.

Heavy elements such as uranium are produced in supernova explosions, which is how very massive stars end their lives. These stars are extremely profligate with their fuel, shining very brightly and then exploding after a life as short as tens of millions of years. Therefore those old stars we see in the centre of the Milky Way must be survivors of the second or maybe the third generation. Our galaxy is probably not unique. Other galaxies must have their own stellar Methuselahs. It’s just that we cannot see them with our telescopes.

Mars lies low in the Southwest after sunset. Jupiter rises soon after dark and Saturn in the early hours. The Moon will reach First Quarter on the 3rd.

Ken Tapping is an astronomer with the NRC's Dominion Radio Astrophysical Observatory, Penticton, BC, V2A 6J9.

Tel (250) 497-2300, Fax (250) 497-2355 E-mail: ken.tapping@nrc-cnrc.gc.ca

Références

Documents relatifs

illustre par un changement de langue ce changement de genre. Cette métamorphose de la voix locutrice et l’emprunt d’une fausse identité permet un discours agressif et dominateur

L’établissement E.P.I.C EXTRANET est chargé d’assurer des missions principales à savoir (réalisation de toutes les opérations de nettoiement, de collecte et de transport

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access

Déterminer les seuils de concentrations plasmatiques de chacune des bithérapies BRAFi+MEKi (mesurées à la première visite de suivi du traitement) associés à la survenue

We delivered single-pulse transcranial magnetic stimulation (TMS) over the hand area of the left primary motor cortex of 27 healthy adults and adolescents and recorded their right

Finally, the velocity dependence of the phase shift cou- pled to the velocity dispersion of the atomic beam induces a rapid reduction of the fringe visibility when the applied

The impact of each of the five parameters (energy, next-node distance, sink distance, node density, and message priority) utilised in the proposed MFWF was comparatively assessed

Tout se passe comme si le transport international de ce pays épousait les soubresauts des migrations turques, dans le proche et le moyen Orient, en Europe de l’Est et