• Aucun résultat trouvé

Comparative mapping in Salicaceae: a tool for identifying important genes controlling adaptive traits

N/A
N/A
Protected

Academic year: 2021

Partager "Comparative mapping in Salicaceae: a tool for identifying important genes controlling adaptive traits"

Copied!
26
0
0

Texte intégral

(1)

HAL Id: hal-02755815

https://hal.inrae.fr/hal-02755815

Submitted on 3 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Comparative mapping in Salicaceae: a tool for identifying important genes controlling adaptive traits

Véronique Jorge, Francesco Fabbrini, Patricia Faivre-Rampant, Matthias Fladung, Muriel Gaudet, Ulf Lagercrantz, Jean-Charles Leplé, Michele

Morgante, Birte Pakull, Maurizio Sabatti, et al.

To cite this version:

Véronique Jorge, Francesco Fabbrini, Patricia Faivre-Rampant, Matthias Fladung, Muriel Gaudet, et al.. Comparative mapping in Salicaceae: a tool for identifying important genes controlling adaptive traits. Forest ecosystem genomics and adaptation, Jun 2010, San Lorenzo de El Escorial, Spain.

�hal-02755815�

(2)

Comparative mapping in Salicaceae: a tool for identifying important genes

controlling adaptive traits

Véronique Jorge,

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

Véronique Jorge,

Francesco Fabbrini, Patricia Faivre-Rampant, Matthias Fladung, Muriel Gaudet, Ulf Lagercrantz, Jean-Charles Leplé,

Michele Morgante, Birte Pakull, Maurizio Sabatti,

Véronique Storme, Gail Taylor, Nicola Vitacolonna, Jennifer De Woody, Catherine Bastien

University of Udine (DiSA)

(3)

Comparative QTL mapping

Definition of comparative mapping

Alignment of chromosomes of related species based on genetic mapping of common DNA markers

Goal

Identification of conserved/specific genomic regions.

Specific questions

How cumulated QTL data based on heterogeneous mapping How cumulated QTL data based on heterogeneous mapping

experiments could help functional annotation of genomes and identification of candidate genes?

Strategies

Simple graphical comparison

Map construction and QTL analysis based on multiple mapping experiment (on raw data)

Consensus and meta-analysis (on position data)

(4)

Methods for comparative mapping

Simple graphical comparison: matching marker names (Cmap)

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

Rough identification of linkage groups/chromosomes of interest

Data from http://www.evoltree.soton.ac.uk/cmap/

(5)

Methods for comparative mapping

Map construction and QTL analysis based on mutliple mapping experiment (on raw data)

Marker and phenotypic data on pedigree 1 010001101110101 110111101100110 110110011010001 110111101100110 110111101100110 25 35 21 18 20 25 26 30 21 20

Analysis

Marker and phenotypic data on pedigree 2 25 26 30 21 20

010001101110101 110111101100110 110110011010001 110111101100110 110111101100110 25 35 21 18 20 25 26 30 21 20

Map: JoinMap, Carthagene QTL: MCQTL, …

Blanc et al. 2006 TAG 113:206–224

Raw data not easily available

Connected pedigrees often needed

(6)

Methods for comparative mapping

Consensus map and QTL meta-analysis based on position data

Advantages: elaborated data retrieved from published data

From elaborated data (maps, position and QTL confidence intervals) Meta-analysis: combine data from different sources in a single study Widely used in medical and social science

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

Steps for QTL meta-analysis

Construction of the consensus map Projection of QTLs

on the consensus map QTL meta-analysis

1

2 For each chromosome

(7)

Example of a promising QTL meta-analysis

Simulations and analysis of real data sets showed that the confidence intervals of the meta-QTLs are considerably reduced compared to the observed QTL

Maize example (Truntzler et al.

submitted):

• 34 QTLs for early flowering components from 15 papers.

• The best model k = 5 meta-QTLs.

vgt1 vgt2

• The best model k = 5 meta-QTLs.

• Colors -> quantitative assignation of QTL -> 75% of observed QTLs correspond to vgt1 and/or vgt2.

• Confidence intervals reduced:

vgt1 (~ 4cM) include a fine

mapped QTL (Salvi et al., 2000).

(8)

Create a consensus map

In general, all genetic maps need to be connected.

PMGC2607 ORPM381a PMGC2610 ORPM202

deb1

PMGC14 PMGC2607

PMGC2607 deb3

pmgc2607 pmgc2060

pmgc2607

pmgc2598 pmgc2060

fin5 fin9

PMGC2607 PMGC2060

deb6

pmgc2607

deb7 PMGC2696 PMGC2607

PMGC61

PMGC2607

PMGC2610 ORPM264

deb10 pmgc2598 pmgc2060

1 2 3 4 5 6 7 8 9 10 11

Example in Populus: case of a LG well covered by SSR (LG_VIII)

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

ORPM202

ORPM327

ORPM301

PMGC204 ORPM269

fin1

ORPM370 ORPM327

ORPM301

deb2

pmgc409

fin3

pmgc2060

pmgc409

fin4

PMGC2607 PMGC2060

PMGC61

PMGC409 bi139308 deb5

PMGC61

PMGC409 bi139308

ORPM202

pmgc61

wpms13

fin6

PMGC61 PMGC409 ORPM455

ORPM269 ORPM56 fin7

ORPM264 PMGC409 WPMS13

ORPM56 ORPM269

fin8

pmgc61

pmgc409

fin10

! ! !

(9)

Markers containing sequence and position information (genome):

1) SSR markers (http://www.ornl.gov/sci/ipgc/ssr_resources.htm):

4 166 primer pairs available.

2) SNP located in genes

Create a consensus map

2) SNP located in genes

- evenly distributed on the genome

- in specific region (QTL) involved in adaptive traits (Phenology, drought resistance …)

- functional candidates (transcriptomics, …).

(10)

Mapping data for Salicaceae

Genetic maps connected to the genome

8 different species involved in 13 intra and interspecific crosses:

(Populus trichocarpa, P. deltoides, P. nigra, P. alba, P. angustifolia, P. fremontii, Salix vinimalis, S. schwerinii) …

Genus Family name – Pedigree type Progeny size Reference(s)

Family 13 – BC1 TD x D 171 Yin et al 2004

Family 331 - F2 TDxTD (POP1) 210 Tuskan et al.

Family 545 – F1 TxD 101 Yin et al 2008

Family XXX – D x DN 93 Yin et al 2008

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

Family XXX – D x DN 93 Yin et al 2008

Populus Family BCN - A x (FxA) 246 Yin et al 2008

POP2 - DxT 330 Jorge et al. (2005, +in prep)*

POP3a - DxN 180 Cervera et al.(2001)*

POP3b - DxT 182 Cervera et al.(2001)*

POP4 - AxA 141 Paolucci et al. (unpublished)*

Family 52-124 - (TD)xD 396 Dorst at al 2009

S1 – [Vx(VS)] x V 463 Berlin et al 2010

Salix S3 - VxV 282 Berlin et al 2010

K8 - [Vx(VS)] x [Vx(VS)] 471 Hanley et al 2006

(11)

Mapping data for Salicaceae

…but few framework genetic maps with genome anchoring markers and QTL data (growth related traits)

Pedigree Progeny

size

Nb of anchoring

markers

# of QTLs Reference(s)

F2 TDxTD (POP1) 210 83 188, (37, 43) Rae et al 2008, (2009)*

DxT (POP2) 330 74, 87 77 Jorge et al.

(unpublished) DxT, DxN (POP3) 180, 182 19, 14, 14, 16 21, 29, 48, 20 Dillen et al, 2009*

AxA (POP4) 141 55, 51 10, 11 Paolucci et al.

(unpublished)*

(TxD)xD 396 178 63 Dorst at al 2009

Novaes et al. 2009

*Data from http://www.evoltree.soton.ac.uk/cmap/

(12)

Novaes_2009 Rae_2009 Dillen_2009_D1 Dillen_2009_D2 Dillen_2009_N Dillen_2009_T Jorge_2010_D Jorge_2010_T Paolucci_2010_6K3 Paolucci_2010_14P11

Rae_2009 30

Populus spp. Salix spp.

Berlin_S1_2010 Berlin_S3_2010 Berlin_S3_2010 193

Hanley_2006 48 37

Lack of transferability of markers between genetic maps

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

Rae_2009 30

Dillen_2009_D1 5 8

Dillen_2009_D2 2 7 60

Dillen_2009_N 4 5 4 5

Dillen_2009_T 4 3 4 4 3

Jorge_2010_D 19 28 10 7 8 7

Jorge_2010_T 18 30 13 10 7 7 39

Paolucci_2010_6K3 13 18 8 2 3 3 13 12 Paolucci_2010_14P11 10 15 4 4 3 2 16 14 24 Sequence 178 83 19 14 14 16 74 87 55 51

Populus spp. : on average 20%

fewer for P. alba pedigree (distant taxus).

Salix spp.: 16%

Transferability Pt genome -> maps

Number of shared markers between genetic maps 10/05/2010

(13)

Lack of transferability of markers between genetic maps

SSR markers

4 166 primer pairs available

(http://www.ornl.gov/sci/ipgc/ssr_resources.htm):

« Polymorphism bottleneck »

AGAGAGAGAGAGAGAGAG TCTCTCTCTCTCTCTCTC

« Polymorphism bottleneck »

Pedigrees POP2

(DxT)

POP4 (AxA)

POP5 (NxN)

# SSR tested 317 273 386

# SSR not

amplifying/monomorphic 144 170 259

# SSR

polymorphic/mapped 173 103 127

(14)

P. nigra

Lack of transferability of markers between genetic maps

Substitution

P. nigra SNP

P. deltoides SNP

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

F

SNP are specific

P. deltoides

SNP are highly specific

(15)

Good anchoring on the genome sequence

Status of the alignment of Salicaceae genetic maps on the Populus trichocarpa genome

Paolucci_2010_6K3 Paolucci_2010_14P11

Populus spp. Salix spp.

Novaes_2009 Rae_2009 Dillen_2009_D1 Dillen_2009_D2 Dillen_2009_N Dillen_2009_T Jorge_2010_D Jorge_2010_T Paolucci_2010_6K3 Paolucci_2010_14P11 Berlin_S1_2010 Berlin_S3_2010 Hanley_2006

Sequence 178 83 19 14 14 16 74 87 55 51 259 177 139 Number of anchoring markers between genetic maps

and the P. trichocarpa genome 10/05/2010

(16)

Strategy for comparative QTL mapping in Salicaceae

PMGC2550 0.0 rP1199 28.6 E1M5.8 47.5 rE2M4.24 68.0 E1M7.3 98.9 E4M2.1 124.1 PMGC2852 154.0

LG_I P. deltoides

Start 0.0

PMGC2550 5.4

Perox1.2 7.2

PMGC2499 27.1

31.5 CCR5

PMGC634 54.7

bu867968 80.2

PMGC2852 97.6

PMGC93 112.4

bu831219 150.0

LG_I Sequence

105bp

O5.1400 0.0

Perox1.2 20.5

PMGC2499 34.2

E1M7.9 43.3

62.5 CCR5

PMGC634 86.4

bu867968 121.2

H3.1050 127.9

E2M6.14 140.7

LG_I

P. trichocarpa Relationship between pair wise genetic and physical distances between genome anchored markers

Anchoring to the genome sequence and bp/cM ratio calculation

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

PMGC2852 154.0 bu831219 165.5 PMGC93 170.2 E4M2.2 190.9 E1M8.9 216.2

PMGC2098 264.6 E2M4.6 287.6 E4M4.4 309.2 E2M4.19 338.1 E2M4.10 354.9 E2M3.10 373.0 rE3M5.9 387.5 rE3M5.10 407.6 PMGC2786b 436.4

bu831219 150.0

PMGC2098 270.0

PMGC2084 301.8

PMGC2385 337.7

355.7 Stop

E2M6.14 140.7

PMGC93 0.0

bu831219 14.4

E2M6.6 22.1

0.0

rM2.800 33.1

F14.450 51.4

Q9.1100 65.3

P17.600 76.3

92.6

M14.2000 106.1

E1M3.6 130.5

176.3

PMGC2098

PMGC2084

PMGC2385

y = R x

Number of bp / cM

P. deltoides P. trichocarpa

(17)

Calculation of start and stop of the QTL projected on the genome using the nearest markers and R (projection geometry)

Start 1.0

LG_I(sequence, pb)

PMGCxxx 0.0

LG_I (cM)

7.9

d1

Start(pb) = 11238978 – [|26.4 – 7.9| x R]

= 7 142 811 pb

d1

Strategy for comparative QTL mapping in Salicaceae

PMGC93 11238978

bu831219 15003259

PMGC93 26.4

bu831219 43.4

syllep_MUL1

36.6 d1

d2

= 7 142 811 pb

Stop(pb) = 15003259 - [|43.4 – 36.6| x R]

= 13 497 405 pb

d2

(18)

Strategy for comparative QTL mapping in Salicaceae

CCCTC-32 CCCTC-N10 PMGC667 PMGC422 AGCTG-N11 PMGC684 PMGC2797

PMGC2766 ORPM260 PMGC2418

rL15.1200 E2M4.29 UFLA_395

GCPM734 ORPM461 GCPM876 PMGC422

PMGC2797 GCPM2637 PMGC2709 PMGC456 PMGC2088 PMGC2418 GCPM1376 A18m7P

A16m10P A12mP5r A10mP3 A8mP10 A15mP4r PMGC2709 A16m1P A13mP1r PMGC2088

Sequence

Start PMGC2818 ORPM461 GCPM876 PMGC667 PMGC422 PMGC684

PMGC2797 GCPM2637 PMGC2709 ORPM40 PMGC456 0

10 20 30 40 50 60

Sequence

Start PMGC2818 ORPM461 GCPM876 PMGC667 PMGC422 PMGC684

PMGC2797 GCPM2637 PMGC2709 ORPM40 PMGC456 PMGC2766

QTL projection from each map to the genome sequence thanks to genome anchoring markers

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

Meta-analysis

Future development of Biomercator3, Joets et al. In development

E1M3.7 E3M5.4 PMGC667

E2M3.5 E1M6.10 E3M5.13 E2M4.0

E3M1.10

PMGC2088 PMGC2418

E2M4.29 PMGC223 PMGC2088 ORPM260 E5M4.2

PMGC2418 GCPM1376

PMGC2709

A3m1K A13K4 A5m4Kr PMGC204 PMGC2088

PMGC2523 PMGC2088

ORPM40 A8mP6r PMGC2523 A9mP7

PMGC456 PMGC2766 PMGC223 PMGC2088 ORPM260 PMGC2418

PMGC2523 GCPM1376 Stop 60

70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

PMGC2766 PMGC223 PMGC2088 ORPM260 PMGC2418

PMGC2523 GCPM1376 Stop

(19)

Leaf nitrogen content:

8 QTL, 9.7% - 34.7%

of the total PVE

PMGC2550rP1199 0.028.6 E1M5.8 47.5 rE2M4.24 68.0 E1M7.3 98.9 E4M2.1 124.1 PMGC2852 154.0 bu831219 165.5

PMGC93 170.2

Naju

LG_I P. deltoides

Start 0.0

PMGC2550 5.4

Perox1.2 7.2

PMGC2499 27.1

31.5 CCR5

PMGC634 54.7

bu867968 80.2

PMGC2852 97.6

PMGC93 112.4

bu831219 150.0

LG_I Sequence

105bp

O5.1400 0.0

Perox1.2 20.5

PMGC2499 34.2

E1M7.9 43.3

62.5 CCR5

PMGC634 86.4

bu867968 121.2

H3.1050 127.9

E2M6.14 140.7

Naju

LG_I P. trichocarpa

197.8 cM 17 670 094 bp

34.19 cM 6 188 807 bp

724 genes

Example of physical QTL intervals calculation and corresponding number of genes

genome sequence v1.1, POP2 genetic maps

Functional analysis of large gene lists

PMGC93 170.2

E4M2.2 190.9 E1M8.9 216.2

PMGC2098 264.6 E2M4.6 287.6 E4M4.4 309.2 E2M4.19 338.1 E2M4.10 354.9 E2M3.10 373.0 rE3M5.9 387.5 rE3M5.10 407.6 PMGC2786b 436.4

Naju

PMGC2098 270.0

PMGC2084 301.8

PMGC2385 337.7

355.7 Stop

PMGC93 0.0

bu831219 14.4

E2M6.6 22.1

PMGC2098 0.0

rM2.800 33.1

F14.450 51.4

Q9.1100 65.3

P17.600 76.3

PMGC2084 92.6

M14.2000 106.1

E1M3.6 130.5

PMGC2385 176.3

17 670 094 bp 1393 genes

P. trichocarpagenome sequence v1.1, POP2 genetic maps

(20)

Functional analysis of large gene lists

Annotation use a classification based on Gene Ontology (GO)

Molecular function (ex: oxidoreductase activity, …)

Biological process (ex: photosynthesis light harvesting, …) Cellular component (ex: membrane, chloroplast …)

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

(21)

Functional analysis of large gene lists

Methods:

Bioinformatic Enrichment Tools gene list 1 gene list 2

Annotation:

Gene ontology Annotation:

Gene ontology

Bauer et al, 2008. Bioinformatics 24:1650-1651.

Huang et al, 2009. Nucleic Acids Research 37:1-13.

Comparison:

Statistical tests

Significant GO terms

Strategy used in microarray experiment analysis

(22)

5 QTLs explaining 2.8 to 9% of the variation for nb of sylleptic branches

Gene list 1

QTL set

2906 genes included

in the 5 QTL confidence intervals

Gene list 2

Genome set

45 555 genes in the genome sequence v1.1 (~60% have GO terms)

ID Name p-Value p-Value

(Adj)

Study

Count Population Count

Functional analysis of large gene lists

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial (Adj) Count

GO:0010422 regulation of brassinosteroid biosynthetic process 0,0000 0,0000 5 6 GO:0010023 proanthocyanidin biosynthetic process 0,0000 0,0000 6 10

GO:0009641 shade avoidance 0,0000 0,0000 6 11

GO:0016595 glutamate binding 0,0001 0,0001 4 5

GO:0009741 response to brassinosteroid stimulus 0,0003 0,0003 10 38 GO:0009788 negative regulation of abscisic acid mediated signaling

pathway 0,0006 0,0006 5 11

GO:0006122 mitochondrial electron transport, ubiquinol to cytochrome c 0,0006 0,0006 5 11 GO:0004406 H3/H4 histone acetyltransferase activity 0,0008 0,0008 4 7

GO:0048830 adventitious root development 0,0008 0,0008 4 7

(23)

E45G2810r

K14.700 Win3

E1M8.11

P1275 E1M8.5

Win3

D3.2100

D5.1050 E2M4.4

F14.650

LG_X

Comparison between linkage maps and QTLs on Linkage Group X

(Jorge et al in preparation, Rae et al. 2008, 2009, Dillen et al., 2009).

Functional analysis of large gene lists

0.0

10.0 cM – 1.106pb 20.0 cM – 2.106pb

PMGC510 e37f3704 PMGC2573 PMGC2855 PMG2747 E40G0302 E36G1306r e38f4409r E34G3421r E31G422

Height1

DeltaC

Circum2

Circum1

E1M8.5 PMGC510

PMGC2855

O20.1200

Height1

Height2

J7.950 Q10.550 P17.1800 PMGC2786

Q14.1300

Circum1

Syllep1

PMGC510

PMGC2855 PMGC2571

PMGC2887

ORPM149

PMGC2786

P1055

PMGC2855 PMGC2571

E2M2.5

I14.1100

deltaH

PMGC2571 CACTG-38 PMGC2887 ORPM149

PMGC2786

Height1 syllep Circum1 Circum1 Height2 Circum2

DIAM HT-1 SLA SYL

(24)

Functional analysis of large gene lists

ID Name P value P value

(Adj.)

Study count

Pop.

count GO:0008825 cyclopropane-fatty-acyl-phospholipid synthase activity 5,88E-05 5,88E-05 5 9

Gene list 1

QTL set

2337 genes included in LG_X

Gene list 2

Genome set

45 555 genes in the genome sequence v1.1 (~60% have GO terms)

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

GO:0005575 cellular_component 9,97E-05 9,97E-05 1258 21116

GO:0000287 magnesium ion binding 3,06E-04 3,06E-04 4 7

GO:0008150 biological_process 7,95E-04 7,95E-04 1433 24560

GO:0009536 plastid 0,001270407 0,001270407 232 3413

GO:0009507 chloroplast 0,001524634 0,001524634 226 3327

GO:0044444 cytoplasmic part 0,001912735 0,001912735 400 6246

GO:0044275 cellular carbohydrate catabolic process 0,002304709 0,002304709 19 164

GO:0005982 starch metabolic process 0,002975107 0,002975107 7 35

GO:0044265 cellular macromolecule catabolic process 0,003129754 0,003129754 38 422

(25)

Future developments

Combining meta QTL analysis and gene enrichment approaches

• Biomercator3: projection of QTLs on the genome and QTL meta- analysis

• Gene list analysis: tools crossing information from GO +

bibliography + biochemical pathways + various omics …

(26)

F O O D A G R I C U L T U R E

Forest ecosystems genomics and adaptation, 9-11 June 2010, San Lorenzo de El Escorial

Thank you!

Thank you! Thank you!

Thank you!

Références

Documents relatifs

It is carried out in quail to take advantage of 2 experimental lines which have been se- lected divergently for social reinstatement (motivation

Liste des mots Liste des mots Liste des mots Liste des mots Liste des mots Liste des mots Liste des mots Liste des mots ---- ---- clés en Java clés en Java clés en Java clés en

inverse of the 44 × 44 (co)variance matrix among the 44 traits calculated from the estimated effects of the 510,174 SNPs, only in the training population, and y is a 44 × 1 vector

Figure 3: Declination data for the indicated locations provided by several sources: a) from sundials and compasses b) from historical maps; c) from measurements in monasteries and

Abstract—Over the last decade many studies in the gynecology literature have been investigating the performance of diagnosis models such as Univariate, Risk of Malignancy Index

SoRel — which is a tool for Software (and hardware) Reliability analysis and prediction — helps in achieving these objectives thanks to the combined use of

1) areas where only partial or no field walking has been performed and/or 2) there is very poor visibility due to land use and/or areas where significant taphonomic

For fine-grained management at the SDN controller level and with the advent of self-driving networks with its real-time telemetry requirement, we do not need only flow-