• Aucun résultat trouvé

Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking

N/A
N/A
Protected

Academic year: 2021

Partager "Versatile peroxidase as a valuable tool for generating new biomolecules by homogeneous and heterogeneous cross-linking"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-01268160

https://hal.archives-ouvertes.fr/hal-01268160

Submitted on 29 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

new biomolecules by homogeneous and heterogeneous cross-linking

Davinia Salvachúa, Alicia Prieto, Maija-Liisa Mattinen, Tarja Tamminen, Tiina Liitiä, Martina Lille, Stefan Willför, Angel T Martínez, María Jesús

Martínez, Craig Faulds

To cite this version:

Davinia Salvachúa, Alicia Prieto, Maija-Liisa Mattinen, Tarja Tamminen, Tiina Liitiä, et al.. Ver- satile peroxidase as a valuable tool for generating new biomolecules by homogeneous and hetero- geneous cross-linking. Enzyme and Microbial Technology, Elsevier, 2013, 52 (6-7), pp.303-311.

�10.1016/j.enzmictec.2013.03.010�. �hal-01268160�

(2)

M anus cr it d ’a ut eur / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt

Journal homepage: http://www.elsevier.com/locate/emt

Versatile peroxidase as a valuable tool for generating new

biomolecules by homogeneous and heterogeneous cross-linking

Davinia Salvachúa

a

, Alicia Prieto

a

, Maija-Liisa Mattinen

b

, Tarja Tamminen

b

, Tiina Liitiä

b

, Martina Lille

b

, Stefan Willför

c

, Angel T. Martínez

a

, María Jesús Martínez

a,∗

,

Craig B. Faulds

b,1

aCentrodeInvestigacionesBiológicas,CSIC,RamirodeMaeztu9,E-28040Madrid,Spain

bVTTTechnicalResearchCentreofFinland,P.O.Box1000,FI-02044VTT,Finland

cProcessChemistryCentre,ÅboAkademiUniversity,Porthansgatan3,FI-20500Turku,Finland

Keywords:

Enzymaticpolymerization Organicco-solvent Lignan

Peptide

␤-Casein

Feruloylatedarabinoxylan

a b s t r a c t

Themodificationandgenerationofnewbiomoleculesintendedtogivehighermolecular-massspecies forbiotechnologicalpurposes,canbeachievedbyenzymaticcross-linking.Theversatileperoxidase(VP) fromPleurotuseryngiiisahighredox-potentialenzymewithoxidativeactivityonawidevarietyofsub- strates.Inthisstudy,VPwassuccessfullyusedtocatalyzethepolymerizationoflowmolecularmass compounds,suchaslignansandpeptides,aswellaslargermacromolecules,suchasproteinandcomplex polysaccharides.Differentanalytical,spectroscopic,andrheologicaltechniqueswereusedtodetermine structuralchangesand/orvariationsofthephysicochemicalpropertiesofthereactionproducts.The lignanssecoisolariciresinolandhydroxymatairesinolwerecondensedbyVPformingupto8unitpoly- mersinthepresenceoforganicco-solventsandMn2+.Moreover,11unitofthepeptidesYIGSRandVYV werehomogeneouslycross-linked.Theheterogeneouscross-linkingofoneunitofthepeptideYIGSR andseverallignanunitswasalsoachieved.VPcouldalsoinducegelationofferuloylatedarabinoxylan andthepolymerizationof␤-casein.TheseresultsdemonstratetheefficacyofVPtocatalyzehomo-and hetero-condensationreactions,andrevealitspotentialexploitationforpolymerizingdifferenttypesof compounds.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Biotransformationis a useful way for modifying or produc- ingnovelstructuresandmaterials,whichcanthenbeexploited ina broad rangeof applications.Theenzymatic polymerization andhetero-conjugationofvarioussubstratesisamethodofpri- maryinteresttoreachthatgoal.Biocatalysisisadvantageousover chemicalprocedures,since:(i)it isanenvironmentallyfriendly alternativethatusesmilderandlesscontaminantreactions[1]and (ii)itcanproducemorespecificcross-links,asmanyenzymeshave highchemo-,regio-,andenantioselectivity[2].Theuseofoxidore- ductases,asradical-formingenzymesystems,torenderhomoor hetero-polymersofverydiversemoleculesisanattractiveexam- pleofthis,andtheenzymaticallysynthesizedpolymersmayexhibit

∗Correspondingauthor.Tel.:+34918373112;fax:+34915360432.

E-mailaddress:mjmartinez@cib.csic.es(M.J.Martínez).

1 Current address: Biotechnologie des Champignons Filamenteux, INRA- UniversitéAixMarseille,PolytechMarseille,163avenuedeLuminy,13288Marseille Cedex09,France.

neworimprovedpropertiesincomparisonwiththeirrespective precursors[3].

Versatileperoxidases(VP)areaninterestinggroupofoxidore- ductases(EC1.11.1.16;describedasaReactiveBlack5:hydrogen peroxideoxidoreductase)whoseactivityinthesepolymerization reactionshasnotbeenpreviouslyexploredatthemolecularlevel.

These enzymesare secretedby fungiand includedin theclass IIofthesuperfamilyofplant-fungal-bacterialheme-peroxidases, togetherwithmanganeseperoxidases(MnP),ligninperoxidases (LiP), generic peroxidases (GP)as Coprinopsiscinerea (synonym Coprinuscinereus)peroxidase (CiP) [4]. Todate, these enzymes and their encoding genes have been found and characterized onlyinwhiterot,wood-decayingBasidiomycotabelongingtothe class Agaricomycetes,asdescribed in thecomparativegenomic researchrecentlypublishedbyFloudaset al.[5].VPsconstitute an example of enzyme multifunctionality, combining the cat- alyticpropertiesofMnP,LiP,andlowredox-potentialperoxidases.

Therefore,VPdisplaysawideoxidativeactivityonsubstrateshav- ingdifferentchemicalstructuresandredox-potentials,including compoundsthatcannotbeoxidizedbylowredox-potentialper- oxidases, suchas fungal GP, horseradishperoxidase (HRP) and otherplantperoxidases[6–9].RecentresearcheffortsofVPshave

(3)

M anus cr it d ’a ut eur / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt

Journal homepage: http://www.elsevier.com/locate/emt

Fig.1. Chemicalstructuresofphenolicmodelcompounds:(a)SECO,(b)HMR,(c)MR,(d)CYCLO,(e)7-HSECOlignans,(f)tyrosine,and(g)trans-ferulicacid.

focusedontheunderstandingoftheirreactionmechanismsand structure–functionrelationships[10,11],inthesearchofadequate systemsfortheexpressionofVP[12],andinenzymeimprovement throughdirectedevolution[13].Nevertheless,thepotentialappli- cationsofVPshavenotyetbeenfullyexploited,inspiteofbeinga verypromisinggroupofenzymesfromabiotechnologicalpointof view[14].

Different substrates previously used in enzymatic polymer- ization reactions [15–18], representing low-molecular mass, oligomeric, and polymeric substrates, were chosen toevaluate thepolymerizingabilityofVP.Lignansarediphenoliccompounds foundinthecellwallofhigherplants,formedby␤–␤coupling of two cinnamyl precursors [19], and their chemical structure dependsespeciallyontheplantspeciesfromwhichtheyareiso- lated.Thesecompoundscanappearinside-streamsfromindustrial processingoflignocellulosicmaterial,e.g.mechanicalpulpingand paperprocessing, and shouldbe removedto avoid undesirable effects,suchasinterferenceswithprocesschemicals[20].Poly- merizationoflignansintolargermoleculesisonewaytoeliminate theseunwantedeffects.Lignansmayalsoserveasprecursorsforthe enzymaticproductionofvalue-addedpolymersormaterialswith improvedfunctionalproperties[21].Thesesyntheticreactionsare challenging,sincemostofthemmayonlybeperformedinthepres- enceoforganicsolvents,jeopardizingthestabilityoftheenzyme catalyst.Ontheotherhand,theenzymaticpolymerizationofbioac- tivepeptides,proteinsas␤-casein,orferuloylatedarabinoxylans (FAX),whichhavewell-knownfunctionalproperties[19,22–24], couldleadtotailoredproductswithimproved/modifiedorganolep- ticorfunctionalpropertiessuchasreducedfatcontent,texture, solubility,mouthfeel,betterdigestibility,emulsification,viscosity, gelling,orresistancetoheatorproteolyticattackduringenzyme digestion[25,26].

Therefore,theaimofthepresentstudywastodetermineifthe VPfromPleurotuseryngiiisabletocatalyzethecovalenthomo- geneousand/orheterogeneouscross-linkingofselectedsmalland largemolecules,inthepresenceandabsenceoforganicsolvents, thusproducingnovelbiocompounds.Theextentofthecondensa- tionreactionswasalsoevaluated.

2. Materialsandmethods 2.1. Substrates

Thelignansusedinthisstudy (Fig.1),namelysecoisolariciresinol(SECO), hydroxymatairesinol(HMR),matairesinol(MR),cyclolariciresinol(CYCLO),and7- hydroxy-secoisolariciresinol(7-HSECO)werepreparedasdescribedearlier[27–29].

Thebioactivepeptides EPPGGSKVILF,RKRSRKE,VEPIPY,YIGSR,andVYV were obtainedfromSigma(St.Louis,MO,USA).YSTwasboughtfromBiokemis(Saint Petersburg, Russia). GLY was obtained from Fluka (Buchs, Switzerland). The bovine␤-caseinprotein(24kDa,85%purity)waspurchasedfromSigma–Aldrich (Taufkirchen,Germany).FAXfrommaizebran,containinganalkali-extractablefer- ulicacidcontentof6.2mgg−1,waskindlygiventoCBFbyCambridgeBiopolymers Ltd.(Cambridge,UK).

2.2. Enzymeactivity

VPwasisolatedandpurifiedfromP.eryngiiculturesaspreviouslydescribed [30].ItsMn2+-oxidizingactivitywasdeterminedspectrophotometricallyat238nm throughtheformationoftheMn3+·tartratecomplex(ε238=6500M−1cm−1)ina

reactionmixturecontaining0.1mMMnSO4(Mn2+)in25mMsodiumtartratebuffer (pH5.0),withtheadditionof0.1mMH2O2tostartthereaction.Theeffectof twoorganicsolventsonVPactivitywasalsocheckedthroughtheevaluationof Mn2+-independentactivitiesfollowingtheoxidationof1mM2,6-dimethoxyphenol (DMP)todimericcoerulignone(ε469=55,000M−1cm−1)and1mM2,2-azino-bis(3- ethylbenzothiazoline-6-sulphonicacid)(ABTS)toABTS+436=29,300M−1cm−1)in 25mMsodiumtartratebuffer(pH5.0).Solutionscontainingfrom0%to50%(v/v)of eitherethanolor1,2-propanediolin25mMsodiumtartratebuffer(pH5.0),inthe presenceorabsenceof0.1mMMn2+and0.1mMH2O2,werepreparedassolvents forthesubstrates.TheVPstabilityduring24h-reactionswasalsocheckedin25mM sodiumtartratebuffer(pH5.0),20%,and50%ethanol(dissolvedinthesamebuffer atequalfinalconcentration),withandwithoutMn2+.Thepercentageofresidual activitywascalculatedat0,0.5,2,and24husingMn2+/H2O2assubstratesandtak- ingtheinitialactivityinbufferas100%.Measurementswerecarriedoutintriplicate atroomtemperature.Oneunitofactivity(1U)isdefinedastheamountofenzyme releasing1␮molofproductperminuteunderthedefinedreactionconditions.

2.3. Substratesolutions

The lignanSECO (3mM), all peptides (3mM), ␤-casein (1mgmL−1), and FAX(30mgmL−1)werepreparedin25mMsodiumtartratebuffer(pH5.0).The remaininglignansweredissolvedin20%ethanolinthesamebufferata3mMfinal concentration,except7-HSECO,whichwasdissolvedin50%ethanolbuffer.Allsolu- tionswereleftstandingforatleast30mintobestabilizedbeforecommencingthe enzymatictreatments.

2.4. Cross-linkingassays

Theenzymereactionsdetailedbelowwereinitiatedbyadditionof0.1mMH2O2, supplementingwithaseconddosageafter1hofincubationandbrieflyagitatedafter eachH2O2supplementation.Asanexception,theFAXassayswereperformedwith asingledosageof0.2mMH2O2atthebeginningofthetreatment.Unlessother- wisestated,thesetreatmentswereperformedinthepresenceofMn2+(0.1mM), induplicate,atroomtemperature.Negativecontrolsconsistedofreactionslacking VPorH2O2incubatedunderthesameconditionsthanthetestreactions(withand withoutMn2+).

2.4.1. Homogeneouscross-linkingoflignansandpeptides

Thepolymerizationofdifferentsubstrateswasperformedin1.5mLEppendorf tubeswitha1.5UmL−1VPinafinalvolumeof200␮L.Aliquots(3␮L)ofeach reactionmixturewereremovedafter0.5and2hofincubationforsubsequentanaly- sisbymatrix-assistedlaserdesorption/ionization-timeofflight-massspectroscopy (MALDI-TOFMS).Lignantreatmentswerealsoperformedduring24h,intheabsence ofMn2+.Tostopthesereactions0.05%(w/v)NaN3wasaddedandsamplesfromlig- nantreatmentswerelyophilizedforfurthersizeexclusionchromatography(SEC) analysis.Theeffectonthepolymerizationefficiencyofalowerenzymaticdose (0.15UmL−1)andahigherH2O2concentration(0.5mM),during0.5,2and24h, wasstudiedandseparatelyassayedusingHMRlignanassubstrate.

2.4.2. Heterogeneouscross-linkingoflignanswithpeptides

Reactionscontainingequalvolumes(85␮L)ofthe3mMsolutionsoftheSECOor HMRlignansandofthetyrosine-containingpeptidesweremixedwith1.5UmL−1 VP,inafinalvolumeof200␮L.Aliquots(3␮L)werewithdrawnafter0.5and2h reactionandanalyzedbyMALDI-TOFMS.

2.4.3. Homogeneouscross-linkingofˇ-casein

ThreeVPdoses(0.015,0.15,and1.5UmL−1)wereassayedin1mLreactions for␤-caseinpolymerization,incubatingseparatelyfor2,6,and24hwithcontinu- ousstirringat300rpm.Aliquots(30␮L)fromeachtreatmentwereseparatedand immediatelymixedwithloadingbuffer(10␮L),boiledfor10minandanalyzed bysodiumdodecylsulphate-polyacrylamidegelelectrophoresis(SDS-PAGE).The remainingenzymaticreactionswerestoppedwithNaN3(0.05%,w/v)andsamples werelyophilizedforfurthertransmissionelectronmicroscopy(TEM)analysis.

2.4.4. Homogeneouscross-linkingofFAX

TheabilityofVPtocross-linkFAX,inducinggelformation,wasinvestigatedin reactionscontainingVPdosesof0.015,0.15,1.5UmL−1inatotalvolumeof1.5mL.

(4)

M anus cr it d ’a ut eur / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt

Journal homepage: http://www.elsevier.com/locate/emt

Mixtureswerebrieflyvortexedand1.3mLwasimmediatelyremovedandplaced ontherheometerplate.Rheologicalanalysisstarted3minafterH2O2activation.

Forswellingexperiments,reactionswerepreparedwiththesameenzymedoses,in 2mLsyringes(diameter1.5cm),inafinalvolumeof1mL.Reactionswereallowed togelfor15hbeforeanalyzingtheswellingdegree.

2.5. MALDI-TOFMSanalyses

MALDI-TOFMSspectraofVP-treatedlignansandpeptideswererecordedona BrukerAutoflexIIinstrumentequippedwithaN2-laser(337nm,100␮J)andprevi- ouslycalibratedwithpeptideandproteinstandardsolutionsfromsamedistributor (Bremen,Germany).Fortheanalyses,3␮Lofthereactionsolutionweremixed1:1 (v:v)withsaturated␣-cyano-4-hydroxycinnamicacidmatrixfromSigma–Aldrich (St.Louis, MO,USA)dissolvedin 0.1%trifluoroaceticacidfrom Fluka(Buchs, Switzerland)containing50%acetonitrile.1␮Lofthesample-matrixsolutionwas spottedontothestainlesssteeltargetplateandallowedtodryatroomtemperature.

Positiveionmassspectrawererecordedinreflectormode(m/zrange500–3500)and linearmode(m/zrange3500–10000).FlexAnalysis(version2.4)wasusedfordata analysis(Bruker,Bremen,Germany).Lignansweredetectedastheirsodiumadducts.

2.6. SECanalyses

Samplesfromlignantreatmentsweredissolvedin0.1MNaOHandanalyzed byhighperformanceSECelutingwiththesamesolvent(0.5mLmin−1flowrate) at25C,inMCX1000and100,000 ˚Acolumnsconnectedintandemandcoupled toaprecolumn(allfromPSSMainz,Germany).Theelutionprofileswerefollowed at280nmwithaWatersUVdetector.Themolarmassdistributions(MMD),and weightaveragemolarmasses(Mw)werecalculatedagainstpolystyrenesulphonate (Na-PSS)standards,usingtheWatersEmpower2software.

2.7. SDS-PAGEanalysis

SDS-PAGEwasusedtoanalyzetheformationof␤-caseinpolymerssmaller than250kDa.SampleswereloadedontoCriterionTGXStain-FreeTMprecastgels (4–20%)andvisualizedontheCriterionStainFreeTMImagerSystem.PrecisionPlus ProteinTMStandards(10–250kDa)wereusedformolecularweightestimations.All instrumentsandreagentswerepurchasedtoBio-Rad(Hercules,CA,USA).

2.8. Microscopyanalysis

Lyophilized␤-caseinsamples,subjectedornottoa24hVPtreatment,were dissolvedindistilledwateror6Mureatoobservenon-enzymaticaggregatesand enzymaticcross-links,respectively.Glow-dischargedcarbon-coatedformvargrids wereplacedface-downoveradropletofsample.After1min,thegridwasremoved, blottedbrieflywithfilterpaperandnegativelystainedwith2%uranylacetatefor 40s,blottedquicklyandair-dried.SampleswereobservedbyTEMinaJEOL1230 instrument(Tokyo,Japan)operatedat100kV.

2.9. Rheologicalmeasurementsandgelswellinganalysis

Thegelationofthecross-linkedFAXwasmonitoredbyusinganAR-G2rheome- ter(TAInstruments,Crawley,UK)inoscillatorymodeataconstanttemperatureof 22C.Aplate–plategeometrywithadiameterof40mmandagapof1mmwasused forthemeasurements,withasolventtraptopreventsampledryingduringanalysis.

Gelformationwasfollowedduring4h,bymonitoringthestoragemodulus(G),the lossmodulus(G)andthephaseangleataconstantfrequencyof0.1Hzandastrain of0.01%.

Toevaluatethegelswellingproperties,cross-linkedFAXswereallowedtoswell in10mLofa0.02%(w/v)NaN3solution.After32h,sampleswereblotted,weighted, andsubsequentlyaddedtonewNaN3solutionsatroomtemperature.Theequilib- riumswellingwasreachedwhentheweightofthesamplesdidnotchangemorethan 3%.Theswellingratio(q)iscalculatedaccordingtotheequation:q=(Ws−Wi)/Wi, whereWsistheweightoftheswollengelateachmeasuredtimeandWiisthe weightofthegelbeforeswelling.

3. Resultsanddiscussion

3.1. Influenceoforganicco-solventsandMn2+onVPactivityand stability

Thelignansincludedinthepresentstudywereselectedfortheir differentstructuresandthedegreeofsolubilityinaqueoussolu- tionsororganicco-solvents.Enzymescanbeseverelyaffectedby thepresence oforganicsolvents,which generallycauseasharp activity drop due to modification of the protein conformation [31].Forthisreason,VPactivitywasfirstestablishedinthepres- enceofdifferentconcentrationsofethanoland1,2-propanediol,

Fig.2.Schemeoftheversatileperoxidase(VP)catalyticcycleadaptedfromRuiz- Due ˜nasetal.[10].Asshown,VPcanoxidize,amongothers:(i)phenolicsubstrates (PhOH),suchaslignansandtyrosine,tothecorrespondingphenoxyradicals(PhO·) whichareabletopolymerize;and(ii)Mn2+toMn3+,thelatteractingasadiffusible oxidizerofdifferentcompoundsincludingphenols.

two solventschosenfor theirability tosolubilizesoftwoodand hardwoodligninsand forbeingcompletely water-miscible.Ini- tialactivitiesinaqueousbuffersweredeterminedtobe15UmL1 forMn2+,1UmL−1withABTS,and0.4UmL−1forDMP.VP-activity againstABTSandDMPincreasedinthepresenceofMn2+,reach- ing1.6UmL1and3.6UmL1,respectively.Thisenhancedactivity onphenolsanddyesinMn2+-containingreactionshasbeenprevi- ouslyreported[30],anditisrelatedtothecatalyticversatilityof VP,oxidizingtheminbothMn2+-independentandMn2+-mediated reactions(Fig.2).

Fig. 3 shows the effect of the two solvents on Mn2+, DMP, andABTSoxidation. As1,2-propanediolconcentrationincreased (Fig.3a),aconcurrentdecreaseinVPresidualactivitywasobserved.

ThedecreasewassignificantlylowerinreactionswithMn2+,espe- ciallyathighsolventconcentrations,althoughsomeactivitywas retainedinallreactionsevenwith50%ofthisorganicsolvent.On theotherhand,theeffectofethanolonVPactivity(Fig.3b)was diverse.WithMn2+asthesubstrate,VPwasquitestableinupto 40%ethanol,withonlya30%decreaseinactivity.Theoxidation ofDMPinthepresenceofMn2+appearednottobeaffectedbythe useofethanolconcentrations≤20%.TheactivityofaB.adustaVPat lowethanolconcentrationshasalsobeendescribed[32]although, accordingtoourdata,theVPfromP.eryngiiseemstobemoreresis- tant.However,ahighactivitylosswasobservedinDMPreactions withoutMn2+thatcouldbeexplainedbyreducedaccessibilityof ethanolthroughthenarrowMn-oxidationchannel,comparedwith themainhemeaccess-channelwhereDMPisoxidized[33].From theaboveresults,andtakingintoaccountthatmostofthelignans usedinthisstudyaresolubleatlowethanolconcentrations(20%), thissolventwasselectedforfurtherenzymestabilityassays.The enzymeinbuffer,aswellasinthepresenceorabsenceofMn2+, retainedtheinitialactivityduringthe24hofincubation.With20%

ethanolintheabsenceofMn2+,theresidualactivitywas84and43%

at0.5and24h,respectively,whileinthepresenceoftheionwas 87and82%(with50%ethanoltheenzymelostitsactivityquickly, retaining3.4%and2.1%activityafter0.5hwithandwithoutMn2+, respectively).ItcanthusbeconcludedthatthepresenceofMn2+

exertsastimulatingandstabilizingeffectontheoxidationreactions andVP respectively.Theformer effectisduetoMn3+-mediated

(5)

M anus cr it d ’a ut eur / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt

Journal homepage: http://www.elsevier.com/locate/emt

Fig.3.Effectof(a)1,2-propanedioland(b)ethanolonVPactivityagainstthreedif- ferentsubstrates(Mn2+,ABTSandDMP).ABTSandDMPreactionswerefollowedin thepresenceandabsenceof0.1mMMn2+.Allreactionswereinitiatedwith0.1mM H2O2.100%correspondedtotheenzymaticactivityintheabsenceofthoseorganic solvents,andvaluesareexpressedasthepercentageofresidualactivity.Standard deviationsfromtriplicateswerelessthan5%oftheaveragevalueinallcases.

oxidationofDMPandABTS,whilethestabilizingeffectindicates lowerinhibitionwhentheVPMn2+-oxidationsiteisoccupiedby theionduringincubationwithethanol.

3.2. Smallmoleculescross-linkingbyVP 3.2.1. Lignancross-linkinganalysis

Severalparameters,suchasthedegreeofpolymerization(DP), themolecularmass(MM),andmolarmassdistribution(MMD)of thepolymersenzymatically synthesized,shouldbe analyzedto comparetheefficiencyofVPinlignanspolymerizationwiththat reportedforotheroxidativeenzymes[34].Thepolymerizationof thesubstrates(DPandMM)wasfollowedbyMALDI-TOFMS.Con- troltreatments,inthepresenceandabsenceofMn2+,containing lignansandH2O2butlackingenzymewereconductedtocheckfor substratesself-polymerization,revealingthepresenceofdimers andtrimersoflignans(Table1).Thesenon-enzymaticcross-links couldarisefromoxidationreactions,involvingO2orH2O2,medi- atedbytracesofmetalions[35,36].Despiteoftheseunspecific

links,theVP/H2O2systemwascapableofsynthesizingmolecules ofmuchhigherDPcomparedtothecontrols.Table1showsthat mostcross-linkingoccurredduringthefirst30minofreactionand thatthepresenceofMn2+enhancedthepolymerizationefficiency, raisingboththereactionrateandthemaximumDPoftheprod- uctsoverthereactiontimeatallsolventconcentrations.Table2 depictsthepredictedandexperimentalMM(accuracy≤±1Da)of thelongestlignanhomopolymerssynthesizedbyVP,andthespec- traofthereactionproductsarerepresentedinFig.4.Theassembly oflignanmonomersisproducedthroughanetherorcarbon–carbon linkagethatcausestheelimination oftwo hydrogenatomsper cross-link[17].Thetheoreticalmassoftheproductscanbecal- culatedaccordingtotheequation[nMM−(n−1)2H+Na+],where nisthenumberofmonomersandMMisthemolecularmassof lignan.Thewater-solubleSECOwasthemostefficientlypolyme- rizedsubstrate,formingnonamersandoctamersinthepresence andabsenceofMn2+,respectively,after24hincubation.Thisvalue wassimilarorslightly higherthanthosereportedforthecross- linkingofSECOcatalyzedbyfungal[21]orbacteriallaccases[37].

Overthefirst2hofreaction,polymerizationofbothSECOandHMR progressedatsimilarrates,butafter24hthemaximumDPofthe laterdecreased inoneunitwhiletheSECOpolymerreachedits highestlength(Table1).Buchertetal.[20],reportedthesynthesis ofHMRoligomersafter2hincubationwithafungallaccase,butthe productswere3–4unitssmallerthanthosefoundinthepresent studyatthesamereactiontime.Regarding7-HSECO,thelignan dissolvedin50%ethanol,itisremarkablethattheadditionofMn+2 producedtwo-foldlargeroligomersascomparedtothereaction withoutthecation,whichcouldbeduetoanincreasedVPcatalytic efficiencyandstability,asdescribedintheprevioussection.

SECanalysisoftheVP-untreatedandtreatedlignans,inthepres- enceofMn2+,showedthereductionofthelowMMpeakfromthe substratesalongtheincubationtime,andaparallelincreaseofthe Mwoftheproducts.Fig.5illustratestheMMDprofilesofSECOand HMR,thetwolignansthatreachedthehighestDP.Asinglepeak, correspondingtosubstrates,wasobservedafterSECofcontrolsam- pleswithoutperoxidase.Theappearanceofoligomersalongthe reactiontimeisdetectedasnewshouldersorpeaksattheright ofthesubstratespeak.ThesmallincreaseinthelowMMfraction from24hHMRreactionscouldbeexplainedbythecoexistenceof polymerizationanddegradationactivitiesinthereactionmixture, aspreviouslyreportedforsoluble-ligninsamplestreatedwithVP [38]andMnP[39].Thisfindingisinaccordancewiththefadingof thesignalfromHMRoctamersdetectedbyMALDI-TOFanalysisof thissample(Table1).However,theglobalMwofthereactioncom- ponentsraisedapproximately100Dafrom2hto24h,suggesting thatpolymerizationpredominatedoverdepolymerizationduring thisperiod.

Asinthecaseforallperoxidases,H2O2isessentialforVPactiv- ity and its eventual depletionstops thereaction. The effect of differentVP/H2O2 ratiosonHMRcross-linking wasassayedfor 24htreatments,eitherincreasing5-foldtheperoxideconcentra- tionordecreasing10-foldVPdosage(from1.5to0.15UmL−1),and sampleswereanalyzed atdifferentreactiontimes.Enzyme-free controlsdemonstratedthatHMRtreatmentwith0.5mMH2O2did notinduceanyadditionalpolymerization.Incontrast,HMRpoly- mersonly oneDP largerin molecularsizethan those detected inlow-peroxidereactionsweredetectedintheVPdosedwith5- foldmoreH2O2system.TheMwvaluesincreasedaround200and 300Dain2hand24h-reactions,comparedtotheequivalentprod- uctsobtainedwith0.1mM H2O2.SEC profiles(Fig.5b)showed thatthelowMMpeakdecreasedaround50%inheight,whilea high-MMfractionofalmost thesameintensityappeared. Thus, higherdosesofperoxidedidnotcauseinhibitionofVP,butrather improveditspolymerizationcapacity.Ontheotherhand,areduced VPdosageresultedin theproductionofHMRoligomersof 5,6

(6)

M anus cr it d ’a ut eur / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt

Journal homepage: http://www.elsevier.com/locate/emt

Table1

Effectof0.1mMMn2+andincubationtimeontheVP-catalyzedpolymerizationoffivedifferentlignans.Thecontrol(CTL)wasaVP-untreatedsampleincubatedduring24h, addingtwodosagesof0.1mMH2O2atthebeginningofthereactionandafter1h,similarlytotheVP-treatments.Analyseswereperformedonduplicatesoftwoindependent reactions,showingidenticalspectra.

Lignan Solvent Maximaldegreeofpolymerizationa

−Mn2+ +Mn2+

CTL 30min 2h 24h CTL 30min 2h 24h

SECO Buffer 2 5 7 8 2 8 8 9

HMR 20%Ethanol 3 5 7 6 3 8 8 7

MR 20%Ethanol 2 4 5 5 2 5 6 7

CYCLO 20%Ethanol 2 5 6 6 2 6 7 7

7-HSECO 50%Ethanol 2 3 3 3 2 6 7 7

aValuesrepresentthemaximumnumberoflignanunitscross-linkedasdetectedbyMALDI-TOFMS.

and7monomersafter0.5,2,and24h,respectively,demonstrat- ingthattheamountofenzymeaffectedonlytheinitialreaction rate,reachingthesameDPvaluesobtainedathigherVPdosesin 24h(Table1).

3.2.2. Peptidecross-linkinganalysis

ThepositiveeffectofMn2+inVP-catalyzedpolymerizationreac- tionshasalreadybeendeducedfromthepreviousexperiments.

Thus,theVPtreatmentofpeptides,ofdifferentlengthandamino acidsequence,wasperformedinthepresenceofthiscation.No peptidecross-linkingoccurredintheabsenceofVPorH2O2,aswell asinpeptideslackingtyrosineresidues(Table2)suchasRKRSRKE and EPPGGSKVILF.In contrast,theVP/H2O2 system washighly efficientpolymerizingtyrosine-containingpeptides,beingasprevi- ouslydescribedforotheroxidoreductases[15,40,41].Polypeptides wereformedthroughthelossoftwohydrogenatoms,probably duetotheformationofdityrosineorisodityrosinebonds,resulting inmonoisotopicmasseswhosetheoreticalvaluecanbecalculated accordingtotheequation:[nMM−(n−1)2H],wherenisthenum- berofmonomersandMMisthemolecularmassofeachpeptide.

Asanexception,thepolymersfromVEPIPYweredetectedastheir sodiumadduct.Table2showstheexperimentalandpredictedMM fromthehighestDPmoleculessynthesizeduponVP-treatment,and Fig.4depictsthespectraofthereactionproducts.

Thepeptidelengthandthepositionoftyrosineinthesequence hadnoeffectontheDPoftheproductsformedbytheactionofVP.

Thisfindingcontrastswiththeresultsobtainedinsimilarreactions performedwithHRP[41]orCiP[42],inwhichastrongeffectof thesetwoparametersoncross-linkinghasbeenreported.VPhas severalcatalyticsites,onefor(lowefficiency)oxidationofphenols anddyesatthemainhemeaccesschannel,asecondoneforMn2+

oxidationata(small)secondhemeaccesschannel,andthethird sitefor(highefficiency)oxidationofphenolicandnonphenolicaro- maticsubstrates,locatedattheproteinsurface[11].Thesefeatures, whicharenotobservedinotherperoxidases(suchasHRP)thatonly presentthe“classical”oxidationsiteatthemainhemechannel,can facilitatesubstrateoxidationevenifthereactivemoiety,suchas thetyrosine,isplacedinthemiddleofthesequence.Therefore,the cross-linkingoftyrosine-containingpeptidesbyHRPmaybevery restrictedbysterichindrancesandenzymeinhibition[41].Incon- trast,VPcanalsooxidizeitssubstratesatasecondexposedcatalytic siteandviaMn2+diffusion(Fig.2),bypassingtheseproblems.

Inaddition,VP-induced polymerizationofpeptides wasvery fast,reachingthemaximumDPafter30mininallcases.Regardless thereactiontime,thepredominantsignalsinmostspectracorre- spondedtodimers,althoughtetramersandtrimerswerethemain peaksdetectedafter2hofreactionusingGLYorVYVasthesub- strates,respectively(Fig.4).TheMMDoftheproducts,derivedfrom MALDI-TOFMSspectra,changedwhilethereactionproceededdue

Table2

Assignmentofmasses(m/z)ofthelongestlignanandpeptidepolymersdetectedbyMALDI-TOFMSinVP-catalyzedreactions.Homopolymerizationandheteropolymerization experimentswereperformedinthepresenceof0.1mMMn2+,addingtwodosagesof0.1mMH2O2atthebeginningofthereactionandafter1h.Allreactionswereincubated during2hexcludingthehomopolymerizationoflignanswhichwascarriedoutfor24h.HMRpolymerizationwasaccomplishedwith0.5mMH2O2during2h.

Substrate Monomer DPa Predictedm/z Experimentalbm/z

(Da) (Da) (Da)

Homopolymers Lignans

SECO 362.1 9 3264.9 3264.1(−0.8)

HMR 374.1 9 3372.9 3372.8(−0.1)

MR 358.1 7 2516.7 2517.6(0.9)

CYCLO 360.1 7 2530.7 2531.5(0.8)

7-HSECO 378.1 7 2656.7 2656.4(−0.3)

Peptides

RKRSRKE 959.1 1 959.1 959.6(0.5)

EPPGGSKVILF 1125.3 1 1125.3 1125.5(0.2)

GLY 351.4 8 2797.2 2796.9(−0.3)

YST 369.2 8 2939.0 2939.6(0.6)

VYV 379.5 11 4154.5 4155.0(0.5)

YIGSR 594.7 11 6521.7 6522.6(0.9)

VEPIPY 716.8 7 5027.6 5028.2(0.6)

Heteropolymers

YIGSR/SECO 594.7/362.1 1/5 2394.2 2393.7(−0.5)

YIGSR/HMR 594.7/374.1 1/4 2082.1 2082.6(0.5)

aDP=maximaldegreeofpolymerization.

bThem/zdifferencesbetweenthetheoreticalandthedetectedmasses,showninparentheses,arewithintheexperimentalerrorofthetechnique.

(7)

M anus cr it d ’a ut eur / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt

Journal homepage: http://www.elsevier.com/locate/emt

Fig.4.MALDI-TOFmassspectra(reflectormode)ofpolymerizedlignansandpeptides.VP-treatedlignanswereincubatedduring24hwith0.1mMMn2+andtwodosagesof 0.1mMH2O2at0and1h(excludingHMRwhoseincubationwascarriedoutduring2hwith0.1mMMn2+andtwodosagesof0.5mMH2O2at0and1h):(a)HMR,(b)SECO, (c)MR,(d)CYCLO,and(e)7-HSECO.Peptideswereincubatedfor2hwith0.1mMMn2+andtwodosagesof0.1mMH2O2at0and1h:(f)GLY,(g)YST,(h)VYV,(i)YIGSR, and(j)VEPIPY.Thenumberofmonomers(n)ofeachlignanorpeptideisshownabovethecorrespondingpeak.Anenlargementofm/z2200–3400regionofallsubstrates isframedexcludingVEPIPY,VYV,andYIGSRwhoseenlargementscorrespondtothem/z3500–7000Da(linealmode)sincetheyformoligomerslargerthan3500Da.Allthe analyseswereperformedonduplicate(twoindependentreactions),showingidenticalspectra.

totheproductionoflargerspecies.Theproductionofpentamers ofGLY,usingalaccasefromTrameteshirsuta[40]andhexamers ofVYVwiththeC.cinereaperoxidase[15]in24h,arepoorval- ueswhencomparedtothenonamersofGLYandtheundecamers ofVYVobtainedinVP-reactionsof30min(Table2).Theresults suggestthatbeyondacertainDPrange,peptidespolymerizationis notfavoredunderthereactionconditionsusedinthisstudyorby otherstericfactors.Despitethislimitation,ourresultsshowthat, evenatshortreactiontimes,thepolymerizationdegreewashigher usingVP,eventhoughthisenzymehasamorerestrictedactivity comparedtolaccases,especiallyduetothelowH2O2concentration testedinthisstudy.

3.2.3. Heterogeneouscross-linkingoflignanswithpeptides

VPreactionscontainingSECOorHMRandeachofthetyrosine- containing peptides were incubated for 30min and 2h and analyzedtotesttheabilityoftheenzymetocatalyzethesynthesis

ofheteropolymers.TheMALDI-TOFspectraofthereactionprod- uctsforeachpeptide-containingreactionshowedthatinmostcases onlylignanhomopolymerswereformed,detectinguptononamers of SECOand octamersof HMR. Steffensenand co-workers [43]

suggestedthatmonolignolscanhaveantioxidanteffects,avoiding tyrosineoxidationinpeptideswhentheyareaddedtothereaction atthesameconcentration.Moreover,althoughthemolarconcen- trationofbothsubstratesinthereactionmixturewasthesameand theMMofthetripeptides(GLY,VYV,YST)andthelignansisalso similar,thelatercontaintwo-foldmorereactivesitesthanthepep- tides(twophenolsperonetyrosine,respectively).Theprobability forheterocomplexformationappearstoincreasewiththenumber ofreactivesitesinthebiopolymer.Thispropositioncontrastswith theresultsobtainedwithVEPIPY.Inthislastcase,andtakinginto accountthegravimetricamountofthecompoundinthefinalreac- tionmixture,polymerizationwasnotobservedeventhoughthis peptideandthelignanscontainedasimilarnumberofreactivesites.

(8)

M anus cr it d ’a ut eur / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt

Journal homepage: http://www.elsevier.com/locate/emt

Fig.5. MolarmassincreaseafterVPtreatmentinthepresenceof0.1mMMn2+of:

(a)SECOand(b)HMR.ControlscorrespondtoVP-untreatedSECOorHMRwith 0.1mMH2O2at24hofincubation.ControlscorrespondingtoVP-untreatedHMR with0.5mMH2O2weresimilartothepreviouscontrolandarenotrepresentedin (b).

Hetero-oligomerswereonlyformedinreactionscontainingthe peptideYIGSRwithbothlignans(Fig.6),althoughlignanhomo- oligomerswerealsodetected.Theseheterogeneouscross-linking reactions took place through the elimination of two hydrogen atoms according to theequation: [nMM(YIGSR)+[nMM(lignan)- (n−1)2H+]-2H+].Peakscorrespondingtopeptidehomo-oligomers werenotfound,contrastingwiththehighDPoftheYIGSRunits produced when incubated alone with VP (Table2).YIGSR is a peptidederivedfromlamininanditisconsideredasanadhesive ligand,whatcanpossiblyfacilitateitsattachmentandlinkingto othermolecules[44].Theseresultsindicatethat,inthepresence ofbothsubstrates,VPhasapreferenceforlignansandifahetero- crosslinkingoccurs,onlythelignanchainisfurtherelongated.

3.3. Largemoleculescross-linkingbyVP 3.3.1. ˇ-Caseincross-linking

As VP was shown to efficiently cross-link small tyrosine- containingpeptides,themilkprotein␤-casein,consistingof209 aminoacids,fourofwhicharetyrosines[45],wasselectedtodeter- mine if VP couldcross-link largerproteins. The products were analyzedunderdissociatingandreducingconditionsbySDS-PAGE, confirmingthatthecomplexesobservedwereduetotheformation of covalentbondsand notby molecularaggregation.Large-size molecularspecies(approximately150kDa)appearedevenatthe lowestenzymedosageandthebandcorrespondingtothe␤-casein monomerslightlydecreasedoverthereactiontime,suggestingthat alowpercentageofproteinwasmodified(Fig.7,lane6).Incon- trast, mediumandhighdosesof VPresultedin analmosttotal fadingofthe␤-caseinmonomerafter24h(Fig.7,lanes7and10).

Moreover,bandshigherthan250kDawereobservedat thetop oftherunninggel,correspondingtopolymersofatleast10–11

␤-caseinmonomers.Thepolymerizationofcaseinhasbeenprevi- ouslyreportedusingHRP[18]andHRPplusferulicacid[46]with similarresultstothosereportedinthepresentstudy.Bandswith alowermassthan␤-caseinappearedafterlongincubationtimes andinreactionswithhighVPdoses.Aspreviouslydiscussed,the peroxidasecansimultaneouslycatalyzepolymerizationanddegra- dationatextendedreactiontimes(Fig.7,lanes7–10).After24hof incubation,aslightaggregationwasdetectedinallsamples,which couldbeproducedbytheintra-andintermoleculartransference ofradicalsformedfromproteinsduringthereaction[47,48].TEM images(Fig.7)fromwatersolutionsofVP-treatedcaseinallowed the observationof theprotein as fibers, representing a typical

Fig.6.MALDI-TOFmassspectrafromVP-heteropolymerizationofYIGSRpeptidewith(a)SECOlignanand(b)HMRlignanduring2hinthepresenceof0.1mMMn2+and H2O2.Aseconddosageof0.1mMperoxidewasaddedafter1hincubation.Theunits’numberofthehomo-andthehetero-polymersisshownabovethecorrespondingpeak.

Analyseswereperformedonduplicatesoftwoindependentreactions,showingidenticalspectra.

(9)

M anus cr it d ’a ut eur / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt

Journal homepage: http://www.elsevier.com/locate/emt

Fig.7. Cross-linkingof␤-caseinanalyzedbySDS-PAGEandTEM.(a)SDS-PAGEof

␤-casein(Lane1);␤-caseinplusH2O2(Lane2);␤-caseinplusVP(Lane3);VP/H2O2- treated␤-caseinwith0.015UmL−1ofVP(Lanes4–6);VP/H2O2-treated␤-casein with0.15UmL−1(Lanes7–9);VP/H2O2-treated␤-caseinwith1.5UmL−1(Lanes 10–12).ArrowsaresignalingtheVPband(∼43kDa).The␤-caseinmonomeris framedalongthegel.(b)TEMphotomicrographsofuntreated␤-casein(1),and VP-treated␤-caseinduring24hofincubationwithanenzymedosageof1.5UmL−1 dissolvedinwater(2)orinurea6M(3).Arrowsaresignaling␤-caseinmonomers.

product structure upon molecular aggregation [49]. When VP- treated ␤-casein was dissolved in urea to disrupt aggregates, polymerswereobservedasirregularandcompactstructureswith abroadrangeofsizes.

3.3.2. FAXcross-linking

Smalldeformationoscillatoryrheologywasusedtofollowgel formationcausedbytheoxidativecross-linkingofferuloylatedara- binoxylan.ControltreatmentslackingVPorH2O2didnotproduce gelsduring4hreactions,andthesameresultwasobtainedwith thelowestVPdosage(0.015UmL−1).Neithertheuseof1.5UmL−1 ofVPwasusefulforthismonitoringsinceitproducedanimmedi- ategelationafterH2O2addition.Adosageof0.15UmL1VPwas selectedforfurtherexperiments.Theprofileobtainedwith3%FAX fittedthetypicalkineticbehaviordisplayedinenzymaticsystems containinglaccases[50]or otherperoxidases[16].Fig.8 shows aninitialincreaseofbothG’andG”followedbyaplateauregion.

ThatplateaureachedG valuesofaround90PaandG valuesof 0.5Pain10and7minrespectively,indicatingthatthesamplehad gel-likeproperties.Thefinalphaseanglewasverylow(below0.5 degrees),highlightingthehighelasticityofthegel.Thegelation point,calculatedfromthecrossoverpointofGandG,tookplacein about2min.Apartfromthediferuliccovalentbonds,non-covalent linksbetweenarabinoxylansmightalsooccur[22,51]andtherefore themeasuredrheologicalpropertiesdependonthearabinoxylan structuralcharacteristicsandtheferulicacidconcentration.

Gelsweregeneratedonlyinreactionswith0.15and1.5UmL−1 VP,reaching theswelling equilibrium between4 and 6h, with swellingratiovalues(q)of53.4±0.4and65.4±1.1gwater/gFAX, respectively.Thesevalueswerehigherthanthosereportedinother enzyme-catalyzedFAXgelationstudies[52].Thefastreactionrate achievedwithVPcouldcausethetrappingofuncrosslinkedFAX moleculesinsidethegelstructure.Thesemoleculeswouldexpand

Fig.8. TheeffectsofVP-treatmentontherheologicalpropertiesofFAXgels.Samples wereanalyzedinduplicate,showingcoefficientsofvariationlowerthan5%.

quicklyincontactwithwater,leadingtoitsincreasedintakeinthe resultantFAXnetworks[16].

4. Conclusions

Themodificationbyenzymatic cross-linkingofbiomolecules usingtheVPfromP.eryngiihasbeenachieved.Thereactioncon- ditionsduringVPtreatmentshadagreatinfluenceinthereaction yields.Ingeneral,Mn2+seemedtoimprovetheVPstabilityand/or itscatalyticefficiencyeveninthepresenceoforganicco-solvents, whichareessentialinmostreactionsinvolvinglignans.Onlypep- tidescontainingtyrosineresidues,regardlessoftheirpositionin thesequence,arecapableofformingacovalentbondthroughthis kindofreactions,andheteropolymerizationoflignanswithapep- tideresultedtobefeasible.Moreover,VP-catalyzedcross-linking producedhighmassmacromoleculesfrom␤-caseinandFAX.In viewoftheseresults,theapplicationofVPforefficientpolymer- izationofoxidizablecompoundsissuggested.Furtherscreening ofotherpotentialsubstratesforVPandstudiesontheoptimiza- tionofthepolymerizationreactionwillbedesignedinthefuture.

TheP.eryngiiVPusedinthisworkiscurrentlybeingsubjectedto structural-functionalstudiesenablingrationaldesign,aswellasto directedmolecularevolution,toimproveitsresistancetopHand H2O2,twoimportantchallengesforitsapplicationinbiotechnolo- gicalprocesses.

Conflictofintereststatement

Theauthorsdeclarethattherearenoconflictsofinterest.

Acknowledgements

D.SalvachúathankstheSpanishMinistryofEconomyandCom- petitivenessforaFPUfellowship,P.MatikainenandB.Hillebrandt fortechnicalassistanceandDr.K.Viljanenforthephenolicacids analysis(VTT,Espoo, Finland). We alsothank FernandoEscolar foritshelpinTEMandJ.Gil(CIB,Madrid,Spain).Thisworkhas beencarriedoutwithfundingfromtheEUFP7project“Peroxicats”

(KBBE-2010-4-265397),theSpanishMinistryofScienceandInno- vation (BIO2009-08446, PRI-PIBAR-2011-1402), and the project

“LigninFibre”financedbytheAcademyofFinland(Grantnumber 133091).

(10)

M anus cr it d ’a ut eur / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt M anus cr it d ’a ut eu r / Aut hor m anus cr ipt

Journal homepage: http://www.elsevier.com/locate/emt

References

[1]KobayashiS,UyamaH,KimuraS.Enzymaticpolymerization.ChemicalReviews 2001;101:3793–818.

[2]WaldeP,GuoZ.Enzyme-catalyzedchemicalstructure-controllingtemplate polymerization.SoftMatter2011;7:316–31.

[3]MileticN,NastasovicA,LoosK.Immobilizationofbiocatalystsforenzymatic polymerizations:possibilities,advantages,applications.BioresourceTechnol- ogy2012;115:126–35.

[4]HofrichterM,UllrichR,PecynaMJ,LiersC,LundellT.Newandclassicfamilies ofsecretedfungalhemeperoxidases.AppliedMicrobiologyandBiotechnology 2010;87:871–97.

[5]FloudasD,BinderM,RileyR,BarryK,BlanchetteRA,HenrissatB,etal.Thepaleo- zoicoriginofenzymaticlignindecompositionreconstructedfrom31fungal genomes.Science2012;336:1715–9.

[6]HeinflingA,Ruiz-Due ˜nasFJ,MartínezMJ,BergbauerM,SzewzykU,Martínez AT.Astudyonreducingsubstratesofmanganese–oxidizingperoxidasesfrom PleurotuseryngiiandBjerkanderaadusta.FEBSLetters1998;428:141–6.

[7]BanciL,CamareroS,MartínezAT,MartínezMJ,Pérez-BoadaM,PierattelliR, etal.NMRstudyofMn(II)bindingbythenewversatileperoxidasefromthe white-rotfungusPleurotuseryngii.JournalofBiologicalInorganicChemistry 2003;8:751–60.

[8]Pérez-BoadaM,Ruiz-Due ˜nasFJ,PogniR,BasosiR,ChoinowskiT,Martínez MJ,etal.Versatileperoxidaseoxidationofhighredoxpotentialaromatic compounds: site-directedmutagenesis, spectroscopicand crystallographic investigationsofthreelong-rangeelectrontransferpathways.JournalofMolec- ularBiology2005;354:385–402.

[9]RodríguezE,NueroO,GuillénF,MartínezAT,MartínezMJ.Degradationof phenolicand non-phenolicaromaticpollutantsbyfourPleurotus species:

theroleoflaccaseandversatileperoxidase.SoilBiologyandBiochemistry 2004;36:909–16.

[10]Ruiz-Due ˜nasFJ,MartínezMJ,MartínezAT.Molecularcharacterizationofa novelperoxidaseisolatedfromtheligninolyticfungusPleurotuseryngii.Molec- ularMicrobiology1999;31:223–36.

[11]Ruiz-Due ˜nasFJ, MoralesM,García E,MikiY, Martínez MJ,Martínez AT.

Substrateoxidationsitesinversatileperoxidaseandotherbasidiomyceteper- oxidases.JournalofExperimentalBotany2009;60:441–52.

[12]Lú-ChauTA,Ruiz-Due ˜nasFJ,CamareroS,FeijooG,MartínezMJ,LemaJM, etal.EffectofpHonthestabilityofPleurotuseryngiiversatileperoxidasedur- ingheterologousproductioninEmericellanidulans.BioprocessandBiosystems Engineering2004;26:287–93.

[13]García-Ruiz E,Gonzalez-PerezD,Ruiz-Due ˜nasFJ, MartinezAT,AlcaldeM.

Directedevolutionofatemperature-,peroxide-andalkalinepH-tolerantver- satileperoxidase.BiochemicalJournal2012;441:487–98.

[14]HamidM,KhaliluR.Potentialapplicationsofperoxidases.FoodChemistry 2009;115:1177–86.

[15]SteffensenCL,Mattinen ML,AndersenHJ,KruusK,BuchertJ,NielsenJH.

Cross-linkingoftyrosine-containingpeptidesbyhydrogenperoxide-activated Coprinus Cinereus peroxidase. European Food Research and Technology 2008;227:57–67.

[16]Martínez-LópezAL,Carvajal-MillanE,Lizardi-MendozaJ, López-FrancoYL, Rascón-ChuA,Salas-Mu ˜nozE,etal.Theperoxidase/H2O2systemasafree radical-generatingagentforgellingmaizebranarabinoxylans:rheologicaland structuralproperties.Molecules2011;16:8410–8.

[17]MattinenML,MaijalaP,NousiainenP,SmedsA,KontroJ,SipilaJ,etal.Oxidation oflignansandligninmodelcompoundsbylaccaseinaqueoussolventsystems.

JournalofMolecularCatalysisB-Enzymatic2011;72:122–9.

[18]MatheisG,WhitakerJR.Peroxidase-catalyzedcrosslinkingofproteins.Journal ofProteinChemistry1984;3:35–48.

[19]SaleemM,KimHJ,AliMS,LeeYS.Anupdateonbioactiveplantlignans.Natural ProductReports2005;22:696–716.

[20]BuchertJ,MustrantaA,TamminenT,SpetzP,HolmbomB.Modificationof sprucelignanswithTrameteshirsutalaccase.Holzforschung2002;56:579–84.

[21]MattinenML,StruijsK,SuorttiT,MattilaI,KruusK,WillförS,etal.Modification oflignansbyTrameteshirsutalaccase.Bioresources2009;4:482–96.

[22]Ni ˜no-MedinaG,Carvajal-MillanE,Rascón-ChuA,Marquez-EscalanteJA,Guer- reroV,Salas-Mu ˜nozE.Feruloylatedarabinoxylans andarabinoxylangels:

structure,sourcesandapplications.PhytochemstryReviews2010;9:111–20.

[23]Arihara K.Functional propertiesofbioactivepeptides derivedfrom meat proteins.In:NolletLML,ToldráF,editors.Advancedtechnologiesformeat processing.BocaRaton,FL:CRCPress;2006.p.254–73.

[24]Stanic D, Monogioudi E, Dilek E, Radosavljevic J, Atanaskovic-Markovic M, VuckovicO, etal. Digestibility andallergenicity assessment ofenzy- matically crosslinkedbeta-casein.Molecular Nutritionand FoodResearch 2010;54:1273–84.

[25]BoeriuC.Peroxidasesinfoodindustry:crosslinkingofproteinsandpolysaccha- ridestoimpartnovelfunctionalproperties.RomanianBiotechnologicalLetters 2008;13:81–6.

[26]BuchertJ,CuraDE,MaH,GasparettiC,MonogioudiE,FaccioG,etal.Crosslinking foodproteinsforimprovedfunctionality.AnnualReviewofFoodScienceand Technology2010;1:113–38.

[27]AndereggRJ,RoweJW.Lignans,themajorcomponentofresinfromAraucaria angustifoliaknots.Holzforschung1974;28:171.

[28]Eklund P, Sillanpää R, Sjöholm R. Synthetic transformation of hydroxymatairesinol from Norway spruce (Picea abies) to 7- hydroxysecoisolariciresinol, (+)-lariciresinol and (+)-cyclolariciresinol.

JournaloftheChemicalSocietyPerkinsTransactions2002;1:1906–10.

[29]SmedsAI,EklundPC,SjöholmRE,WillförSM,NishibeS,DeyamaT,etal.Quan- tificationofabroadspectrumoflignansincereals,oilseeds,andnuts.Journal ofAgriculturalandFoodChemistry2007;55:1337–46.

[30]MartínezMJ,Ruiz-Due ˜nasFJ,GuillénF,MartínezAT.Purificationandcatalytic propertiesoftwomanganese-peroxidaseisoenzymesfromPleurotuseryngii.

EuropeanJournalofBiochemistry1996;237:424–32.

[31]FauldsCB,Pérez-BoadaM,MartínezAT.Influenceoforganicco-solventsonthe activityandsubstratespecificityofferuloylesterases.BioresourceTechnology 2011;102:4962–7.

[32]Rodakiewicz-NowakJ,Jarosz-WilkolazkaA,LuterekJ.Catalyticactivityof versatileperoxidasefromBjerkanderafumosainaqueoussolutionsofwater- miscibleorganicsolvents.AppliedCatalysisA:General2006;308:56–61.

[33]MoralesM,MateMJ,RomeroA,MartinezMJ,MartinezAT,Ruiz-Due ˜nasFJ.

Twooxidationsitesforlowredoxpotentialsubstrates:adirectedmutagene- sis,kinetic,andcrystallographicstudyonPleurotuseryngiiversatileperoxidase.

JournalofBiologicalChemistry2012;287:41053–67.

[34]MattinenML,SuorttiT,GosselinkR,ArgyropoulusDS,EvtuguinD,Suurnäkki A, et al. Polymerization of different lignins by laccase. Bioresources 2008;3:549–65.

[35]EklundPC,LångvikOK,WärnåJP,SalmiTO,WillförSM,SjöholmRE.Chemical studiesonantioxidantmechanismsandfreeradicalscavengingpropertiesof lignans.OrganicandBiomolecularChemistry2005;3:3336–47.

[36]Gómez-ToribioV,MartínezAT,MartínezMJ,GuillénF.Oxidationofhydro- quinonesbytheversatileligninolyticperoxidasefromPleurotuseryngii:H2O2

generation andthe influence ofMn2+. EuropeanJournalof Biochemistry 2001;268:4787–93.

[37]MoyaR,SaastamoinenP,HernandezM,SuurnäkkiA,AriasE,MattinenML.

Reactivityofbacterialandfungallaccaseswithligninunderalkalineconditions.

BioresourceTechnology2011;102:10006–12.

[38]MoreiraPR,Almeida-VaraE,MalcataFX,DuarteJC.Lignintransformationbya versatileperoxidasefromanovelBjerkanderaspstrain.InternationalBiodete- riorationandBiodegradation2007;59:234–8.

[39]HofrichterM,LundellT,HatakkaA.Conversionofmilledpinewoodbyman- ganeseperoxidasefromPhlebiaradiata.AppliedandEnvironmentMicrobiology 2001;67:4588–93.

[40]MattinenML,KruusK,BuchertJ,NielsenJH,AndersenHJ,SteffensenCL.

Laccase-catalyzedpolymerizationoftyrosine-containingpeptides.FEBSJour- nal2005;272:3640–50.

[41]MichonT,ChenuM,KellershonN,DesmadrilM,GueguenJ. Horseradish peroxidaseoxidationoftyrosine-containingpeptidesandtheirsubsequent polymerization:Akineticstudy.Biochemistry1997;36:8504–13.

[42]SteffensenCL, MattinenML,AndersenHJ,KruusK,BuchertJ,Nielsen JH.

Cross-linkingoftyrosine-containingpeptidesbyhydrogenperoxide-activated Coprinus cinereus peroxidase. European Food Research and Technology 2008;227:57–67.

[43]SteffensenCL,StensballeA,KidmoseU,DegnPE,AndersenML,NielsenJH.

Modificationsofaminoacidsduringferulicacid-mediated,laccase-catalysed cross-linkingofpeptides.FreeRadicalResearch2009;43:1167–78.

[44]ZustiakSP,DurbalR,LeachJB.Influenceofcell-adhesivepeptideligandson poly(ethyleneglycol)hydrogelphysical,mechanicalandtransportproperties.

ActaBiomaterialia2010;6:3404–14.

[45]MonogioudiE,CreusotN,KruusK,GruppenH,BuchertJ,MattinenML.Cross- linkingof␤-caseinbyTrichodermareeseityrosinaseandStreptoverticillium mobaraensetransglutaminasefollowedbySEC-MALLS.Food Hydrocolloids 2009;23:2008–15.

[46]LiJ,LiT,ZhaoX.Hydrogenperoxideandferulicacid-mediatedoxidativecross- linkingofcaseincatalyzedbyhorseradishperoxidaseandtheimpactson emulsifyingpropertyandmicrostructureofacidifiedgel.AfricanJournalof Biotechnology2009;8:6993–9.

[47]DauphasS,Mouhous-RiouN,MetroB,MackieAR,WildePJ,AntonM,etal.The supramolecularorganisationof+

¦

-casein:effectoninterfacialproperties.Food Hydrocolloids2005;19:387–93.

[48]MonogioudiE,PermiP,FilpponenI,LienemannM,LiB,ArgyropoulosD,etal.

ProteinanalysisbyP-31NMRspectroscopyinionicliquid:quantitativedeter- minationofenzymaticallycreatedcross-links.JournalofAgriculturalandFood Chemistry2011;59:1352–62.

[49]WerningML,CorralesMA,PrietoA,FernándezdePalenciaP,NavasJ,López P.Heterologousexpressionofaposition2-substituted(1-3)-␤-D-glucanin Lactococcuslactis.AppliedandEnvironmentMicrobiology2008;74:5259–62.

[50]Carvajal-MillanE,LandillonV,MorelMH,RouauX,DoublierJL,MicardV.

Arabinoxylangels:impactoftheferuloylationdegreeontheirstructureand properties.Biomacromolecules2005;6:309–17.

[51]Berlanga-ReyesCM,Carvajal-Millan E, Lizardi-Mendoza J, Islas-RubioAR, Rascón-ChuA.Enzymaticcross-linkingofalkaliextractedarabinoxylans:gel rheologicalandstructuralcharacteristics.InternationalJournalofMolecular Sciences2011;12:5853–61.

[52]MeyvisTKL,DeSmedtSC,DemeesterJ,HenninkWE.Influenceofthedegra- dationmechanismofhydrogelsontheirelasticandswellingpropertiesduring degradation.Macromolecules2000;33:4717–25.

Références

Documents relatifs

In the following we will refer to “cross-lingual ontology linking” in a broad sense, including (semi-) automatic ontology and instance matching methods and techniques applied to

By representing RDF datasets in the input collections as property tables, data model heterogeneity is reduced to structural heterogeneity in the tabular domain.. Figure 2 shows

Finally, the most delicate issue generated by the abusive use of the ethnic factor is on the one hand that of the Cyrillic inscriptions in the Catholic Hungarian churches, and on

Variations in polymer concentration and reaction time had the greatest effect on reaction yield, while initial iodine activity, which is directly related to initial iodine

To link Wikidata to the semantic web, we have followed four routes: (1) Using the FILTER operator in SPARQL; (2) Using IRIs which are compiled on the fly based on existing -value

Accumulated oxygen deficit during exercise to exhaustion determined at different supramaximal work-rates. The aim of the study was: a) to determine the effect of supramaximal

Aromatic C=C bond bending were also detected at 1600 and 1400 cm -1 whereas the presence of the pyrrole group was proven by the band associated to C- N bond stretching at 1260

The small q excess of scattering intensity in the gels compared to the solutions with same concentration is usually interpreted in terms of heterogeneities in polymer concentration