• Aucun résultat trouvé

Distribution of dissolved water in magmatic glass records growth and resorption of bubbles

N/A
N/A
Protected

Academic year: 2021

Partager "Distribution of dissolved water in magmatic glass records growth and resorption of bubbles"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: insu-01010754

https://hal-insu.archives-ouvertes.fr/insu-01010754

Submitted on 20 Jun 2014

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distribution of dissolved water in magmatic glass records growth and resorption of bubbles

I.M. Mcintosh, E.W. Llewellin, M.C.S. Humphreys, A.R.L. Nichols, Alain Burgisser, C. Ian Schipper, J.F. Larsen

To cite this version:

I.M. Mcintosh, E.W. Llewellin, M.C.S. Humphreys, A.R.L. Nichols, Alain Burgisser, et al.. Distri-

bution of dissolved water in magmatic glass records growth and resorption of bubbles. Earth and

Planetary Science Letters, Elsevier, 2014, 401, pp.1-11. �10.1016/j.epsl.2014.05.037�. �insu-01010754�

(2)

Contents lists available atScienceDirect

Earth and Planetary Science Letters

www.elsevier.com/locate/epsl

Distribution of dissolved water in magmatic glass records growth and resorption of bubbles

I.M. McIntosha,c,,E.W. Llewellina,M.C.S. Humphreysa,b,A.R.L. Nicholsc, A. Burgisserd,e, C.I. Schipperd,e,f,J.F. Larseng

aDepartmentofEarthSciences,DurhamUniversity,ScienceLabs,Durham,DH13LE,UK1 bDepartmentofEarthSciences,UniversityofOxford,SouthParksRoad,Oxford,OX13AN,UK

cResearchandDevelopmentCenterforOceanDrillingScience,JapanAgencyforMarineEarthScienceandTechnology(JAMSTEC),2-15Natsushima-cho, Yokosuka,Kanagawa237-0061,Japan

dInstitutdesSciencesdelaTerre,CNRSIRDUniversitédeSavoie,CampusScientifique,73376LeBourgetduLac,France

eInstitutdesSciencesdelaTerre(ISTO),CentreNationaldelaRechercheScientifique(CNRS),l’Universitéd’Orléans,1aruedelaFérollerie,OrléansCedex2, 45071,France2

fSchoolofGeography,EnvironmentandEarthSciences,VictoriaUniversityofWellington,POBox600,Wellington6140,NewZealand3 gGeophysicalInstitute,UniversityofAlaska,Fairbanks,AK99775,UnitedStates

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received15September2013 Receivedinrevisedform12May2014 Accepted21May2014

Availableonlinexxxx Editor:T.Elliott Keywords:

bubblegrowth bubbleresorption diffusion quencheffect waterspeciation disequilibrium

Volcanic eruptions aredrivenby thegrowthofgas bubblesinmagma. Bubbles growwhendissolved volatilespecies,principallywater, diffusethroughthesilicatemeltand exsolveatthebubblewall. On rapid cooling, the melt quenches to glass, preserving the spatial distribution ofwater concentration aroundthebubbles(nowvesicles),offeringawindowintopre-eruptiveconditions.Wemeasurethewater distributionaroundvesiclesinexperimentally-vesiculatedsamples,withhighspatialresolution.Wefind that, contraryto expectation,water concentration increasestowards vesicles,indicating that water is resorbedfrombubblesduringcooling;texturalevidencesuggeststhatresorptionoccurs largelybefore the melt solidifies. Speciationdata indicatethat the molecularwater distributionrecords resorption, whilstthehydroxyldistributionrecordsearlierdecompressivegrowth.Ourresultschallengetheemerging paradigmthatresorptionindicatesfluctuatingpressureconditions,andlaythefoundationsforanewtool forreconstructingtheeruptivehistoryofnaturalvolcanicproducts.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).

1. Introduction

Bubblesnucleatewhenmagmaticvolatiles(speciessuchaswa- ter, CO2 and SO2, that are only weakly soluble in the silicate melt)exsolvefroma supersaturatedmelt. Wateristhemostim- portantvolatile because itis usually the mostabundant and be- causeitstronglyaffectsmelt viscosity(HessandDingwell,1996).

Itisdissolvedinthemeltastwoprincipalspecies:molecularwa- ter,H2Om, andhydroxyl groups, OH. As magmaascends, bubbles growthroughdecompressiveexpansionandcontinuingexsolution

* Correspondingauthorat:ResearchandDevelopmentCenterforOceanDrilling Science,JapanAgencyforMarine EarthScienceandTechnology(JAMSTEC),2-15 Natsushima-cho,Yokosuka,Kanagawa237-0061,Japan.Tel.:+81468679766;fax:

+81468679625.

E-mailaddress:i.m.mcintosh@jamstec.go.jp(I.M. McIntosh).

1 CurrentaddressoftheauthorM.C.S.Humphreys.

2 CurrentaddressoftheauthorA.Burgisser.

3 CurrentaddressoftheauthorC.I.Schipper.

ofvolatilesfromthemelt(Sparks,1978).Togethertheseprocesses control the bubble growth ratewhich, in turn,controls orinflu- encesalmostevery aspectofmagmaascentanderuption,includ- ing:magmavesicularity,buoyancy,rheologyandpermeability;the pressuregradientthatdrivestheeruption;andtheonsetofmagma fragmentation. Understanding and quantifying bubble growth is, therefore,oneofthemostfundamentalchallengesinphysicalvol- canology.

Waterexsolvesfromthemelt,intoabubble,whenitssolubility inthemeltdecreases,andresorbs intothemelt whenitssolubil- ity increases.The resulting change inthe water concentration at thebubblewallcreatesachemical potentialgradientinthemelt, whichdrivesdiffusiontowardsagrowingbubbleandawayfroma shrinking bubble(Fig. 1). Thewaterconcentration profilemaybe preservedwhenthe meltquenchesto glass,offeringthe tantalis- ing prospectofreconstructing thebubble’shistoryofgrowthand resorption.Wequantifythespatialdistributionofdissolvedwater anditsspeciesinexperimentally-vesiculatedmagmaticglasses,us- ingsecondaryionmassspectrometry(SIMS)-calibratedbackscatter http://dx.doi.org/10.1016/j.epsl.2014.05.037

0012-821X/©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/3.0/).

(3)

Fig. 1.Bubblegrowthandresorption.Schematicfiguretoshowthepressureand temperature(P,T)conditionsrequiredforabubbletoremain inequilibrium,to grow,ortoresorb,withexampleH2Otconcentrationprofilesthatresult.Solidblack linesindicatecurrentbubblesize;dashedgreylinesindicatepreviousbubblesize, hencewhetherbubbleisgrowingorresorbing.

scanning electron microscope (BSEM) images (Humphreys et al., 2008) and Fourier-transforminfra-red(FTIR)imaging(e.g.Nichols andWysoczanski,2007),inordertotestthishypothesis.

Two recent studies apply a similar conceptual framework to draw significant conclusions about conduit processes.Watkins et al. (2012)analysevolatiledistributionsaroundvesiclesinobsidian clastsandfindwaterconcentrationprofilesconsistentwithbubble resorption(cf.Fig. 1).Theyinferapressureincreaseinthevolcanic conduitpriortoeruption.Careyetal. (2013)studyvesicledistribu- tionsinbasalticpyroclastsandfindindirectevidenceofresorption ofbubblespriortoeruption,whichtheyalsointerpretasevidence ofapressureincrease intheconduit.Basedon ourdata,we pro- pose that bubble resorption may occur during the quench from melttoglassasH2Osolubilityincreaseswithdecreasingtempera- ture,andpresentanalternativeinterpretationofthesefindingsin Section4.4.

Otherworkershaveusedtexturalevidencefromexperimental- ly-vesiculatedmagmasamplesto investigateinteractions between bubbles (Castro et al., 2012). They observe dimpled and sinuous glassfilmsbetweenvesicles,whichtheyinterpretaspreservedev- idence of incipient coalescence of growing bubbles. We analyse water distribution in the same samples and offer an alternative interpretationfortheirobservations,whichisconsistent withour conceptualmodel(Section4.3).

1.1. Waterinsilicatemelts

Interpretationofwaterdistributionsinglassreliesonquantita- tivemodelsforwatersolubilityanddiffusivity.Experimentalstud- iesofvariousmagmacompositionsshowthat,forcrustalpressures relevanttomagmatic degassing,solubilityincreaseswithincreas- ingpressureanddecreasingtemperature(Baker andAlletti,2012;

Newman and Lowenstern, 2002) while diffusivity (D) increases with increasing temperature, decreasing pressure, and increasing waterconcentration(NiandZhang,2008) (Fig. 2).Temperatureex- ertsadominantcontrolonwaterdiffusivityand,toalesserextent, onsolubility;however,thereremains a gapindatabetweenam- bient and magmatic temperatures, which includes the transition betweenmeltandglass.

Thetwospeciesofwaterpresentinglass(H2OmandOH)inter- convertviatheequilibriumreaction

H2Om(melt)+Oo(melt)2OH(melt), (1)

Fig. 2.Controlsondiffusivityandsolubilityofwater.Variationinwatersolubility (upper) anddiffusivity (lower)with pressure andtemperature forrhyolitecom- position.A datagapexistsbetweenmagmaticandambienttemperatures.High-T solubilitymodelisfromNewmanandLowenstern (2002) showingproportionof H2Om andOHatequilibriumspeciation;diffusivity dataarefromNiandZhang (2008)assuming4wt%H2Otwithboth H2Ot andH2Om diffusivityshown. Low temperaturesolubility(diamond)istakenfromAnovitzetal. (1999);lowtempera- turediffusivitydata(for0.1 MPa)arefromAnovitzetal. (2006).

inwhichmolecularwaterreactswithbridgingoxygens(O)inthe melt to produce hydroxyl groups that are bound to the silicate polymerframework (Stolper,1982a).The‘totalwater’ (H2Ot)con- tentofameltorglassisthesumofthecontributionsfromH2Om andOH.Thepositionoftheequilibrium ofEq.(1)(the‘equilibrium speciation’) changes withpressure, temperature, H2Ot concentra- tion and melt composition (Hui et al., 2008; Silver et al., 1990;

Stolper, 1989, 1982a) (Fig. 2). The bound OH groups are effec- tively immobile andH2Om is the diffusingspecies;consequently, OH concentration gradients formindirectly by diffusion ofH2Om and subsequent readjustment towards equilibrium speciation via Eq. (1) (Zhang et al., 1991). For identical conditions, DH2Om is thereforehigherthanDH2Ot(Fig. 2).Atexperimental(ormagmatic) temperatures the rate of the species interconversion reaction is sufficientlyfastthat,followingaperturbationtothesystem,equi- libriumspeciationisre-establishedovertimescalesofmilliseconds.

As aresultofthe strongtemperature-dependenceofthe reaction ratehowever,thetimetakentoachieveequilibriumspeciationbe- comes much longer astemperature decreases, taking minutes to hoursat600Canddaysat400C(Zhangetal.,1995,1991).

2. Materialsandmethods

Samples are obtained from pre-existing experimental suites, and were manufactured under controlled conditions of pres- sure (P) and temperature (T). P and T conditions are given in Table 1,alongwithreferencestotheoriginalstudies;samplecom- positionsare giveninTableS1intheSupplementaryInformation.

Theexperimentswerealldesignedtoproducebubblepopulations witheitherequilibriumprofiles(solubilityexperiments) orbubble growthprofiles(decompressionexperiments)(Fig. 1).

2.1. Sampleproduction

Allsamplesweresynthesisedathighpressure(Psyn) andtem- perature(Texp,constantthroughoutexperiment)withexcesswater to forma startingmelt that waswater-saturatedandfully equili-

(4)

Table 1

Sampleproductiondetails.

Sample Texp

(C) Psyn (MPa)

Pi (MPa)

Timeheld atPi (hr)

Pf (MPa)

d P/dt (MPa/s)

Typeof experiment

Expectedbubble stateatquench

Experimental apparatus

Rhyolitea Quench: 3–10 s

ABG1 825 150 100 0.17 100 N/A Decompression Equilibrium Externally-heatedpressure

vessel;water-cooledrapid quenchattachment;3mm

ABG2 825 150 100 0.17 60 0.1 Decompression Growth

ABG6 825 150 100 0.17 80 0.1 Decompression Growth

ABG14 825 150 100 0.25 80 0.5 Decompression Growth

ABG15 825 150 100 0.25 60 0.5 Decompression Growth

Phonoliteb Quench: 3–10 s

IS14 1050 200 200 N/A 100 0.024 Decompression Growth Internally-heatedpressure

vessel;Ar-cooledrapid quenchattachment;5mm Rhyolitec

Quench: 30–60 s

MCN13 825 80 80 72 80 N/A Solubility Equilibrium Externally-heatedpressure

vessels,quenchedusing compressedairthen submersioninwater;4mm Rhyolited

Quench: 3–10 s

MCN15 825 80 80 73 56 0.4 Decompression Growth Externally-heatedpressure

vessel;water-cooledrapid quenchattachment;2mm Abbreviations:Texpisexperimentaltemperature,Psynispressureofsamplesynthesis,Pi isintermediatepressure(ifinitialstepdecompressionusedtonucleatebubbles), Pf isfinalpressure(NBquenchisisobaric),d P/dtisdecompressionrate.Experimentalapparatuscolumnsummariseskeydetails,includingsamplecapsulediameter(given inmm).Quenchtimeisestimatedandvarieswithexperimentalquenchapparatusused.Sinceallexperimentswereconductedisothermally,expectedbubblestateatquench isdeterminedbypressurehistoryonly.

Samplesource:

a BurgisserandGardner (2005).

b C.I.Schipper(unpublished),compositionasinIacono Marzianoetal. (2007),experimentalapparatusasinDiCarloetal. (2006).

c J.F.Larsen(unpublished),experimentalapparatusasinLarsen (2008).

d J.F.Larsen(unpublished),experimentalapparatusasinLarsenetal. (2004).

SamplewasdecompressedtoPf at4MPa/s,thenheldat Pf for60s beforequenching.

brated.Fordecompressionexperiments,somesamplesthenunder- wentasinglestepdecompressiontoalowerintermediatepressure (Pi) to nucleate bubbles and were held at Pi for some time to createa bubblepopulation inequilibriumwiththe melt prior to further controlled decompression to the final pressure (Pf); for sampleswithoutaseparatenucleationstep(e.g.IS14)decompres- sionbegan at Pi=Psyn.For MCN13,an undecompressed sample from a solubility experiment, pressure was constant throughout, i.e.Psyn=Pi=Pf.Allsampleswerequenchedisobaricallyat Pf; sampleswerequenchedimmediatelyuponreaching Pf exceptfor sample MCN15, which was held at Pf for 60 s before quench- ing.Experimentalquenchrateswerenotdirectlymeasuredbutare estimatedtovaryfrom3to60 stotheglasstransitiontemper- ature(Table 1).FullproductiondetailsforABGsamplesarefound inBurgisserandGardner (2005).IS14wasproducedfollowingthe procedureofDiCarloetal. (2006);MCN13followingtheprocedure ofLarsen (2008)andMCN15followingtheprocedureofLarsenet al. (2004).

2.2.Quantifyingwatercontent

H2Ot data are obtained following Humphreys et al. (2008):

SIMSH2Ot analysesareusedtocalibrategreyscalevaluesinBSEM imagesofthesamearea(Fig. 3a, b).

2.2.1. BSEMimaging

Sampleswerepreparedbyembeddinginepoxyresinandgrind- ingtoexposeaflatsurface.Additionalresinwasthenaddedtothe surface to fillin exposed vesicles and reduce topographic effects during SEM imaging. Re-grinding down to the original exposed surface creates a flat surface of exposed glass and infilled vesi- cles.Surfacetopographyfollowingsamplepreparationwaschecked viaconfocalmicroscopy attheNationalPhysical Laboratoryusing an Olympus LEXT OLS4000 microscope (Wertheim andGillmore, 2014). The join between the glass and infilling resin is smooth withtypically lessthan 1 μmdifference in height betweenglass andresin, withnogradientinthe slopeofthe glassapproaching

Fig. 3. Extractionof H2Ot data usingSIMS-calibratedBSEM. (a)BSEM imageof vesiclesinphonoliteglassshowingdarkwater-richhalos.Notethinbrightwhite edgeeffectat vesiclewalls. (b)CalibrationofSIMSH2Ot datafromprofileA–A withcorrespondingBSEMgreyscaleintensityvalues.Errorsshownresultfromer- rorsonSIMSH2Otanalyses(y-axis,∼±10% relative)anderrorsonmeangreyscale valueoftheprofilesegmentsduetonoiseintheBSEMimage(x-axis,onestandard deviationfrom themean). (c) ProfileA–A showsH2Ot measuredbySIMS(dia- monds)andhighspatialresolutionH2Otconcentrationsextractedfromcalibration ofgreyscalevalues(solidline).Shadingshowserrorresultingfromthecalibration equationshownin(b).ProfileB–BshowsH2Otdataextractedfromgreyscaleval- uesusingthecalibrationequationderivedfromA–A.

thevesicleedge.‘Edge effects’(Newbury,1975) arethus confined to thin (<2 μm) bright white rims at vesicle boundaries. As an additional measure to rule out a topographic causefor greyscale

(5)

Fig. 4.Resorptionprofilesandtextures.BSEMimageofABGsample.(a)Dark,water- richhalossurroundvesicles.Circulardarkpatchbetweenvesicles(rightarrow)isa

‘ghost’bubble,i.e.thewater-richhaloofabubbleaboveorbelowtheplaneofview.

Marginsofdark,water-richglassalsoseenalongcracksbutwithsmallerwidththan water-richhalos.Cracksextendbetweenvesiclesbutoftenterminateattheedgeof water-richhalos.(b)Meltfilmsbetweenneighbouringvesiclesareoftendeformed (boxisenlargedin(c)).Leftarrowin(a)showsbrokenbuckledfilm.Notethatcon- trasthasnotbeen adjustedtohighlighthalos in(b)and(c).Brightpatchesare gold-coatremnantsorFe–Tioxides.TexturesarediscussedinSection4.3.

variationsapproachingvesicleedgesandcrackmargins,thesample stage was rotated and the same area imaged in a different ori- entationwithrespecttothe incidentelectronbeamanddetector.

Greyscale variations caused by sample topography (analogous to shadowsinaphotograph)wouldbereversedwhenthesamplewas rotated by 180; the consistency of the greyscale variations ob- servedhere, irrespective ofsampleorientation, demonstratesthat ourresultsarenotaffectedbysamplesurfacetopography.Insome images taken after SIMS analysis, residual gold coat remains in cracksandvesicleinteriorsandappearsbrightwhiteinBSEM(e.g.

Fig. 3a). Images were acquired at Durham University (GJ Russell MicroscopyFacility) witha HitachiSU-70AnalyticalHighResolu- tionSEMwithattachedGatanMonoCL andassociatedDigitalMi- crograph software using a 15 keV electron beam in backscatter mode witha workingdistance of15 mm. Qualitative H2Ot vari- ationsareseeningreyscalevariations:darkglassisH2Ot-richand lightglassisH2Ot-poor(Fig. 3a,Fig. 4a).

2.2.2. SIMSanalysis

Samples were prepared as for BSEM work. 1H+, 23Na+ and 28Si+ were analysed in radial profiles towards vesicles using a CAMECAims-4fion microprobeattheEdinburgh IonMicroprobe Facility.A 10.7 keV,6 nA,O primarybeamwasacceleratedonto thesamplewithanetimpactenergyof15keV.Positivesecondary ionswereacceleratedto4.25 keVandcollectedsequentiallyonthe electronmultiplierdetector,usinga75 eVoffsetwitha40 eVen- ergy window. Profiles were run inscan mode witha 5 μmstep size,witheachanalysedspotapproximately5×5 μm and<3 μm deep.H2Ot concentration wascalculatedfromaworkingcurve of 1H+/28Si+whichwascalibratedtwicedailyusingwellconstrained standardsofvaryingSiO2 andH2Otcontent.Errorsare±10%rela- tive.

2.2.3. SIMS-BSEMcalibrationanddataprocessing

FollowingthetechniqueofHumphreysetal. (2008),SIMSH2Ot datawereusedtocalibrateBSEMimagesinordertoextractquan- titative H2Ot data at high spatial resolution (<1 μm). Greyscale valueswere extractedalonga 5 μm-wideprofileimmediatelyad- jacent to the visible SIMS track, using Gatan DigitalMicrograph software. Mean greyscale values of5 μm segments were plotted againstthecorrespondingSIMSmeasurements(Fig. 3).A linearre- gressionfitwasappliedandtheresultingcalibrationequationused to extract quantitative data in the same image, each newimage requiring aseparate calibration. ‘Edgeeffects’ atvesiclewallsare narrowandanomalouslybrightandthuseasilyremovedfromex- tracted profiles;presentedprofiles thereforebegina fewmicrons from the vesicle wall. Presented images are enhanced to make greyscalevariationsmoreapparentbyvaryingbrightness,contrast andgammasettings;thesesettingsdonotaltertherawgreyscale valuesusedforcalibrationanddataextraction.

Foreachsample,multipleradialprofileswereextractedaround multiplevesicles.Onceallextractedgreyscaledatawereconverted to H2Ot data using the relevant image calibration equation they werecompiledtocreateacompositedatasetofH2Otasafunction of distance from vesicle wall for the sample. An example figure which shows this profile-averaging methodology is presented in Supplementary Information.The meanH2Ot value was calculated for all data within 2 μm segments; these meanvalues form the H2Ot profileforeachsample.Errorsshownaretwicethestandard errorofthismean.Averagingallextractedprofilesforonesample thusaccountsforthevariationresultingfromvesiclesthataresec- tionedatdifferentdistancesfromtheirequator (whichaffectsthe profilegradient,withsteepest profilesforthosesectioneddirectly atthe equator,see SupplementaryInformation), andforvariation inH2Ot resultingfromtheuseofmultipleSIMStrackspersample (whichaffectsthepositiononthe y-axisbutnottheshapeofthe profile).

2.2.4. FTIRanalysis

Samples were prepared as free-standing wafers polished on bothsides.TheirhighH2Otcontentsrequiredthinwafers(<20 μm) toavoidsaturatingthedetector.Samplesweremountedonaglass slidewithCrystalbond509andgroundwithsilicacarbidegritbe- fore polishingwith3 μm and1 μmdiamond pasteto produce a flat, polished surface. Samples were then flipped and remounted polishedside downandgroundandpolishedfromtheother side.

Thickness was monitored during polishing using a micrometer on the glass surface. As target thickness was approached, micro- metermeasurementswereconductedontheadjacentcrystalbond to avoid damaging the delicate sample. Final thickness was de- termined using interference fringes on reflectance FTIR spectra.

Samples were finally removed from the slide by dissolving the crystalbond withacetone, then a paintbrush (rather than tweez- ers)wasusedtoremovethefragilewafersfromtheacetonebath.

FTIR analyses were acquired at the Institute for Research on EarthEvolution(IFREE),JapanAgencyforMarine-EarthScienceand Technology (JAMSTEC), using theVarian FTS Stingray 7000Micro Imager Analyzer spectrometer withan attached UMA600micro- scope. Mid-IR (6000–700 cm1) transmittance spectroscopic im- ageswerecollectedover512scansataresolutionof8 cm1using aheatedceramic(globar)infra-redsource,a Ge-coatedKBrbeam- splitter, andthe Varian Inc. Lancer Focal Plane Array (FPA) cam- era housedinthemicroscope,whichconsistsofaliquid-nitrogen cooledinfraredphotovoltaicHgCdTe2(MCT)arraydetector.Thear- ray detector is comprised of 4096 channels (arranged 64×64) acrossa350×350 μm areagivingachannel,orspectral,resolution of5.5×5.5 μm.TheFPAcamerawascalibratedregularly.Samples wereplacedonaKBrwindowunderN2 purgeandareaswerese- lectedforanalysisusingthemicroscope.Initiallyabackgroundim-

Références

Documents relatifs

In Chapters V and VI, we consider oblique derivative boundary value problems for second order linear and quasilinear complex equations of mixed type by using a complex analytic

We observed three distinct morphological regimes when the drop pressure was decreased within quasi-static conditions: at small size ratio, numerous local inward buckling

40 Based on grey and secondary literature and interviews with players in the financial centre, this is undoubtedly one the most systematic attempts made thus far in the Luxembourg

The purpose of this study was to compare the physical and biological properties of two injectable apatitic calcium phosphate cements used in clinics which rely

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

These analyses revealed that the bone resorption phenotype was only present in sexually mature females, since 6-month-old females had increased bone mass similar to the

For general models, methods are based on various numerical approximations of the likelihood (Picchini et al. For what concerns the exact likelihood approach or explicit

We observed concentration evolution of the following elements in function of time : plasmatic T3 and T4 (T3p and T4p), intra-cellular T3 and T4 (T3c and T4c), D2, D3, TR-β and